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Abstract—A novel generalized structure capable for implement-
ing fractional-order shelving filters is presented in this work. This
is achieved by forming the realized transfer function as a ratio of
two impedances, where the fractional-order one is approximated
by a suitable tool. The provided simulation results confirm the
validity of the proposed concept.

Index Terms—fractional-order filters, fractional-order capac-
itors, fractional-order impedances, shelving filters, acoustic ap-
plications

I. INTRODUCTION

Shelving filters offer the special characteristic of not com-
pletely removing the out-of-band content of a signal, as the
standard filter structures perform [1]. They perform a boost or
attenuation of a specific band and, according to the location
of this band, they fall into the following main categories: a)
low-pass filters, which boost or attenuate the low end of the
frequency spectrum, and b) high-pass, which boost or attenuate
the high end of the frequency spectrum [2]–[7]. According
to [8], an important parameter for improving the listening
experience is the slope of the boost/attenuation gradient in the
transition between the two bands which must be less than of
that offered by the conventional integer-order filters. Following
this, the fractional-order filtering is an attractive candidate for
implementing shelving filters and this is originated from the
fact that they offer fine adjustment of slope of the transition,
through the order of the filter [9]. Fractional-order shelving
filters have been presented in [10], [11]. Although the scheme
in [10] is attractive in the sense that it offers electronic
adjustment capability of the filter characteristics, it suffers
from the increased circuit complexity. The solution published
in [11] is simpler, at the expense of losing the electronic
tunability.

In the present work, a novel scheme for implementing
fractional-order shelving filters is introduced, which offer
reduced circuit complexity with regards to that in [11]. This
is achieved through the utilization of the concept of the
driving impedance, in order to implement the required transfer
function. This work is organized as follows: a brief theory of
the fractional-order shelving filters is given in Section II, while
the proposed implementation is presented in Section III. The
simulation results, which support the introduced material, are
provided in Section IV.

II. FRACTIONAL-ORDER SHELVING FILTERS

The transfer function of a low-pass shelving filter, with
the low and high frequency gains being Gmax and Gmin,
respectively, is given by (1)

HLP (s) =
√

GmaxGmin ·
τs+

√
Gmax

Gmin√
Gmax

Gmin
τs+ 1

. (1)

The pole and zero frequencies of (1) are located in equal
distance around the characteristic frequency ω0 = 1/τ , de-
termined by (2)

ωP = ω0 ·

(√
Gmax

Gmin

)−1

ωZ = ω0

√
Gmax

Gmin
, (2)

making ω0 to be the geometric mean of these frequencies
(i.e., ω0 =

√
ωP · ωZ), and it is usually mentioned as center

frequency.
Setting s = jω in (1), the derived expression for the magnitude
response is

| HLP (ω) |= (GmaxGmin)
1/2 ·

[
(ωτ)

2
+ Gmax

Gmin

Gmax

Gmin
(ωτ)

2
+ 1

]1/2
. (3)

The gain at the frequency ω0 is equal to
√
GmaxGmin and,

therefore, is the (geometric) mean of the characteristic gains of
the filter. Considering (2), it is derived that the pole and zero
relative distance is determined by the ratio of the characteristic
gains of the filter. Owing to the fact that the pole and zero
locations frequencies are equal to the low (ωL) and high (ωH )
cutoff frequencies, the slope of the transition between the two
bands is also determined by the aforementioned ratio.

The transfer function of a low-pass fractional-order (0 <
α < 1) shelving filter, is that given by (4)

HLP (s) =
√

GmaxGmin ·
(τs)

α
+
√
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(τs)

α
+ 1

. (4)

The pole and zero frequencies are still equally spaced around
ω0, and their exact location is given by the expressions in (5)

ωP = ω0

(√
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α

ωZ = ω0
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) 1
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. (5)
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According to (5), the extra degree of freedom (i.e., the order
of the filter) offers the capability of adjusting the location of
the pole and zero, without disturbing the characteristic gains
of the filter.
The low (ωL) and high (ωH ) cutoff frequencies will be
determined according to the following expressions

ωL = ωP ·
[√

1 + cos2
(απ

2

)
− cos

(απ
2

)]
1/α , (6a)

ωH = ωZ ·
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1 + cos2
(απ

2

)
+ cos

(απ
2

)] 1/α

. (6b)

The slope of the transition between the two bands can be
adjusted through the order of the filter and, therefore, a more
precision control of the transition between the two bands is
achieved than that achieved by the integer-order filter.

