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Abstract—There is a constant push for ever increasing perfor-
mance in traditional computing systems, leading to high power
consumption and, in the end, to the incapacity of conventional
electronics to handle heavy computing tasks, which usually
require learning features. Thus, the development of novel nano-
electronic devices with inherent neuromorphic characteristics and
a low energy footprint has become a viable alternative. In order
to simulate neuromorphic features utilizing memristive devices,
the threshold switching effect is critical, which can be seen
in the rich dynamics of metallic conductive filament (CF). In
this paper, a realistic model of the unipolar nature of CBRAM
devices is exploited to create a memristor-based oscillator that
can integrate neuromorphic features. Bipolar memristive devices
have been used to match the weight of the neurons in a crossbar
configuration. The used physical model for these memristors
was fitted to fabricated devices in order to achieve the expected
accuracy in the circuit simulation. The oscillator’s output signal
and behavior matched the theoretical background of biological
neurons. Thus, this approach can be considered as the first
step towards the development of low-power oscillation-based
neuromorphic hardware with biological-like behavior.

Index Terms—memristor, memristor oscillators, memristive
circuits, neuromorphic computing, unconventional computing,
oscillation-based computations

I. INTRODUCTION

Neuromorphic computing is one of the most promising
novel computing approaches under investigation. Due to their
ability to process complex data efficiently, neuromorphic sys-
tems have gained favor as the next generation of computing.
Its definition focuses on the design of systems that can
replicate the human brain, allowing them to attain high energy
efficiency, parallelism, and competence in cognitive tasks such
as object recognition and learning [1]–[3].

Neuromorphic systems were first introduced in the literature
as a field of analog circuit engineering back in the 1980s. Over
the years, analog circuits for neurons and synaptic functions
have been created, leading to the production of general-
purpose chip prototypes [1]. Although CMOS technology is re-
quired for the integration of large-scale neuromorphic systems,
it lacks some of the inherent properties of the neurobiological
network and has limitations in terms of power consumption
and learning speed [4]–[6].
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An energy-efficient neuromorphic computing system de-
mands hardware that can replicate brain activities. As a
result, different materials for the designing of neuromorphic
devices have been introduced [7]–[9]. Memristor as a two-
terminal nonvolatile device has many advantages compared
with conventional computing systems such as CPU and GPU
[10], [11]. Due to its nanoscale size, its main characteristics
focus on its low power consumption and rapid switching. It
is also CMOS-compatible and can be integrated with higher
density. These characteristics make the memristor suitable for
a number of novel computing and memory applications [12]–
[14] and, as such, a promising candidate for neuromorphic
computing, enabling the mimicking of the energy-efficient
signal system in the brain. Thus, researchers have conducted
many experiments on neural networks in recent years using
memristors [15]–[17].

In memristive neuromorphic circuits, the memristor is
mostly used as the storage medium to represent a weight.
It mainly functions as a neural synapse, and its function
is equivalent to that of a single-layer perceptron [18]. The
memristor can greatly reduce the power consumption of such
neuromorphic networks and the size occupied by the original
circuit to improve the efficiency of the network, making it an
excellent device for accelerated calculations [19], [20].

Different applications require memristor devices with dif-
ferent physical mechanisms, such as Conductive Bridge
RAM (CBRAM), Ferroelectric RAM (FeRAM), Phase Change
Memory (PCM), Spin Torque Transfer (STT) MRAM [21],
[22]. CBRAM devices are showcasing the most enticing
characteristics for a resistive non-volatile memory and com-
puting element [23]–[25]. For the design of circuits based
on CBRAMs, appropriate models based on their physical
phenomena [26], [27] are required to perform accurate circuit
simulations. These models should be compatible with the cir-
cuit description as well as their calibration by the experimental
response of memristive devices to spike-like signals [28].

Chemical reactions can also showcase qualitatively sim-
ilar evolution as nerve cells, usually through the chemi-
cal information processing activity of the well-known Be-
lousov–Zhabotinsky (BZ) reaction [29]–[31]. There are dif-
ferent reagents in this reaction; activators, which can grow
autocatalytically at the appropriate conditions, and inhibitors,
which are responsible for suppressing the production of ac-
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tivators. The BZ medium utilizes oscillations and spikes to
perform operations that can be triggered and activated through
the reagents, i.e., the concentration of activators exceeds a
threshold value or the concentration of inhibitors falls below
a certain level [32]–[34], which can be mapped to the behavior
of a neuron.

