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Abstract—In this paper we study a mobility-aware call 
admission control mechanism applied in a mobile hotspot. We 
consider a vehicle, which can alternate between stop and moving 
phases and has an access point of a fixed capacity. In the stop 
phase, the vehicle accommodates both new and handover calls. 
To prioritize handover calls a probabilistic bandwidth 
reservation (BR) policy is applied where some of the system’s 
resources are reserved for handover calls. Based on this policy, 
new calls may enter the reservation space with a predefined 
probability. In addition, handover calls can wait in a queue of 
finite size if there are no available resources at the time of their 
arrival. In the moving phase, the vehicle services only new calls 
under the probabilistic BR policy. In both phases, arriving calls 
follow a Poisson process, require a single bandwidth unit from 
the system and have an exponentially distributed service time. 
To analytically determine the most significant performance 
measures such as call blocking probabilities an efficient iterative 
algorithm is presented.  

Keywords: mobility, hotspot, loss, queueing, admission, 
handover, probabilistic reservation 

I. INTRODUCTION 
A call admission control (CAC) mechanism is a 

significant quality of service (QoS) mechanism in a mobile 
hotspot since it provides access to the resources required by 
calls, either new or handover. To reduce call blocking 
probabilities (CBP) of handover calls the most common call 
CAC mechanism is based on the bandwidth reservation (BR) 
or guard channel policy (e.g., [1]-[7]). According to the BR 
policy, some resources are reserved to favor handover calls. 
Other policies that may also prioritize handover calls are the 
multiple fractional channel reservation policy and the 
threshold call admission policy (e.g., [8]-[10]). 

Herein, we focus on a BR CAC mechanism applied on a 
mobile hotspot which was initially proposed in [11]. More 
specifically, in [11] a vehicle has an access point (AP) 
installed on it with a wireless local area network (WLAN) of 
fixed capacity. The vehicle can be in the stop or in the moving 
phase. During the stop phase, a vehicle can accommodate 
new and handover users. The former initiate a call in the 
vehicle while the latter already have an ongoing call and 

therefore perform a handover from a NodeB (NB) to the AP 
of the vehicle. To favor handover users, a part of the fixed 
capacity is reserved for them. In addition, handover users 
may wait to be served in a finite queue (if there are no 
available resource at the time of their arrival), an option that 
is not available for new users. During the vehicle’s moving 
phase, only new calls can be generated. In both phases, 
incoming calls arrive according to a Poisson process, require 
a single bandwidth unit (b.u.) and have an exponentially 
distributed service time.  

In this paper, we extend [11] by proposing a probabilistic 
BR policy that can be applied to new calls in both phases with 
a predefined probability. The advantage of such a policy, 
compared to the BR policy, is that it provides a way to alter 
CBP of both new and handover calls by modifying the BR 
policy probabilities. Note that the probabilistic BR policy has 
also been considered in [12], [13]. Contrary to [12] where 
pure loss models have been considered, in this paper we 
further assume that handover users have the option to wait to 
be served. Based on the above, the contribution of our paper 
is summarized as follows: i) we propose the probabilistic BR 
loss/queueing model where the probabilistic BR policy is 
applied only to new calls during both phases while handover 
calls have the option to enter a queue of finite size (the case 
of the probabilistic BR policy for new calls in the stop phase 
only has been studied in [13]), and ii) we present an iterative 
algorithm as in [12] for the determination of CBP, system’s 
utilization and mean waiting time in the queue.      

This paper is organized as follows: Section II, includes 
the presentation of the proposed probabilistic BR 
loss/queueing analytical model, the review of the iterative 
algorithm presented in [12] used for the calculation of the 
steady state probabilities, and finally the formulas used for 
the performance metrics calculation. Section III, includes 
some basic analytical results for the performance measures. 
Section IV, concludes this paper. 

 



II. THE PROPOSED PROBABILISTIC BR LOSS/QUEUEING 
MODEL 

A. The Analytical Model 
We assume that a vehicle exists which has: (i) an AP of C 

WLAN capacity and (ii) a finite first-in-first-out (FIFO) queue 
of length K (both C and K are measured in bandwidth units - 
b.u.). As in [11] and [12], the above-mentioned system has 
two CAC phases: a stop and a moving. Calls arrive at random 
(via a Poisson process) to the system and are divided into new 
and handover, with arrival rates λnew and λh, accordingly. Each 
call needs one b.u. to be admitted in the system, so at each 
time the number of occupied b.u. equals the number of 
calls/users served/waiting in the queue. The call service time 
is exponentially distributed with mean values of -1

sμ and -1
mμ  

(respectively in the stop and moving phase). 

