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Abstract— Visible light communications (VLC) have been 

proposed as reliable high-capacity wireless optical 

communication systems for indoor access networks. This 

technology comprises a solution that does not harm human 

tissues and has been especially suggested for ultra-reliable 

environments like hospitals. In this paper we utilize machine 

learning for investigating the wireless optical channel in indoοr 

areas where ultra-reliable communications are needed and 

hence signal coverage should be guaranteed. It is proven that 

ML methods can reliably and efficiently predict the Radio 

Environment Map (REM) of a VLC enabled communication 

system. 
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I. INTRODUCTION 

Wireless optical communication systems, such as visible 
light communications (VLC) can provide reliable and secure 
platforms for high data rate indoor access networks 
compatible with 5th and 6th generation (5G and 6G) wireless 
networks [1, 2]. VLC technology that relies on modulation of 
Light Emitting Diodes (LEDs) for downlink and IR LEDs for 
up-link communication links, has been proposed for indoor 
access networks since light propagation is less prone to 
interference and less harmful for human tissues than all radio 
counterparts. Various systems have been proposed and IEEE 
has been working on standardization of VLC since 2009 as a 
strong candidate for Wireless Personal Area Networks 
(802.15), including full MAC and physical (PHY) layer 
protocols [3, 4]. 
Given VLC’s advantage over radio technologies with respect 
to the effect on biological tissues, together with the latest 
advancements of the uplink and downlink systems, VLC is 
especially suitable for interconnecting the variety of ICT 
enabled medical technologies (from wearable sensors, to 
thermal cameras and from remote vital sign remote 
monitoring data to high-definition computer generated 
tomography) in a hospital environment. These devices may 
be interconnected to the processing units of the digital 
infrastructure through various wireless technologies and 
optical wireless technologies are suggested as the most 
suitable ones [5]. To that respect, using high-frequency 
pulsed light instead of radio frequencies and microwaves, 
VLC will enable the expansion of new medical applications, 
medical sensor monitoring and telemetry. 
However, highly reliable and high-capacity health services 
pose stringent requirements for access network coverage, 
whether it is radio or light. Applying common network 
planning principles to investigate the reach of wireless 
technologies, implies identifying the characteristics of the 
area under study. These hospital areas may vary from remote, 

isolated rooms, with challenging terrain for light coverage 
(e.g., large areas with big furniture, large medical equipment 
etc.) to long surgeries and corridors (e.g., with many curves, 
etc.). The rooms under study may even pose requirements for 
multiple access points in the same room. Considering the 
access network capacity, aggregate data rates of at least 
300Mbps-1Gbps per room are required, and in cases that this 
is possible, data rates of 1-1.5 Gbps should be offered [6]. All 
the above are combined with stringent reliability 
requirements especially in the context of 5G ultra-reliable 
low latency communications (URLLC) services for hospital 
environments [5]. In order to address the requirements and 
KPIs, vast coverage and planning exercises must be 
performed, called optical radio environment maps, on 
versatile environments and areas to ensure that VLC access 
points operate sufficiently as ultra-reliable communications 
systems in places like hospitals and surgeries. In order to 
perform fast planning and delivery of those maps, various 
methods have been proposed that are based on analytical 
methods that lack accuracy. 

In this paper, in order to overcome the high computation 
time needed for estimating the optical radio environment 
maps, i.e., specific metrics of the optical channel at each 
hospital room spot, we use machine learning (ML) methods. 
Initially we use a well-established indoor VLC channel 
propagation model to estimate the metric at a sub set of spatial 
points. Then we use these values to train our ML based system 
and predict values of the specified metric at each point of the 
hospital environment. We also evaluate the accuracy of 
various algorithms with respect to the expected simulated 
results using mean absolute error (MAE) as metric. 

