
979-8-3503-9958-5/22/$31.00 ©2022 European Union  

Simulated Partial Discharge Harmonic Data 

generation for Neural Network Training in the 

Absence of real measurements: A first Approach 

 

 

Dimitrios A. Barkas  

Department of Electrical and 

Electronics Engineering 

University of West Attica 

Egaleo 
d.barkas@uniwa.gr 

Stavros D. Kaminaris 

Department of Electrical and 

Electronics Engineering 

University of West Attica 

Egaleo 

skamin@uniwa.gr 

Konstantinos Kalkanis 

Department of Electrical and 

Electronics Engineering 

University of West Attica 

Egaleo 
k.kalkanis@uniwa.gr 

  

George Ch. Ioannidis 

Department of Electrical and 

Electronics Engineering 

University of West Attica 

Egaleo 
gioan@uniwa.gr 

Constantinos S. Psomopoulos 

Department of Electrical and 

Electronics Engineering 

University of West Attica 

Egaleo 
cpsomop@uniwa.gr 

Abstract— Partial Discharges measurements on the High 

Voltage equipment are assumed as one of the most critical 

condition assessment measurements which can propose a future 

lifetime of power equipment and a suitable maintenance 

schedule. Neural Networks are assumed as one of the most 

accepted Artificial Intelligence techniques for the condition 

assessment of High Voltage power equipment. However, the 

correct use of this technique demands the existence of a large 

number of datasets to provide valuable results. Many times the 

required large datasets in specific investigation areas such as the 

partial discharges on the high voltage electricity network do not 

exist for several reasons. These reasons are described in this 

manuscript. In the absence of these datasets, which are typically 

real measurements, there is a specific need to construct them by 

using small datasets on the field under interest. This manuscript 

describes such a data construction algorithm based on the 

authors’ knowledge and experience in the field of partial 

discharge measurements. 
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I. INTRODUCTION  

The electricity network reliability is of great importance 
for the provision of reliable and stable electric power. The 
electricity network is composed of three main areas according 
to the voltage level, the distribution network that operates at 
150kV and 400kV for the Greek electricity network, the 
medium voltage network at 22kV and the low voltage network 
with a nominal voltage of 400V. The integrity of the electricity 
network is finally translated to the integrity of the insulation. 
Good insulation results in an electricity network with high 
integrity and a low probability of failure. Because the 
insulation is of great importance, its condition assessment is 
considered critical. An important notice is the dependence of 
the insulation characteristics on the operating voltage level. 
The equipment which operates on the high voltage level is 
more prone to malfunction due to the higher electric strength 
of the insulation. Insulation includes several operating parts of 
the network with the most usual and at the same time critical 
being the solid insulators (for example the bushings of power 
transformers),  oil insulation and  gas insulation. The condition 

assessment of the insulation is based on several measurements 
that can be applied to  High Voltage (HV) equipment. Many 
proposed measurements have been used such as the delta 
tangent of an insulator (well known as dissipation factor or 
loss angle), the dielectric strength of the insulator in kV, and 
the Sweep Frequency Response Analysis (SFRA), the Partial 
Discharges and the chemical analysis of the insulating oils [1, 
2, 3]. The chemical analysis of insulating oils is a very useful 
method for their condition assessment . Chemical analysis 
measures the existence of seven specific chemical 
components in the oil (hydrogen, carbon monoxide, carbon 
dioxide, methane, ethane, ethylene and acetylene) [4]. The 
existence of these specific chemical components is then 
analyzed by representation models, which are well known as 
Dissolved Gas Analysis (DGA) models [5, 6]. Many operators 
including the Independent Power Transmission Operator 
(IPTO) in Greece analyze insulating oil via their equipment 
such as oil-immersed power transformers and switches. 
However, the DGA must not be used as a specific problem 
decision technique but only as an indicator and 
complementary measurement. The combination of the DGA 
with other measurements can overcome meaningless decision 
situations [7, 8]. 

A supplementary measurement could be the measurement 
and the analysis of the electric voltage waveform with the 
main aim to detect the spectrum of the measured signal. In an 
ideal world, the alternating electric voltage waveform would 
be a sinusoidal signal with a frequency of 50Hz in Greece and 
Europe (or 60Hz in the USA, Canada etc). However, the 
existence of non-linear electric loads such as capacitive and 
inductive loads and the use of power electronics have added 
more frequency components to the waveform. Moreover, the 
existence of Partial Discharges (PDs) creates frequency 
components higher than the fundamental frequency of 50Hz. 
PDs are a special phenomenon which is presented in the 
insulations of high voltage equipment. These discharges 
originate from many reasons but the most significant is the 
local increased value of the electric field. The environmental 
conditions also affect the severity of this type of discharge. 