The queue accommodates exclusively handover calls, so 
if an arrived handover call’s requested b.u. is not available, the 
call waits in the queue (if it’s not full) to be serviced. Also, the 
probabilistic BR policy is applied, whereby tnew b.u. (out of the 
C b.u.) are probabilistically reserved to favor handover calls, 
so if one b.u. is available in the BR space: an arrived handover 
call is always serviced while an arrived new call is accepted 
only with a predefined probability (ps,new or pm,new if the 
vehicle/system is in the stop or moving phase, accordingly). 

In the stop phase, the vehicle is located at predefined 
places such as a bus stop and remains still for a time duration 
which is exponentially distributed with mean -1

sθ . In this 
phase both handover and new calls arrive at the system as in 
[11], [12]. A handover call is being serviced by a NB until the 
time its user rides on the vehicle, and therefore it needs to be 
transferred to the vehicle’s AP. A new call can arrive at any 
time initiated by a user after he/she rides on the vehicle. The 
probabilistic BR policy is applied in the stop phase and 
specifically tnew b.u. are probabilistically reserved to favor 
handover calls, meaning that an arrived new call is accepted 
in the BR space with a predefined probability ps,new. 

In the moving phase, whose duration is also exponentially 
distributed with mean -1

mθ , exclusively new calls arrive as in 
[11], [12]. The probabilistic BR policy is also applied in the 
moving phase and specifically tnew b.u. are probabilistically 
reserved, meaning that an arrived new call is accepted in the 
BR space with a predefined probability pm,new. 

Based on the above, call blocking of new calls happens in 
the following cases: (i) in both phases when the occupied b.u. 
(n) is C ≤ n ≤ C+K and (ii) in the stop phase with probability 
1-ps,new and in the moving phase with probability 1-pm,new, 
when the occupied b.u. is n = C-tnew,…,C-1 (BR space). Also, 
call blocking of handover calls occurs only in the stop phase 
if both the capacity and the queue are full at the time of their 
arrival, i.e., if the occupied b.u. is n = C + K. 

Worth mentioning is the fact that when tnew = 0 or ps,new = 
pm,new =1, new calls have full access to the capacity (all C b.u.). 
The described CAC mechanism is represented through the 
flowchart of Fig. 1.  

 
Fig. 1. Flowchart of the proposed model. 

The proposed model can be described by the Markov chain 
of Fig. 2. Each state is represented by the ordered pair (i, n) 
where i is the phase (0 for the stop phase and 1 for the moving 
phase) and n is the number of calls in the system (0 ≤ n ≤ 
C+K). 

 
Fig. 2. The 2-D Markov chain in the proposed model. 

B. Global Balance Equations 
If P(i,n) is the steady-state probability of state (i,n) where 
i=0,1, 0 ≤ n ≤ C+K and assuming that:  
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then, based on the above assumptions, the global balance 
equation for states (0,0) and (1,0) is the following: 
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For states (i,n) where i=0,1 and 0 < n < C+K, assuming 
that: 
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we get the following global balance equation: 
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Finally, for the boundary states (i, C+K) where i=0,1 , the 
global balance equation is as follows: 
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C. Steady-State Probabilities 
The steady-state probabilities P(i,n) can be calculated 

using the iterative algorithm of [12]. Initially: 
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Based on (5) and assuming that P(1,0) = 0, P(0,0) = 1, 
0
0,0 1S  , 0

1,0 0S  and 0
0, 0yS  for y < 0, the values of 0

i,nS  can 
be calculated as follows:  

  0 0 0 0
, 1 , , -1 ,

( ) ( ) ( -1)
( 1) ( 1) ( 1)

ji i i i
i n i n i n j n

i i i

n n n
S S S S

n n n
   

  

 
  

  
 (6) 

Similarly, the values of 1
i,nS , based on (5) and by assuming 

that P(1,0) = 1, P(0,0) = 0, 1
0,0 0S  , 1

1,0 1S  and 1
0, 0yS  for 

y < 0, can be calculated via: 
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Having found the values of 0
i,nS and 1

i,nS , it is possible to 
calculate P(0,0) and P(1,0) through (3), for i = 0:  
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Based on (4), (8) takes the following form: 
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Using the system of equations (9) and (10), both P(0,0), 
P(1,0) can be calculated. That makes possible the calculation 
of all the steady-state probabilities P(i, n) via (4).  