II. OPTICAL RADIO ENVIRONMENT MAPS 

To operate ultra-reliable communications systems in places, 
like industrial areas and hospitals, Spectrum Cartography or 
Radio Environment Map (REM) is a helpful tool to gain 
knowledge about the radio channel of the area of interest [4]. 
REMs are databases of various radio channel metrics, e.g., 
RSS (Received Signal Strength), SINR, channel gain, at all 
known positions of the area under study. As channel 
propagation is determined by complex site-specific factors, a 
REM of a specific site can be constructed by measurements, 
e.g., a walking survey in a real environment or by model-
based methods [8]. 

In an indoor VLC system, signal propagation 
characteristics depend on room geometry and specifications 
and transmitter/ receiver locations. Optical REMs are then 
constructed by estimating the RSS in all different locations of 
the areas for the VLC system under investigation. In this paper 
we use the multipath propagation model to calculate RSS 
values that is described in the following section. 



III. INDOOR VLC CHANNEL PROPAGATION MODEL 

VLC presents the potential of being used in both 
illumination and communication. Due to the incoherent 
characteristics of LEDs, intensity modulation with direct 
detection (IM/DD) is used where the information is encoded 
by varying the optical intensity of the transmitter (x(t)). The 
VLC transmitter consists of an array of LEDs that are intensity 
modulated by a baseband signal (m(t)). At the receiver 
terminal, the incident optical signal at the photo-detector is 
converted to an electrical signal through direct detection 
technique (y(t)). The output y(t) can be calculated 

(1)  

x(t) the optical intensity of the LED, is modulated by the input 
signal m(t), y(t) the photocurrent generated by the PD at the 
receiver and R is the PD responsivity, while h(t) is the 

baseband CIR, ⊗ denotes convolution, and n(t) is the additive 
white Gaussian noise (AWGN). 
Alternatively [9], the channel can be described in terms of the 
frequency response H(f) which is the Fourier transform of h(t) 

(2) 

We assume that the channel is distortionless, i.e., it has a gain 
H(f) = H(0) for all frequencies of interest, while the zero-
frequency (DC) value of the frequency responses can be 
expressed as 

(3) 

The Path Loss of unshadowed diffuse configurations can be 

estimated using the expression [10]  

 
(4) 

Modelling of Single LED Case 

In a standard empty room, the LED-based Tx is facing 
down and is placed on the center of the ceiling, while the PD-
based Rx is facing upwards (Fig. 1). For the optical wireless 
channel, we consider both LoS (Line of Sight) and NLoS 
(Non-Line of Sight) transmission paths. 

Fig. 1. VLC room configuration and LED placement with an indicative 
Lambertian radiation lobe with m=1. Two rays are shown as used in the 
multipath propagation model to calculate RSS. 

The received intensity will depend on the emitter radiation 
pattern, the receiver optics, and the PD active area. Denoting 
the emitted optical intensity by PT, the received optical power 
PR is given by [11] 

(5) 

We model the emitter by a generalized Lambertian pattern. 
 

For the LOS path 

(6) 

where m is the Lambertian order of the LED Tx (the 
directionality parameter of LED light) 

(7) 

and Φ1/2 is the semi-angle at half illuminance of the Tx (Half 
Power Angle), APD is the PD surface area, ψc is the Rx field 
of view (FOV) semiangle, and d is the distance from LEDs to 
the Rx point, Ts(ψ0) and g(ψ0) is the optical filter gain and the 
optical concentrator gain, respectively. 
 
For NLOS path (single bounce reflection) 

  

 
(8) 

 

β represents the angle of irradiance from the reflective area of 
the wall, α is the angle of irradiance to the wall, d1 and d2 are 
the distances between the Tx and the wall, and the wall and a 
point on the receiving surface, respectively (Fig. 1), and dAwall 
is the size of the reflective area, ρ is the reflection factor. 

IV. INDOOR VLC RADIO ENVIRONMENT MAPS BASED ON 

MACHINE LEARNING (ML) REGRESSION METHODS 

To overcome the high computation time needed for 
estimating the RSS value in each spot we use machine 
learning methods to train our system and predict RSS value at 
each point with coordinates (x, y, z) correctly. 