The probability of insulation failure is increased when these 
discharges become severe. 

The knowledge of the frequency components which are 
generated due to the PDs can be used for the extraction of 
valuable condition assessment of HV equipment. The 
classification of different types of PDs by harmonic orders has 
already been done and the results are presented in Table I [9]. 
There are three basic types of PDs according to the location of 
the insulation where the discharge is carried out, corona 
discharges, internal discharges and surface discharges. The 
corona discharges are usually presented near curved regions 
such as the cable connections to the chain insulators on 
transfer and distribution pylons, at the terminals on the power 
transformers, and on the transmission lines. The internal 
discharges are created inside the insulation, for example in 
cavities of solid insulators and bubbles in the insulating oils. 
The surface discharges are usually presented on the surface of 
the solid insulators. With  knowledge of the type of the 
discharge, engineers can compute the expected lifetime of 
equipment (as the lifetime of the equipment is affected by the 
insulation’s lifetime), as well as they can plan the maintenance 
procedures with relevance to processes and spare parts. 

TABLE I.  HARMONIC ORDERS ON THE VOLTAGE WAVEFORM 

CLASSIFYING THE DIFFERENT TYPE OF PDS [9] 

Discharge 
Type 

Harmonic Orders 

Corona 
Discharge 

5th: 
1.1% 

7th: 
1.5% 

9th: 0.9% 13th: 
1.05% 

 

Internal 
Discharge 

5th: 
1.05% 

7th: 
1.25% 

9th:0.95% 13th: 
0.55% 

 

Surface 
Discharge 

2nd: 
0.85% 

3rd: 
0.4% 

5th: 1% 7th: 
0.95% 

9th: 
0.90% 

 

The absence of frequency analysis of the high voltage 
waveform, connected to a specific type of discharge, and 
therefore the absence of frequency datasets constitutes a 
significant problem for the development of modern 
maintenance schedule processes. To solve this problem, an 
algorithm for the creation of large datasets of frequency 
components is presented, which will be fully connected to 
specific PD types. Some of these data will be used to train a 
Neural Network (NN) while the rest will be used for 
evaluation. According to Table I, there are six inputs (2nd , 
3rd, 5th, 7th, 9th and 13th order harmonics corresponding to 
fundamental) and three outputs (corona discharge, internal 
discharge and surface discharge). The selected NN is 
constructed with two hidden layers. The first hidden layer has 
six neurons (the number of inputs), while the second hidden 
layer has three neurons (the number of outputs of the NN). 
Fig. 1 presents the NN architecture. The authors, owing to 
their experience and knowledge regarding the behaviour of 
PDs under realistic situations, real laboratory measurements 
and observations, concluded that the under investigation 
frequency components can change up to ±20% due to several 
reasons, with the most critical being: 

 

 Measuring Error 

 Unstable electric and voltage rms value 

 Ambient conditions (humidity, temperature, surface dust 
etc.) 

 

Fig. 1. The selected NN with two hidden layers of six and three neurons 

respectively 

II. CREATION OF DATASET 

A Neural Network is an Artificial Intelligence technique 
with the ability to compute the probability of a situation to be 
achieved, based on previous situations. The past known 
situations, which are described in the form of datasets “Inputs 
- Outputs”, are used to train the NN to acquire its knowledge. 
For this reason, the existence of large datasets in the form of 
Inputs – Outputs is of great importance [10]. However, many 
times these large datasets are not available for several reasons, 
such as in the case of PDs. The difficulty of the existence of 
the dataset in the case of PDs sourcing from the past lack of 
exploration of PDs and their connection to specific frequency 
patterns. The electricity network operators did not and even 
now do not measure and analyze the high voltage waveforms 
merely because they ignore that these frequency patterns exist. 
The need for high voltage measurement and analysis and the 
connection of the three types of aforementioned PDs with 
specific frequency components may take a significant time 
interval. For this reason, until real large PDs frequency 
patterns are available, it is important to start by theoretically 
creating these datasets. These will be used to train the NN 
architecture which is described in Fig. 1. The dataset creation 
is comprised of three stages: 

 Stage 1: Initial dataset creation and NN training and 
evaluation 

 Stage 2: Second dataset creation and testing the NN 

 Stage 3: Third dataset creation and testing the NN 

 

