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Abstract—The rapid growth of fish farming and production has
led to the need for precision aquaculture. Concurrently, emerging
cutting-edge technologies such as Internet of Things (IoT), cloud
services, and artificial intelligence (AI) promise to overcome the
challenges in fish farming and provide continuous monitoring,
data analytics, and decision-making. In this work, we propose
the ATLAS IoT platform which is designed specifically in order
to meet the demands of precision aquacultures. More specifically,
the ATLAS architecture is presented with its respective compo-
nents, which are notated as the architecture’s layers and they are
described in detail. The ATLAS platform utilizes the synergy of
IoT, cloud services, AI, and data analytics in order to capture
the heterogeneous requirements of an automated aquaculture
monitoring system. The latter entails the data collection, the
data transfer, the design of communications schemes, energy
efficiency provision, intelligent services, the pro-active decision
making, and, finally, the creation of a user interface. Ultimately,
the amalgamation of the aforementioned components creates the
ATLAS platform, whose goal is to optimize the fish farming
procedures.

Index Terms—Internet of Things (IoT), precision aquaculture,
data analytics, system architecture

I. INTRODUCTION

AQUACULTURE, in combination with agriculture and
animal husbandry, has been the primary means of pro-

duction for centuries, while in the last decades they all
have evolved in order to meet the increasing demand for
maximizing productivity [1]. In particular, modern fish farming
requires continuous actions towards addressing environmental
degradation, overcoming diseases and parasite outbreaks, and

maintaining the water quality at optimal levels [2]. Moreover,
in order to further enhance the efficiency of fish farming,
the timely detection of sudden changes in the ecosystem’s
state is of paramount importance, since, otherwise, they may
lead to economic damage and product quality deterioration.
Consequently, improving efficiency with accurate methods
becomes increasingly necessary for the development of the
modern aquaculture industry.

In fish farming, water quality is one of the most crucial
factors which affect cultivation and production. Specifically,
water quality can be characterized through physical, chemi-
cal, and biological variables, such as water temperature, pH,
salinity, dissolved oxygen (DO), etc., which are subject to
constant deviations and, thus, they can disturb the balance
of the aquaculture’s ecosystem. Traditionally, water quality
monitoring relies on the manual collection of samples and
their transport to laboratory units for further analysis, leading
to increased financial and human resources [3]. Furthermore,
by invoking traditional water monitoring techniques, it is
particularly difficult to observe changes in water quality, as
the samples are collected over relatively long time intervals
and, thus, hinder the extraction of useful “trends” that may
occur, due to the limited availability of samples. To address
this challenge, the integration of the Internet-of-Things (IoT)
technology, data analytics, and artificial intelligence (AI) can
pave the way for the development of intelligent systems,
which aim at the real-time monitoring and prediction of
environmental parameters in fish farms, as well as in the provi-
sion of early-warnings when encountering abnormal behaviors979-8-3503-9958-5/22/$31.00 ©2022 IEEE



[4]. In particular, with the aid of wireless sensor network
technologies, the continuous control and efficient management
of water quality can be ensured by monitoring the occurrence
of adverse conditions that may be harmful to the aquaculture
organisms [5]. Therefore, the efficiency of the aquaculture
can be enhanced through automated systems that receive and
process measurements from a distance, without requiring their
on-site management.

In this direction, in order to improve the efficiency and
the accuracy of the data collection process in an aquaculture
environment, it is imperative to utilize an automated system
that collects environmental data to record physical changes
in real-time, as well as in the long term. These data can be
retrieved and analyzed at any time, in order to extract useful
information about the state of the ecosystem and enable the
remote monitoring of the aquaculture. Additionally, through
automated processes, it is possible to achieve the independence
of the fish farming control process from human presence and,
thus, reduce the probability of error due to human factors.
Furthermore, through high-precision sensors, communication
technologies, and pro-active decision making, it is possible
to maintain the water quality at the optimal levels, hence,
satisfying the underlying requirements for the welfare of
aquatic organisms, which leads to economic profit increase.

In the existing literature, several works have proposed auto-
mated systems for aquaculture monitoring. For instance, in [6]
and [7], a central processing core was utilized to process the
collected data in the aquaculture environment and interact with
the user terminal device. In [8], a smart aquaculture system
was presented, where the control and monitoring was based
on if-this-then-that rules and cloud integration. Moreover,
in [9], the authors proposed an IoT system architecture for
water quality monitoring, while they emphasized on describing
the hardware and software components design. Also, in [10]
and [11], an IoT-based aquaculture monitoring system was
designed with the aid of cloud services.