In the case of a fractional-order high-pass filter, with its
transfer function given by (7)

HHP (s) =
√
GmaxGmin ·

√
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(τs)

α
+ 1

(τs)
α
+
√
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Gmin

, (7)

the zero and pole have interchanged their locations with
regards to the center frequency, compared to those established
by the corresponding low-pass filter. This is described by the
expressions in (8)
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) 1
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α

. (8)

The associated cut-off frequencies are given by (9a)–(9b)
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2
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. (9b)

The benefit of the orthogonal adjustment of the slope of the
transition between the two bands is still offered, with its value
being the opposite one of that realized by the low-pass filter.
In order to facilitate the reader, let us consider fractional-order
filters with {Gmax, Gmin} being equal to {10,1} in the case
of low-pass and {1,10} in the case of high pass filter, and
f0 = 0.5 kHz. Their most important frequency characteristics,
as well as of their integer-order counterparts, are summarized
in Table I, where it is readily obtained the flexibility offered
by the fractional-order filtering.

III. IMPLEMENTATION OF FRACTIONAL-ORDER SHELVING
FILTERS

A typical implementation of a fractional-order low-pass
shelving filter, using an operational amplifier (op-amp) as
active element, is demonstrated in Fig. 1. Taking into account
that the impedance of a fractional-order capacitor in given by
the formula: Z = 1/Cαs

α, with 0 < α < 1 being the order

TABLE I
COMPARISON OF THE FREQUENCY CHARACTERISTICS OF FRACTIONAL

AND INTEGER-ORDER SHELVING FILTERS.

Parameter Integer-order FO-LP filter a

0.7 0.8 0.9
fP (Hz) 158.11 96.53 118.57 139.13
fZ (kHz) 1.58 2.59 2.11 1.79
fL (Hz) 159.72 58.63 88.16 122.3
fH (kHz) 1.56 4.26 2.84 2.04

slope (dB/dec) −20.18 −10.74 -13.27 -16.35
aIn the case of high-pass filter fP ↔ fZ , fL ↔ fH , and slope ↔ –slope.

υout
-
+υin

CαR3

R2

R1

Fig. 1. Fractional-order low-pass shelving filter, implemented using an op-
amp as active element.

and Cα being the pseudo-capacitance in F ·sα−1, the realized
transfer function is given by (10)

H(s) = −R2

R1

R3Cαs
α + 1

(R2 +R3)Cαsα + 1
. (10)

Equalizing the coefficients of (4) and (10), the derived design
equations are summarized in (11a)–(11c)

R2 = GmaxR1 , (11a)

R3 =
GminR2

Gmax −Gmin
, (11b)

Cα =

√
Gmax

Gmin

τα

R2 +R3
. (11c)

Considering a low-pass filter of order α = 0.7, f0 = 0.5kHz,
Gmax = 10, Gmin = 1, and assuming that R1 = 9kΩ, then
the calculated values of the other elements of the filter are:
R2 = 90kΩ, R3 = 10kΩ, and Cα = 112.7nF.s−0.3.

The corresponding implementation of a fractional-order
high-pass shelving filter is depicted in Fig. 2, with the realized
transfer function being
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Fig. 2. Implementation of an op-amp based fractional-order high-pass
shelving filter.



TABLE II
PASSIVE ELEMENTS VALUES OF THE NETWORK IN FIG. 3 FOR

APPROXIMATING THE FRACTIONAL-ORDER CAPACITORS IN FIGS.1–2.

Element Value
Cα = 112.7nF.s−0.3 Cα = 1.13µF.s−0.3

RF0 562 Ω 56.2 Ω
RF1 1.18 kΩ 118 Ω
RF2 6.49kΩ 649 Ω
RF3 33.2 kΩ 3.32 kΩ
RF4 174 kΩ 17.4 kΩ
RF5 1.54 MΩ 154 kΩ
CF1 5.9 nF 59 nF
CF2 11 nF 110 nF
CF3 21.5 nF 215 nF
CF4 41.2 nF 412 nF
CF5 45.3 nF 453 nF

H(s) = −R2

R1

(R1 +R3)Cαs
α + 1

R3Cαsα + 1
, (12)

and the associated design equations, derived from (7) and (12)
provided by (13a)–(13c)

R2 = GminR1 , (13a)

R3 =
R2

Gmax −Gmin
, (13b)

Cα =

√
Gmax

Gmin

τα

R1 +R3
. (13c)

Following the same assumptions as in the case of the low-pass
filter, the calculated values of the elements of the filters are the
following: R2 = 9kΩ, R3 = 1kΩ, and Cα = 1.13µF.s−0.3.

Due to the lack of commercial availability of fractional-
order capacitors, their behavior can be approximated through
the utilization of appropriately configured RC networks, such
as the Foster type-I network in Fig. 3. Employing a 5th–

RF0
RFn

CC FnF2

F1

F1

F2R R

C

≈

Fig. 3. Foster type-I RC network for approximating the behavior of fractional-
order capacitors/impedances.

order Oustaloup approximation in the range [102, 105]rad/s,
then the values of the elements of the network in Fig. 3
for substituting the factional order capacitors in Figs. 1–2,
calculated according to [12] and rounded to the E96 series
defined in IEC 60063, are summarized in Table II.