A. Stage 1 - Creation of the 1st dataset packet 

For the creation of datasets, their structure must be 
explained. The datasets as already mentioned should be a pair 
of Inputs and Outputs. For each dataset, there is an input 
vector of six components and an output vector of three 
percentages. The six components of the input vector are the 
six values of the frequency components in percentage. The 
output vector includes three probability values. The first value 
refers to the “Corona Discharge” case, the second value to the 
“Internal Discharge”, and the third value to the “Surface 
Discharge”. The higher value from the three probabilities 
characterizes the resulting discharge type. The initial stage 
embeds the initial datasets creation used for the training and 
testing of the selected NN architecture, as well as the NN 
architecture which must be constructed, tested and evaluated. 
The NN structure uses as transfer function the “Hyperbolic 
Tangent Sigmoid” function, as training algorithm the 
“Levenberg - Marquardt” backpropagation algorithm. Fig. 2 
explains the algorithm part for this initial stage. The 
implementation has been developed through MatLab code. In 
the first step of this stage, the code reads the initial data 
measurements (Table I) and creates two matrices. The “Total 
Data Matrix” containing the constructed input datasets, and 
the “Target Data Matrix” containing the target value for each 
input dataset. The way that datasets are created is based on the 
binomial coefficient (usually it is referred to as “n choose k”). 



The next step is the initialization of the NN, which contains 
two hidden layers. The first layer is constructed by six 
neurons, while the second hidden layer includes three neurons. 
The initialization process is followed by the training and 
testing processes of the network. The code finally exports the 
NN weights through a suitable MatLab matrix and creates the 
confusion matrix. The confusion matrix describes the 
efficiency of the NN after the testing process. 

 

Fig. 2. The basic steps for the creation of the initial datasets and the 

construction of the NN 

B. Algorithm for the creation of datasets 

 

As already mentioned, the idea behind the algorithm is the 
production of new PD cases which can be recognized through 
the frequency analysis over the voltage signal. This dataset 
production is based on the binomial coefficient by taking into 
consideration the authors’ experience in the variation of the 
real measurements. 

In the first case of evaluation, 126 new datasets for each 
case of PD were created, which means that a total number of 
378 new datasets were created. These numbers can be 
exported following the next way of thinking. The input vector 
includes six input values for the NN.  The question is how 
many combinations can be achieved for each PD case by 
changing the value of only one, or only two, or only three, and 
so on, of the six values of the initial input vector. The change 
of the value will always be by 20% of the initial values (Table 
I) for this first stage. The binomial coefficient gives this 
answer through the following formula: 

𝑛′𝑠1 =  ∑ (
𝑘

6
)

6

𝑘 = 1

= 63 

 

However, the code takes into consideration that the change 
in value can be +20% or -20%. By this, the above number 
must be doubled. Additionally, as there are three different PD 
cases, the number must also be tripled. So the final number of 
new datasets for the first stage of the code will be: 

ns1=378 

 

 

The algorithm that calculates the combinations creates a 
matrix with a corresponding number of unity elements, and 

then for each selected group of values that are to be changed 
in the matrix, it increases or decreases the selected group by 
20%. By this logic the final matrix is a matrix that contains 
two tables, D1 and D2: 

D=[D1 D2]T 

The D1 submatrix is the matrix with the groups of those 
values that will be increased by 20%, while the D2 submatrix 
is the matrix with the groups of values that will be decreased 
by 20%. The D table contains numbers which are either “1” or 
“1.2” or “0.8”. Element wise multiplying the D matrix with 
the corona row vector measurement, internal row vector 
measurement or surface row vector measurement (Table I), 
the new values with variations from the initial values can be 
created. The total created data are contained in a table named 
totalData: 

 

totalData = [corona new_Corona internal new_Internal 
surface new_Surface]T 

 

Where corona, internal, and surface row vectors are the 
initial measurement vectors, while the new_Corona, 
new_Internal and new_Surface matrices are the new created 
elements. 

From the total data matrix, 65% of the elements are used 
for the training process of the neural network, while 35% are 
selected for the testing process. The confusion matrix for the 
first stage of code, which embeds the construction of NN, the 
training and the testing processes, is presented below in Fig. 
3. The confusion matrix shows that the results agree 100% 
with the NN decision. 

 

Fig. 3. Testing of NN for the 1st Stage of code 

III. CREATION OF TESTING DATASETS 

A. Stage 2 - Creation of the second testing dataset 

In the second stage, the new datasets are created in a 
manner like in the initial training and testing data, using a 
binomial coefficient. Specifically, the code computes matrices 
like the matrix D that was already mentioned but with a 
significant difference. When a group of components are 
selected for changing their values, each component alters its 
value in a different percentage. For example, assume the case 
of initial measurement row vector “corona” with elements 
[0.001% 0.001% 1.1% 1.5% 0.9% 1.05%], and the 
components that are to be changed are the third and fourth one 



(1.1% and 1.5%). Assume also that the alternation factor is 
m=5%. The third element will take a value of 1.05 times 1.1% 
(0.01155 or 1.55%), while the fourth element will take a value 
of 1.10 times 1.5% (0.0165 or 1.65%), leading to a different 
value variation for the same dataset. This example can easily 
be explained in matrix format. The example assumes that from 
the six values of the dataset only a group of two can be 
changed and also that these are the third and fourth. The 
combination row vector for this case will be: 

B = [1 1 1.05 1.10 1 1] 

The element wise multiplication of B row vector of 
combination matrix with the “corona” vector will be: 

 

C[i] = B[i] x corona[i] 

Where i = 1 to 6 

The difference between the third and fourth elements of 
the combination matrix is m. Generally, if the selected group 
of values to be changed contains “g” elements, then the first 
selected element will change by m, the second by 2m and so 
on. 