Unlike to the aforementioned works, we focus on presenting
a detailed system architecture for precision aquaculture, by
defining the respective architecture layers, as well as the
specified components which compose each layer. Our ap-
proach aims to capture the heterogeneous requirements of
an automated aquaculture monitoring system, through cutting-
edge technologies, e.g., IoT networks, wireless sensor nodes
(WSNs) and actuators, cloud services, etc. To this direction,
the ATLAS platform integrates the aforementioned technolo-
gies and designs the respective synergy and interaction among
them. To this end, the ATLAS platform focuses on:

• Efficient data collection and transfer through dedicated
communication protocols.

• Extracting useful information about the state of aqua-
culture through the processing of the received data by
appropriate algorithms, e.g., machine learning techniques.

• Optimal decision-making for the aquaculture’s sustain-
ability via optimization algorithms, which contribute to
the network’s energy efficiency enhancement.

Fig. 1. System Layout

• The creation of an easy-to-use and user-friendly interface,
which provides all the necessary information reflecting
the current and future state of the aquaculture. Moreover,
the control of the aquaculture in real time from a remote
point is enabled.

II. SYSTEM ARCHITECTURE

The ATLAS system architecture is driven by the support of
real-time operations. In Fig. 1, the proposed system’s layout is
illustrated. The WSNs measure the water quality parameters
and the collected data are transferred to the cloud server
through the gateway. Following that, the server is responsible
for processing the received data, storing them, and performing
certain functions for data analysis, decision-making. Finally,
the actuators perform the corresponding actions with the aid
of a dedicated controller, e.g., opening the oxygen pump,
according to the determined decisions of either the server or
the user through the user interface, which also presents the
current and future state of the aquaculture.

In order to achieve all of the above, it is necessary to design
an appropriate architecture that ensures the collection of the
data of interest as well as their reliable transfer, the commu-
nication protocols, the data processing, the optimal decision-
making based on the analyzed data and, finally, the availability
and visualization of all the critical information to the user
of the application. Therefore, the ATLAS system architecture
consists of four distinct layers, which are illustrated in Fig. 2
and presented below.

• Physical Layer: It refers to the system’s physical entities,
which are the wireless sensor nodes (WSNs), the gateway,
the programmable logical unit (PLC) and the actuators.
Through the deployed WSNs, the water quality param-
eters are collected, and afterwards, they are transmitted
to the IoT gateway which consequently forwards them
to the cloud server. In addition, the actuators as well as
its control units, i.e., the PLC, whose role is to carry
out specific actions in order to maintain the state of the
ecosystem at the desired levels.

• Communication Layer: It includes the communication
protocols used for all the communication processes such
as the information exchange among the WSNs and the



Fig. 2. ATLAS Architecture Layers

gateway, the communication between the gateway and
the server, and the appropriate actuators’ activation based
on the received data. The communication layer is in line
with the resource allocation performed by the intelligence
layer, e.g., setting the transmitting power to the optimal
level for energy efficiency and the admission control
signals of the system.

• Intelligence Layer: It includes all the intelligent oper-
ations carried out on the server through the utilization
of the data received from the sensors. These functions
aim to extract useful information about the environmental
status of the aquaculture, such as the forecasting of
future states and the extraction of the water quality index
(WQI). In addition, at this layer, decisions are made that
aim at the optimal management of the network, such
as increasing the system’s energy efficiency. Finally, it
contains services that aim at real-time supervision and
reliable assessment of the aquaculture’s state, as well as at
making optimal decisions for the energy-efficient system
operation.

• Application Layer: It contains the interface of the
ATLAS web application, which can be easily accessed
through any device with internet access. Specifically, it
is responsible for creating appropriate interfaces through
which the user can be informed about the system’s
condition and the water quality parameters, have access
to a visual representation of the aquaculture’s current
and future condition, manage the network’s devices, take
actions and receive notifications.

III. ARCHITECTURE LAYERS

Each layer of the ATLAS architecture consists of distinct
hardware or software components that are responsible for
performing certain functions. Below, we describe the elements
which compose each architecture layer.

A. Physical Layer

The physical layer of the ATLAS system architecture con-
sists of the hardware components used to maintain the efficient
operation of the aquaculture. Specifically, it includes all nodes
used i) to measure water quality parameters, ii) to control
fish farming and maintain water quality at optimal levels,
and iii) to transfer information packets between the nodes of
the system. It should be mentioned that the physical layer
groups all the components that are responsible to transmit
and receive information, without requiring computationally
expensive data processing. As aforementioned, the physical
layer of the ATLAS system contains i) the WSNs, ii) the IoT
gateway, iii) the PLC, and iv) the actuators. Below, the role
of each component is described.

1) WSN: The WSN, which is depicted in Fig. 3, consists
of all the sensors, that are responsible for measuring the water
quality factors, e.g., DO, pH, conductivity, temperature, as well
as a micro-controller and the transceiver which is responsible
for either transmitting the data collected by the sensors to the
gateway or receiving commands. These commands are used
to perform certain regulating actions, e.g., adjust the sampling
frequency and transmit power.