Machine learning includes many tools that allow the 
interpretation and understanding of data through trained 
algorithms which reveal the correlations among the system's 
variables [8]. The main idea is to use a set of values for the 
target channel metric, RSS in our case, calculated for a set of 
locations and interpolate or extrapolate those input data to 
predict RSS values for another set of locations. 

A. Generation of input values (input data set) 

The system under investigation is a standard empty room 
with one LED Tx in the center of the ceiling (Fig. 2). In order 
to assess the performance of the ML regression methods, only 
single bounce reflections from the walls are considered. We 
modeled the VLC system in Matlab (version 2022a) [11] and 
calculated a large set of RSS values at random locations inside 
the room. Table I lists the values of key parameters used in the 
modelling of the hospital room. 

 



 

Fig. 2. Empty room illustration with LED Tx in the center of the ceiling and 
Rx plane at 1m height. The distribution of optical power is also illustrated. 

TABLE I.  MODELLING PARAMETERS OF SINGLE LED SYSTEM  

Parameter Value 

Room size 5 x 5 x 3 m3 

Location of LED (Tx) (2.5, 2.5,3) 

Area of PhotoDetector (PD) 10-4 m2 

Half Power Angle of Tx (HPA) 60o 

Responsitivity of PD 1.0 

Rx’s Field of view (FOV) 85o 

Transmitted power 1 W 

Gain of optical filter 1.0 

Refractive index of lens at the PD 1.5 

Reflection factor of walls 0.8 

B. Machine Learning methods 

Machine Learning algorithms take as input the 
independent variables (features) of the system and train the 
ML model in order to categorize or predict the dependent 
variable [12]. In this work we used several supervised learning 
regression algorithms. 

Support Vector Regression (SVR) is aiming to find 
decision boundaries (hyperplanes) to predict responses. 
Support Vectors are the data points closer to the hyperplane 
and determine its form and location. The best hyperplane is 
the one with maximum number of data points [13]. 

Decision Tree Regressor uses a set of splitting rules 
(resembling a tree) to segment the predictor space into a 
number of simple regions [14]. Decision trees exhibit 
instability in decisions even for small variations in data. To 
mitigate this, one can use Decision Trees within ensembles 
and reduce the variance of a decision tree base estimator. 

The goal of ensemble methods is to combine the 
predictions of several base estimators (weak learners) and 
create a meta-algorithm with low bias and low variance [15]. 
There are three categories of ensemble methods, namely 
bagging, boosting and stacking. 

In bagging, several estimators are built independently on 
random subsets of the original training set and their 
predictions are averaged. Random Forest and Extra-Trees are 
two bagging algorithms based on randomized decision trees 
[15]. 

In boosting, base tree estimators are built sequentially on 
repeatedly modified versions of the training data and the 
performance is improved iteratively by taking into account the 
prediction accuracy from the previous round. AdaBoost 
(adaptive boosting) algorithm [16] sequentially grows the 
weak learners (decision trees), learns from previous mistakes 
by assigning weights to incorrect values and combines the 
predictions from all trees through a weighted median to arrive 
to the final prediction. 

Stacking is an ensemble machine learning algorithm that 
learns how to best combine the predictions from several weak 
learners using a meta-model. The selected meta-model is 
getting trained using the multiple predictions of the base 
models and produces the final prediction [17]. 

Hyper-parameters are the parameters used to construct an 
estimator. It is common practice the tuning of hyper-
parameters of an estimator by searching the hyper-parameter 
space for the best cross-validation score [18]. 

C. Results and Discussion 

We applied ML techniques to two different cases, the 2D 
and 3D case, respectively. The 2D case is being used as 
benchmark for an initial low complexity case. It is also typical 
in indoor wireless systems to estimate range at a specific level 
(eg desk level or person height). We started with the 2D case, 
where we generated RSS values at random locations of Rx on 
specific planes above the floor. Each input dataset refers to a 
different height of the plane layer. In the 3D case we 
calculated RSS values at random Rx locations inside the 3D 
room. The height of the random points is between zero (on the 
floor) and 1.7m to emulate a realistic hospital environment. So 
input datasets consist of either three or four columns. The first 
column comprises RSS values in dB calculated by (4), the 
second and third are the coordinates of the Rx location (x, y) 
on a plane with height (z) in the fourth column. 