In this work, taking inspiration from the chemical medium
evolution, memristive devices have been used in order to create
a neuromorphic MRC oscillator. A realistic physical-based
memristor model was used, fitted to fabricated CBRAM de-
vices that exhibit both unipolar and bipolar switching behavior
under different applied voltage [17]. The unipolar behavior
of the CBRAM devices was exploited to reproduce neuron-
like oscillations while the bipolar behavior was utilized to
implement the synaptic weights of the neuron in a crossbar
configuration. The proposed circuitry was able to showcase
biological-like behavior and to resolve the XOR problem with
a single memristive neuron-like oscillating circuit.

II. MEMRISTIVE DEVICES AND MODEL

A single-layer MIM CBRAM device (Fig. 1(a)) in Ag
(∼ 40 nm) / SiO2 (∼ 20 nm) / Pt NPs (∼ 5 nm) architecture
was fabricated in order to develop the proposed chemically-
inspired memristor-based neuron-like oscillating circuit. Re-
garding the fabrication process, thin film depositions on pre-
viously oxidized silicon substrates were performed using the
RF magnetron sputtering method. A high purity ceramic target
(SiO2 target – 99.99%) was used during the deposition of
the 20 nm SiO2 thin layer. The TiN bottom electrode and
Ag top electrode were deposited from respective TiN and Ag
sputtering targets, respectively, with a total thickness of 40 nm.
Pt NPs were deposited from a high purity Pt target (99.99%)
using a novel gas condensation method. The fabricated device
shows fast unipolar switching behavior, which is crucial for
achieving the desired oscillation. At the same time, this device
can showcase bipolar behavior under a higher voltage supply,
which is optative in order to be used as neuron weights.

Regarding the realistic physical-based memristor model,
it takes into consideration the drift, diffusion, and thermo-
diffusion effects to implement the switching dynamics of the
memristor. The model is CBRAM based, meaning that the
change in resistance is attributed to a conductive filament
that is forming and rupturing between the top and bottom
electrodes. The thermo-diffusion mechanism will assist in
countering the effects of drift and Fick diffusion fluxes, and
will contribute to integrating the nanosecond-based switching
times of the CF in the model. The switching effect in CF
causes large current densities and enhanced local temperature
distributions, which lead to enhanced atom migration and
thermophoresis [35], [36]. The temperature gradient is a key
driver of the switching effect, which is why it’s important to
include these effects in a model of the switching effect [37],
[38]. The model has been developed in Verilog-A in order to
enable large-scale circuit simulations.

Regarding the mathematical description of the model’s
equation set, the state variable is the effective diameter (ϕ)
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Fig. 1. (a) Fabricated CBRAM device structure. (b) Physical memristor model
geometry.

and its derivative is extracted through drift, diffusion, and
thermo-diffusion, three effects that are voltage and temperature
dependent.
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The temperature T is calculated through a lumped thermal
model which is dependent on the applied voltage V , the
resistance of the device R, as well as the effective diameter
of the filament.

dT{hot,cold}

dt
+

T{hot,cold} − T0

τth
=

|V × I|
kth{hot,cold}

(2)

The resistance of the device R is calculated based on the
geometry of two adjoined truncated cone-shaped filaments
(Fig. 1(b)), whose size changes according to the effective
diameter (ϕ).

R = RCF1 +ROX +RCF2

= ρCF
(L− g)/2

πrArx1
+ ρOX

g

πrx1rx2
+ ρCF

(L− g)/2

πrBrx2

(3)

III. NEURON - CIRCUIT ANALOGY

Neuron cells are in charge of receiving input from the
outside world as well as processing and transmitting it [39].
Dendrites, axon, and soma are the three major components of
a neuron (Fig. 2). A dendrite is where a neuron receives and
processes messages from other neurons’ axons. The axon is
the neuron’s output structure, where it sends information to
other neurons via action potentials and connects to the cell
body via a specialized junction known as the axon hillock.
The soma is the core component of the neuron that houses
its genetic information and is essential for maintaining its
structure as well as providing energy to drive activity. Finally,
the communication link between the axon of one neuron and
the dendrite of another is called a synapse.

The brain has billions of neurons, making it a formidable
challenge to achieve artificial intelligence by simulating their
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Fig. 2. Biological neuron representation.

functions. This is why scientists are continuing to improve on
neuron-like circuit designs in order to create more realistic and
useful devices. Taking inspiration from the biological neuron
an oscillating circuit has been designed that mimics its behav-
ior and structure. The proposed neuron-like oscillating circuit
takes advantage of memristors in an oscillating manner similar
to how nerve cells oscillate inside a biological organism. This
allows it to continuously capture and incorporate slow patterns
of neural-like activity while also responding quickly to sudden
changes in stimulus conditions.