2) Gateway: The gateway is used to remotely intercon-
nect the sensor network and the actuators with the server.
Therefore, it constitutes a key node of the network, which is
responsible for regulating the flow of data and communication
between elements of different levels. To achieve this, the
gateway should enable the usage of multiple communication
protocols and conversion of the received data packets in the
appropriate format for further forwarding, which constitute the
main functionalities of the gateway. In addition, it can perform
basic calculations and data processing.

3) PLC: The PLC stores instructions internally and per-
forms control functions such as synchronizing, counting, and



Fig. 3. Wireless Sensor Node

activating the actuators. Moreover, it is able to connect to
gateways, thus enabling the remote reception of commands
in order to activate the appropriate actuators. Specifically, the
PLC processor receives data packets from external devices,
e.g. the gateway, to its input ports and forwards control
commands to the actuators which are connected to its output
ports.

4) Actuators: The actuators are utilized to regulate the
water condition and ensure the proper operation of the aqua-
culture, e.g., turn on water pumps, maintain the oxygen at
desired levels, feed fish, etc., when deemed necessary by either
the application or the aquaculture manager. The actuators are
controlled through the PLC.

B. Communication Layer

The communication layer of the ATLAS system comprises
the technologies utilized for the information transfer between
the ATLAS nodes. There are three kinds of communication
services supported by ATLAS, as presented.

1) ATLAS-WAN: ATLAS-WAN is the multiple access pro-
tocol utilized by the ATLAS network to support communica-
tion services between the WSNs and the gateways. ATLAS-
WAN is built on top of LoRa functions of the nodes. A LoRa
packet which includes all the sensor data is sent from the
WSNs to a gateway, whereas the gateway can send control
signals to the WSN, such as probability of transmission
and transmit power. In ATLAS-WAN, these parameters are
subject to optimization offering various configurations. More
specifically, by default, ATLAS-WAN maximizes the energy
efficiency of the network by statistically lowering significantly
the number of collisions of LoRa packets and by using only
the required amount of energy per transmission.

2) MQTT over TCP/IP: The MQTT over TCP/IP con-
stitutes a serial communication protocol which is based on
the use of the TCP/IP protocol and is responsible for the
communication between the IoT gateway and the server. The
gateway forwards all sensor data to the server and the server

sends through the gateway all control commands to the nodes.
MQTT is chosen for its particular low complexity and low
energy requirements.

3) Modbus TCP/IP: The Modbus TCP/IP is a standard
protocol for the communication between industrial electronic
devices and controllers based on the internet protocol TCP/IP
and, in ATLAS, is used for communication between the
gateway and the PLC. Specifically, the data exchange between
the gateway and the PLC is based on master-slave logic where
the master requests data through a special request and the slave
sends the response. In more detail, when the gateway sends
a message in order to turn on an actuator that is controlled
through the PLC, it sends a message containing the address of
the actuator which is given by the PLC, the information data,
as well as data for error correction. It is worth noting that all
the actuators connected to the PLC can see the message, but
only the actuator with the appropriate address responds.

C. Intelligence Layer

The intelligence layer is essentially the “brain” of AT-
LAS platform and is equipped with data processing, AI and
optimization services. Specifically, the components of the
intelligence layer are the following:

1) Data Preprocessing: The data preprocessing aims to
prepare data for processing applications such as parameter
prediction and the extraction of the WQI. Some examples of
data preprocessing are filling in missing data, detecting and
correcting errors in data measurements, regulating the sam-
pling frequency based on the requirements of the parameter
prediction mechanism, etc.

2) Water Quality Index: The WQI constitutes a metric that
takes into account various water quality factors and integrates
the overall information from them into the value of a unique
integer index. Therefore, the WQI characterizes the overall
condition of the water quality. For example, the WQI can be
interpreted as “excellent”, “good”, “fair”, “poor”, “bad” which
can be matched to the integer values “1”, “2”, “3”, “4” and
“5”, respectively. The derivation of the WQI is based on fuzzy
logic theory [12].

3) Automation/Decision making: Based on the values of
the measured parameters, a decision is made for performing
certain actions, e.g., activate the oxygen pump if the oxygen
level is below or above specified limits. It should be high-
lighted that these decisions will be transferred to the PLC
and actuators through the gateway, where the corresponding
actions will be actually realized. Also, warnings are saved
when encountering extreme scenarios, which can notify the
application user. Moreover, decisions may rely on the extracted
value of the WQI.