D. Performance Metrics 
Since the steady-state probabilities P(i, n) are known, 

several performance metrics can be calculated.  

The CBP of new calls in the stop phase s, newB , is given 
by: 

-1

, ,
-

(1- ) (0, ) (0, )
new

C C K

s new s new
n C t n C

B p P n P n


 

                   (11) 

Similarly, the corresponding CBP values of new calls in 
the moving phase, m, newB : 
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The total CBP of new calls, Bnew is the sum of both s, newB  and 

m, newB : 

                              , ,new s new m newB B B                             (13) 



Arriving handover calls in the stop phase are blocked only 
in state (0, C+K), so their CBP ( s, hB ), is determined via: 

                                 , (0, )s hB P C K                             (14) 

Via (14) we can also compute the CBP of handover calls 
given that the vehicle is in the stop phase, *

s, hB : 
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The link utilization, U, can be determined via: 
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Finally, the average queue length L can be determined as 
the average number of handover calls waiting to be served: 

                               
1

0 1
( ) ( , )

C K

i n C
L n C P i n



  

                     (17) 

Using Little’s law (L = λW) [14], the mean waiting time 
W of handover calls in the stop phase is:   

                                    LW


                                     (18) 

where λ refers to the effective arrival rate: 
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for j=1-i. 
 

III. NUMERICAL RESULTS 
A vehicle with a WLAN AP installed on it, of variable 

capacity C, remains in the stop and in the moving phase, for 
exponentially distributed times with means -1

sθ =1.0 min and 
-1
mθ =5.0 min accordingly. Handover and new calls arrive to 

the system with rates λh = λnew= 24, and those who are 
admitted get serviced for exponentially distributed times with 
mean values -1 -1

s mμ μ = 5.0 min in the stop and moving phase 
accordingly. To favor handover calls, the probabilistic BR 
policy is applied in both phases. Additionally, a finite FIFO 
queue of length K=3 is considered. More specifically, tnew = 8 
b.u.s are reserved mainly for handover calls, but also new 
calls have access to the reserved space with various 
predefined probabilities, ps,new and pm,new in the stop and 
moving phase accordingly.   

The total CBP of new calls (Bnew) and the CBP of 
handover calls ( *

s, hB  ) are depicted in Fig. 3 and Fig. 4 
accordingly, as a function of variable values of C (C = 30, 31, 
… ,80) and for 9 combinations of ps,new and pm,new (each 
getting its values from the set {0, 0.5, 1}). When (ps,new, 
pm,new) = (0.0, 1.0),  the system is the mobility-aware CAC 
with handoff queue (MA-CAC HQ) scheme studied in [11]. 

According to Fig. 3: (i) an increase of C decreases the 
value of Bnew, since more b.u. become available to 
accommodate new calls, (ii) higher values primarily of pm,new 
and secondary ps,new lead to lower values of Bnew, something 
that is logical, since as these probabilities get closer to 1.0, 
new calls get accepted more frequently in the reserved space, 
conversely lower values of primarily pm,new and secondary of 
ps,new lead to higher values of Bnew, (iii) the lowest values of 
Bnew are obtained via the systems that have practically no 
reserved b.u. for handover calls, that is when 
ps,new=pm,new=1.0, (iv) the highest values of Bnew are obtained 
by the system that have fully reserved space in favor of 
handover calls in both phases, that is when ps,new=pm,new=0.0. 
(v) the systems’ Bnew “behaviour” can be clustered/grouped in 
sets based on their value of pm,new.  (vi) Bnew  increases with 
the increase of the queue’s length. 

According to Fig. 4: (i) an increase in C lowers the CBP 
of handover calls ( *

s, hB  ) something expected since more 
bandwidth becomes available for servicing handover calls, 
and is worth noted that the rate of decrease seems to be higher 
in the case where ps,new=0 and pm,new=0.5 (ii) the lowest values 
of *

s, hB are obtained via the systems that have fully reserved 
b.u. for handover calls, that is when ps,new=pm,new=0.0, (iii) the 
highest values of *

s, hB are obtained by the systems that have 
practically no reserved b.u. in favor of handover calls in both 
phases, that is when ps,new=pm,new=1.0. (iv) generally, but not 
always, higher values primarily of pm,new and secondary of 
ps,new tend to lead to higher values of *

s, hB  , because as 
mentioned for Fig.3, as these probabilities get closer to 1.0, 
new calls get accepted more frequently in the reserved space 
causing an increased competition with arriving handover 
calls for the seizure of the  available bandwidth,  (v) contrary 
to Fig.3, the systems’ *

s, hB  “behavior” cannot be clearly 
clustered/grouped in sets based on their value of pm,new. For 
example, according to Fig. 4, at least the system cases with 
ps,new=0 break the clustering. (vi) *

s, hB   decreases with the 
increase of the size/length of the queue. 