In the proposed neuron-like oscillating circuit, the synapses
and the dendrite are represented by bipolar memristors in a
crossbar configuration that are able to receive signals from ex-
ternal inputs and other similar neuron-like oscillating circuits
(Fig. 3(a)). The soma of the circuit is considered the power
supply necessary to send its action potential through its axon.
The axon contains an MRC oscillator, which is triggered when
the weighted sum of the input signals exceed a pre-defined
threshold in order to transmit a signal to the following neuron-
like oscillating circuits (Fig. 3(b)). This transmitted signal
matches the characteristics of biological electric signals called
action potentials. The overall system matched the functionality
of a biological neuron and can be considered as the first
step towards the development of low-power oscillation-based
neuromorphic hardware with biological-like behavior.

A. Synapses and Dendrite Equivalents Operation

Synapses are represented by CBRAM devices with bipolar
behavior in a crossbar configuration in order to be able to
incorporate both write/train and read/operation features. The
dendrite connects the memristors and a power supply with a
switch on the axon hillock. The functionality is similar to a
perceptron, with the bias signal being considered the power
supply.

Regarding the synapses representation, a n × 2 memristor
crossbar is utilized as depicted in Fig. 3(a) with n to be the
inputs and 2 to be the two different types of signals that can be
observed in a biological neuron; the excitatory ones and the
inhibitory ones. The first are used to enable the oscillation,
while the second are used to delay it. The memristors are
in series with a transistor on a 1T1R topology in order to
act as column selectors during the write/train phase. Thus,
different numbers of activated pre-neuron-like oscillators lead
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Fig. 3. (a) Synapses and dendrite circuit equivalent. (b) Soma and axon circuit
equivalent.
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Fig. 5. Action potential-like signal VAX produced by the neuron-like
oscillator. Biological neuron action potential representation in light gray.

to different voltage levels on the axon hillock equivalent,
depending on the weights of the memristors on the crossbar.

As far as the dendrite equivalent circuit, each of the ex-
citatory and the inhibitory lines is connected to a resistance
and to a transistor responsible for grounding the output during
the write/train phase. On the excitatory line, a power supply
is connected to act as a bias during the read/operational
phase of the neuron-like oscillator. The dendrite circuit is
responsible for calculating the weighted sum of the input
signals depending on the resistance values of the memristors
and subtracting the excitatory line from the inhibitory one in
order to provide the axon hillock circuit with the final result.

The write/train under two different weight cases can be
observed in Fig. 4 under zero bias (VBIAS = 0V ), as
well as the read/operation phase output. The write/train of
the neurons take place in the beginning seperately for each
column. Focusing on the first example (left part), the first
neuron is trained in positive/excitatory weight, while the
second one in negative/inhibitory weight. In case the input

voltage is positive (e.g. V IN
S2 at 1 to 5ms), then the respective

memristor switches to its low resistance state (e.g. MS2
INH

at about 1.5ms). Afterwards, the read/operation phase take
place (i.e. when V WR

EN = −2V ) when the input oscillating
signals are sent for cases {S1, S2} = {1, 0} and {1, 1}. For
different inputs, different VDEN levels can be observed with
the inhibitory action to be clearly spotted when both inputs
are present (i.e. VDEN = 0 after 16ms). Regarding the second
example (right part), the first memristor is trained as inactive
(i.e. both memristors MS1

EXC and MS1
INH at high resistance

state) and the second one at positive/excitatory weight, and
thus different output is observed at VDEN .

B. Soma and Axon Equivalents Operation

The axon of the neuron-like oscillator produces an oscil-
lation (Fig. 5) known as an action potential in biological
neuroscience. In order to achieve this signal, a CBRAM device
with unipolar switching dynamics is utilized in combination
with a resistor and a capacitor in order to take advantage of
the charging and discharging behavior of an RC circuit.