4) Parameter Prediction Mechanism: The parameter pre-
diction mechanism aims at forecasting the future conditions
of the aquaculture, e.g., predicting the temperature, DO, etc,
in a specified time frame ahead. Its operation is based on
the use of machine learning techniques and, specifically, on
deep long short-term memory (LSTM) neural networks, which
are trained offline in a supervised manner, where the past



measurements constitute the training dataset. It should be
highlighted that through the data preprocessing component, the
input data, that are fed to the neural network, are converted
in a suitable form. It is also clarified that for the prediction
of each separate water quality parameter, a dedicated neural
network is trained. Finally, as long as the database is filled in
with new measurements, the neural networks can be retrained
in order to increase their accuracy.

5) Network Optimization Function: Through the intelligent
functions at this layer, the ATLAS system can adjust its re-
sources to support various functions. The default function aims
at minimizing the power consumption of the network nodes,
while also satisfying the communication requirements of the
system. Its operation relies on regulating resources such as
transmission probability and transmit power of the WSNs. On
top of that, additional functionalities include assigning higher
priority to a WSN, as a way to guarantee its performance.

D. Application Layer

The application layer contains the interface of the ATLAS
web application, which can be easily accessed through any
device with internet access, e.g., smartphone, laptop, etc. For
the interconnection between the application and the cloud
server, an intermediate level application programming inter-
face (API) is developed, through which the application has
access to all the server’s functions, such as managing network
devices, accessing incoming data packets stored in the system
or sending commands to the network’s devices. Below, the web
application’s features are presented which aim at the accurate
monitoring of the aquaculture as well as at the improved user
experience.

1) Network Device Manager: Through the network device
manager, network monitoring is provided. In particular, it al-
lows the application user to manage the network devices, e.g.,
adding or removing a node, as well as configuring the basic
operating parameters of the measurement terminal devices. For
instance, the user can regulate the sampling frequency of the
sensors’ measurements or select default values.

2) Sensor Data Overview: The data overview component is
responsible for presenting the real-time status of aquaculture
by displaying the measured parameters, and hence, assist in
the optimal decision making about the actions that need to be
performed. Moreover, it enables the review of the history of
the measurements, which allows the application user to obtain
more insights about the status of the aquaculture. Furthermore,
the overview of the WQI provides more comprehensive infor-
mation of the overall conditions. For instance, an illustrative
example of the WQI throughout a 24-hour time period is
demonstrated in Fig. 4.

3) Prediction Overview: Through the prediction overview
component, the application user can observe the forecast charts
of each measured parameter, as well as the WQI over a
12-hour period. In Fig. 5 and Fig. 6, illustrative examples
regarding the prediction of temperature and pH values are
presented. The prediction mechanism, which is based on
LSTM neural network, observes the state for 48 hours and

Fig. 4. Example of WQI overview.

Fig. 5. Example of temperature prediction.

predicts 12 hours ahead. For comparison purposes, we also
present the Grey model method, which fails to extract accurate
prediction and, thus, the LSTM approach is adopted. The
dataset used in these examples is available on [13].

4) Weather Data Overview: Any deviations in the weather
conditions can greatly affect the state of the aquaculture.
Therefore, weather data from weather stations can be used in a
forecasting model of the system’s needs. At the same time, to

Fig. 6. Example of pH prediction.



improve the reliability of the forecast model, data from various
meteorological stations are used, which can be evaluated by
the user. Thus, through the weather data overview, weather
data from open data sources are obtained for the aquaculture
area and their impact on the water quality is assessed.

5) Actuating: Actuating includes all the actions that the ap-
plication user can perform through the ATLAS interface such
as feeding, oxygen injection, water temperature monitoring,
etc. Specifically, the user can define the desired action as well
as its duration, and then, through the API, the command is sent
to the corresponding node that performs the desired action.
However, the server of the ATLAS platform enables automatic
actions based on the intelligence layer, in case where the user
does not use the application and the water quality needs to be
fixed.

6) Notifications: Notifications are forwarded by the appli-
cation to the user to notify about

• The value of a metric that exceeded the allowed limits.
• The WQI received values that indicate the poor water

quality of the aquaculture.
• The actuators that are in operating mode.

In case of any anomaly in the water quality metrics, the
ATLAS platform asks the user if he wishes the system to
perform some automatic actions by itself or not. Therefore,
the execution of an action is at the discretion of the user who
can either accept the proposed actions of the system or declare
which actions he wants to be performed.

IV. CONCLUSION

In this paper, we proposed the ATLAS platform, which is
based on an architecture of four distinct layers, and enables
the observation and control of aquaculture with stringent
operational constraints, in a unified and automated manner.
Moreover, the ATLAS platform aims to capture a wide range
of scenarios, thus its design targets generalizability. Finally,
the proposed architecture can serve as a baseline for more so-
phisticated applications in precision aquaculture, which require
additional components, functions and services.
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