It must be noted that in this stage of dataset creation, all 
the components in the group of change will take an increment 
or a decrement. That means that if one component of the 
selected group is to be increased, then all the other 
components in this group must also be increased. The 
maximum variation will be 30% which means that in the worst 
case of a selected group of 6 values the B matrix will be: 

 

B = [1.05 1.10 1.15 1.20 1.25 1.30] (for increment in the 
values) or 

 

B = [0.95 0.9 0.85 0.8 0.75 0.7] (for decrement in the values) 

The new datasets are calculated by multiplying the B 
vector with the initial measurements (Table 1). The 
corresponding target data were also calculated, and the data 
was entered in the trained NN. The confusion matrix is 
presented below in Fig. 4 and shows that the previously 
trained NN can identify 100% percent of the different PD 
cases. 

 

Fig. 4. Confusion matrix for the 2nd stage of testing of NN 

B. Stage 3 - Creation of the third testing dataset 

 

In the second case, the values are all increased or 
decreased for a selected group of a dataset. In the third and last 
case, for the selected group of a dataset some values are 
increased while the rest are decreased. The algorithm initially 
selects the group of components that are to be changed. The 
algorithm increases the components of the odd position by m 
and decreases the values of the components that are located in 
the even position by m. For example, assume the case that a 
group of four components is selected. Moreover, assume that 
the components of the group that must change are the first, the 
second, the third and the fourth of the initial surface PD vector. 
The initial surface PD vector, which is included in Table I is: 

surface = [0.85/100 0.4/100 1/100 0.95/100 0.90/100 
0.001/100] 

For this case example, the combination row vector will be: 

 

B = [1.05 0.95 1.10 0.9 1 1] 

 

Remember that the code at the beginning initializes the 
combination matrix with ones. As the B vector above 
illustrates, the first element of the selected group has increased 
by 5%, the second one has decreased by 5%, the third has 
increased by 10%, and the fourth has decreased by 10%. The 
selected alternation factor is m=5% which means that in the 
worst case for this “m” value, the combination row vectors 
will be: 

 

B = [1.05 0.90 1.15 0.80 1.25 0.70] or 

B = [0.95 1.10 0.85 1.20 0.75 1.30] 

 

The new datasets are calculated by multiplying the B 
vector with the initial measurements (Table I). The 
corresponding target data were also calculated, and the data 
was entered in the trained NN. The confusion matrix is 
presented below in Fig. 5. Fig. 5 shows that the previously 
trained NN can identify with 97.9% percentage of the different 
PD cases, in the case where the alternation factor is 5%, and 
the worst value has been altered by 30%.  

 

Fig. 5. Confusion matrix for the 3rd stage of testing of NN 



This result describes the situation that as the changes in the 
harmonic distortion of the signal into the interested frequency 
band become more complicated, the difficulty in the correct 
recognition of the PD source is increased. 

IV. CONCLUSION 

The absence of real measurements in specific applications 
when decision-making applications are required is a great 
thorn in the science of engineering. There are critical 
infrastructures that must be monitored, such as the electricity 
transmission and distribution network, and their health is of 
great importance for human survival. This paper describes a 
simple but yet important algorithm, for the calculation of new 
datasets of specific harmonic components on the electric 
voltage waveform, according to which the partial discharge 
categorization can arise. The algorithm begins with the 
calculation of a starting dataset which is split into training and 
testing sub-datasets. Then two new datasets are created for the 
testing of the pretrained NN. These new datasets were created 
by utilizing the measurement theory of partial discharges and 
their variation into a band of ±20% relating to their initial 
measurement values. The testing process showed that the NN 
achieves high accuracy results. The algorithm offers 
significant help to the scheduled maintenance of the high 
voltage equipment which is exposed on PDs and can stand as 
the first approach in this field. This algorithm could be 
improved in the future by making more measurements in the 
field or the lab and describing the statistic that the PD 
frequency components on the voltage waveform follow. 
However, the reinforcement of the NN with real 
measurements from the field will lead to better neural 
networks and better-scheduled maintenance processes. 
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