More specifically, the memristor (MAX ) oscillates between
V SET
AX and V RESET

AX under constant DC voltage only if the
capacitor CAX and the resistor RAX are selected properly
in order to avoid the equilibrium point in which no further
memristor switch will be possible. In general, the capacitor is
responsible for the oscillation time duration, while the resistor
can adjust the voltage divider VAX along with the memristor
MAX which is the focal point for avoiding the mentioned
equilibrium. In detail, the following (in)equations for the VAX

divider should be followed during the design phase:

V LOW
AX = V RESET

AX · RAX +MLOW
AX

MLOW
AX

(4)

V HIGH
AX = V SET

AX · RAX +MHIGH
AX

MHIGH
AX

(5)

V LOW
AX < VAX < V HIGH

AX (6)
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The eq. 4 is valid when the memristor is at SET state,
where the voltage VAX across the memristor terminals slowly
decreases to V RESET

AX . In order for the memristor’s RESET
process to get triggered, the eq. 6 should be followed in order
to avoid the oscillator reaching equilibrium. Afterwards, the
eq. 5 describes the new equilibrium point as the memristor is
at its RESET state and the voltage VAX slowly increases to
V SET
AX . Following the eq. 6, the SET state can be triggered

before the equilibrium is reached, and thus a continuous
oscillation between V SET

AX and V RESET
AX can be achieved.

Before the oscillator, the axon hillock and the soma equiv-
alent circuit can be spotted in Fig. 3(b). More specifically,
the voltage supplies V HIGH

SM and V LOW
SM are responsible for

providing the necessary power to the neuron-like oscillator in
order to be able to produce the oscillations following the soma
function of a biological neuron. The axon hillock equivalent
circuit consists of two branches; one for ensuring that the
neuron-like oscillator remains at an idle state, while the other
controls the oscillation initialization in case the threshold has
been reached and ensures a successful oscillating operation.

In more detail, the STHR
AH switch is activated when the

threshold from the dendrite inputs is reached to activate the
oscillation. For the successful operation of the neuron-like
oscillator, the SDRP

AH switch is introduced to avoid an abrupt
interruption of the oscillation and to ensure the successful
depolarization and repolarization of the action potential-like
oscillating signal. The SHY P

AH switch is also included to depict
the hyperpolarization period of an action potential.

The operation of the neuron-like oscillating circuit can be
divided into three states matching the operation of a biological
neuron as shown in Fig. 5. The first is the resting state, in
which the oscillator is ready to be activated. The second is the
activation state, which occurs when the required threshold is
reached and the oscillation begins. The refractory state occurs
when the oscillation has achieved lower voltage levels than the
resting state. The neuron-like oscillator can only be activated
during a resting state, while the others ensure that the action
potential-like signal runs properly.

IV. THE XOR PARADIGM

A number of applications can be deployed using the pro-
posed neuron-like oscillator. The application of interest could
be fed into a network of such oscillators, where the particular
memristor-based neuron can be used to store the required
weights and analyze the input data. One such application could
be to detect and recognize patterns in data, and then generate
new ones based on the detected patterns.

To showcase the computational capabilities of the proposed
circuit and as a proof of concept of its functionality, the XOR
problem will be addressed. The XOR is one of numerous
logical gates that, when operated on binary inputs, produce
output for different input combinations but no output for the
same inputs (Table I). The outputs of the XOR logic are not
linearly separable in the hyperplane, which means that the
outputs cannot be classified only by one line able to separate
the input data points. For logical gate operations, gates such
as AND or OR are linearly separable. Consequently, it usual
for most implementations of neural networks to utilize at least
3 neurons to simulate the XOR gate.

TABLE I
XOR GATE TRUTH TABLE

INPUTS OUTPUT
S1 S2 AX
0 0 0
0 1 1
1 0 1
1 1 0

In the case of the proposed circuit, only one neuron-like
oscillating circuit is sufficient for the implementation of XOR
gate. The first input is considered as excitatory, while the
second one as inhibitory following the write/train procedure
of Fig. 4(left). The output signal VAX of the oscillator can be
spotted in Fig. 6 as extracted from simulations of the proposed
circuit in Cadence®Virtuoso®. The simulation results proves
that the proposed neuron-like circuit was able to produce
oscillations only when the inputs are different following the
truth table of Table I.

V. CONCLUSIONS

In this work, a chemically-inspired memristor-based neuron-
like oscillating circuit has been proposed utilizing fabricated
low-voltage CBRAM devices with both unipolar and bipolar
behavior, which were simulated with a compact physical
CBRAM model and fitted to perform similar behavior. The
proposed neuron-like oscillator was able to match different
parts of the circuit into the different parts of a biological
neuron and to match its output signal to the common action
potential of the neuroscience field. Finally, the XOR problem
was successfully addressed by utilizing one such neuron-
like oscillator. In future work, an interconnected network of
neuron-like oscillating circuits will be exploited, among others,
for pattern recognition. Also, the further improvement of the
circuit operation performance along with the reduction of the



required circuit area will be explored aiming to achieve the
requested robustness for various engineering applications.
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