Another possible solution for implementing the filters trans-
fer functions is the employment of the general topology
provided in Fig. 4, where the realized transfer function has
the well-known form: H(s) = −Z2/Z1. The corresponding
values of the impedances in the case of low-pass filters are

Z2

Z1 -
+

υout
υin

Fig. 4. Generalized topology for implementing the transfer functions of
shelving filters.

TABLE III
PASSIVE ELEMENTS VALUES OF THE NETWORK IN FIG. 3 FOR

APPROXIMATING THE FRACTIONAL-ORDER IMPEDANCES IN FIG. 4

Element Value
Z2 in Fig. 4 Z1 in Fig. 4

RF0 9.53 kΩ 953 Ω
RF1 976 Ω 97.6 Ω
RF2 5.36kΩ 536 Ω
RF3 24.9 kΩ 2.49 kΩ
RF4 35.7 kΩ 3.57 kΩ
RF5 9.76 kΩ 976 Ω
CF1 7.3 nF 73.2 nF
CF2 12.4 nF 124 nF
CF3 20.5 nF 205 nF
CF4 71.5 nF 715 nF
CF5 1.65 µF 16.5 µF

given by (14a), while the corresponding ones in the case of
high-pass filter are given by (14b)

Z1 = R1 Z2 =
R2 (R3Cαs

α + 1)

(R2 +R3)Cαsα + 1
, (14a)

Z1 =
R1 (R3Cαs

α + 1)

(R1 +R3)Cαsα + 1
Z2 = R2 . (14b)

The approximation of the fractional-order impedance in (14a)–
(14b) can be performed by expressing the Laplacian term sα as
a rational integer-order transfer function, derived using suitable
approximation tools such as the Oustaloup, continued fraction
expansion etc [12]. The resulting total impedance function has
also the form of a ratio of integer-order polynomials, and it
can be implemented using the RC network in Fig. 3.

Employing the 5th–order Oustaloup tool, for approximating
the Laplacian term in the range [102, 105]rad/s, the values of
passive elements for both low and high-pass filter functions
are summarized in Table III. It is obvious that this solution
offers reduced circuit complexity compared with the conven-
tional procedure, where single fractional-order capacitors are
substituted by RC networks.

IV. SIMULATION RESULTS

The performance of the filters based on the generalized
topology in Fig. 4, will be evaluated using the OrCAD PSpice
simulator and the corresponding model of the OP27 discrete
component IC. The obtained magnitude and phase responses
of the fractional-order filters in the acoustic band (20Hz −
20 kHz) are depicted in Fig. 5 (solid lines), along with the
corresponding ones derived by the Oustaloup approximation
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Fig. 5. Simulated gain and phase (shifted by 180o) responses of the shelving
low-pass and high-pass filters, derived from the general topology in Fig. 4.
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Fig. 6. Monte-Carlo analysis results of the low cut-off frequency of the
fractional-order low-pass shelving filter.

of the transfer functions, marked by dashes. In the case of the
low-pass filter, the simulated values of the low (fL) and high
(fH ) cut-off frequencies are 59.10Hz and 4.42kHz, while for
the high-pass filter the corresponding values are 59.06Hz and
4.40kHz, with the theoretically predicted ones being 58.63Hz
and 4.26kHz, respectively.

The sensitivity of the filters, with regards to the effect of
passive components values tolerances is evaluated through the
utilization of the Monte-Carlo analysis tool offered by the
Advanced Analysis tool of the OrCAD PSpice suite for N=500
runs, and considering 10% random tolerances. The obtained
statistical plots of the low-pass filter are demonstrated in Figs.
6–7, where the values of the standard deviation of the low
and high characteristics frequencies {fL, fH} are 3.2Hz and
0.2kHz. In the case of the high-pass filter, the corresponding
results are 3.1Hz and 0.18kHz, respectively. As the nominal
values are 58.63Hz and 4.26kHz, the proposed implementa-
tions offer reasonable sensitivity characteristics.

no
. o

f s
am

pl
es

0

50

100

 frequency (kHz)
3.8 4.0 4.2 4.4 4.6 4.8 5.0

Fig. 7. Monte-Carlo analysis results of the high cut-off frequency of the
fractional-order low-pass shelving filter.

V. CONCLUSIONS

The presented concept where, instead of substituting the
fractional-order capacitors by suitable RC network, the whole
synthetic impedance is substituted by a such network offers
reduction of the passive component count and, also, pro-
vides design versatility. The performance characteristics of
the resulted shelving filters structures, evaluated through the
OrCAD PSpice suite, make them attractive candidates for
employment in a wide variety of acoustic applications, where
fine adjustment of the transition between the two bands is
required.
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