Based on the previous, for each value of C and K the two 
systems with full (ps,new=pm,new=0.0) and with no bandwidth 
reservation  (ps,new=pm,new=1.0) demarcate the limits of Bnew 
and Bs,h between which the remaining cases take their values 
(see Fig. 3 and Fig. 4). This means that by adjusting the (ps,new, 
pm,new) values, the CBP of calls and therefore the QoS can be 
regulated as shown in [12], [13]. Also, the addition of a queue 
to the system seems to surpass the effect of BR policy as is 
depicted in Fig. 5 for Bnew and Fig. 6 for *

s, hB . That is, the 
effect of BR policy becomes weaker, since the increase of 
queue length, on the one hand, shifts the graphs of Bnew and 

*
s, hB even more (up and down accordingly) for every system 

case  i.e., for each pair (ps,new, pm,new) and on the other hand, it 



brings the graphs closer together. Also, it seems that the 
introduction of a queue leads to the clustered behavior of Bnew 
(see Fig. 5), as described above for Fig.3. 

 
Fig. 3. Total CBP of new calls (Bnew) for variable C, various 

combinations (ps,new , pm,new) and K=3, 6. 

 

Fig. 4. CBP of handover calls ( *
s, hB ) for variable C, various 

combinations (ps,new , pm,new) and K=3, 6. 

 
Fig. 5. Total CBP of new calls (Bnew) for variable C, various 

combinations (ps,new , pm,new) and (a) K=0 & (b) K=3. 

 

Fig. 6. CBP of handover calls ( *
s, hB ) for variable C, various 

combinations (ps,new , pm,new) and (a) K=0 & (b) K=3. 

 
Fig. 7. System’s utilization for variable C various combinations (ps,new , 

pm,new) and K=3, 6. 

In Fig. 7, the link’s utilization is depicted, as a function of 
variable values of C (C=30, 31, … ,80) and for 9 
combinations of ps,new & pm,new (each probability is getting its 
values from the set {0, 0.5, 1}). According to Fig.7, the 
system’s utilization increases (as is normal) with the increase 
of C, differences exist only between the cases where pm,new 
differs, and specifically higher utilization is achieved for 
higher values of pm,new. The latter means that when a 
probabilistic bandwidth reservation policy in favor of 
handover calls is applied in the moving phase, with pm,new< 1, 
part of the capacity is not utilized properly. Also, a change in 
the queue length seems to have a small effect (positively 
correlated) on capacity utilization, which is more intense for 
pm,new values near zero. In Fig. 8, the mean waiting time in the 
queue (W) of handover calls is depicted, for variable C (C = 
30, 31, … ,80) for 2 values of K (K=3,6) and for 9 
combinations of (ps,new, pm,new) with each probability getting 
its values from the set {0, 0.5, 1}. According to it, W is 
decreased with: (i) the increase of C, (ii) the decrease of ps,new 
or pm,new, meaning that shorter mean waiting times correspond 
to fully reserved space, as was expected and (iii) the decrease 
of the queue’s length. 



 

Fig. 8. Μean waiting time (W) of handover calls in the queue for 
variable C, various combinations (ps,new , pm,new) and K=3, 6. 

IV. CONCLUSION 
A loss/queueing model for a mobile hotspot was 

presented, in which a probabilistic BR policy in both phases 
and a queue of finite size is utilized in favor of handover calls. 
To analytically calculate the various performance metrics, an 
efficient iterative algorithm initially presented in [12] is 
adopted. The proposed probabilistic BR loss/queueing model 
makes possible the CBP regulation through the adjustment of 
the values of the BR policy probabilities ps,new and pm,new . That 
can mitigate, to some extent, the negative impact that the BR 
policy has on the QoS of new calls. Although, the existence 
of a finite queue brings about an additional negative impact 
on the CBP for new calls, the CBP regulation still holds, 
although to a lesser extent compared to the case of a pure loss 
system presented in [12]. Α potential future work, would be 
the study of a mobile hotspot that accommodates calls of 
various service-classes, that is, calls that need more than one 
b.u. to be serviced by the system [15]-[23] something not 
studied yet for mobile hotspots. 
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