For the data analysis and visualization, we use the latest 
web-based interactive python development environment, 
JupyterLab [19], which is running on top of version 3.9.7 
Python [20], and we implement various open source python 
libraries like pandas [21], numpy [22], scikit-learn [23] and 
matplotlib [24]. 

We split each dataset produced by simulation to two parts: 
80% for training and 20% for testing and used these subsets to 
train and test the chosen ML regression algorithms. Then we 
applied the trained methods (prediction) to a completely 
different dataset of values which are considered as real values. 
Mean Absolute Error (MAE) is chosen as performance metric 
for all ML methods. 

Table II shows the results of the ML regression for the 2D 
case in the plane at 1m height (Fig. 2). The input dataset to the 
ML algorithms consists of 10,000 rows while the dataset for 
value prediction has 2,500.  

 

 

 

 

 



TABLE II.   PERFORMANCE COMPARISON OF ML ALGORITHM MODELS 

FOR RSS PREDICTION IN TERMS OF MEAN ABSOLUTE ERROR (MAE) FOR 

RANDOM LOCATIONS OF TX ON THE PLANE AT 1M HEIGHT (2D CASE)  

ML Regressor 

Testing 

trained data 

(%) 

Predicting 

data 

(%) 

Support Vector 38.5 41.3 

Decision Tree 8 15.5 

Random Forest 8.4 18.3 

Ada Boost with Extra Tree 
Regressor estimator 

7.3 7.5 

Stacking Regressor with XGB and 
LGBM estimators 

2.8 14.3 

Stacking Regressor with XGB, 
LGBM, Extra Tree, Random Forest 
and Decision Tree estimators 

3 6.7 

 

We design surface and contour plots of received power 
(dB) for Rx locations on the same plane (1m above the floor). 
The improvement of prediction between Support Vector and 
Ada Boost with Extra Tree Regressor estimator is clearly 
depicted in Fig. 3 and Fig. 4. 

Best performance in 2D real data, with MAE 6.7%, is 
achieved with Stacking Regressor with XGB, LGBM, Extra 
Tree, Random Forest and Decision Tree estimators (Fig. 5). 

The Mean Absolute Errors for the 3D case are shown at 
Table III. The input dataset consists of 75,000 rows while the 
dataset for value prediction has 25,000. 

 

 

Fig. 3. Surface and contour plots of received power (dB) for Rx locations 
on the same plane (1m above the floor). On the left 2D real data, on the right 
predicted RSS values by Support Vector Regressor. 

 

 

Fig. 4. Surface and contour plots of received power (dB) for Rx locations 
on the same plane (1m above the floor). On the left 2D real data, on the right 
predicted RSS values by Ada Boost with Extra Tree Regressor estimator. 

 

Fig. 5. Surface and contour plots of received power (dB) for Rx locations 
on the same plane (1m above the floor). On the left 2D real data, on the right 
predicted RSS values by Stacking Regressor with XGB, LGBM, Extra Tree, 
Random Forest and Decision Tree estimators. 

  



TABLE III.  PERFORMANCE COMPARISON OF ML ALGORITHM MODELS 

FOR RSS VALUES PREDICTION IN TERMS OF MEAN ABSOLUTE ERROR (MAE) 

FOR RANDOM LOCATIONS OF RX IN THE ROOM (3D CASE)  

ML Regressor 

Testing 

trained data 

(%) 

Predicting 

data 

(%) 

Support Vector   

Decision Tree 16.4 25.3 

Random Forest 20.2 25.5 

Ada Boost with Extra Tree 
Regressor estimator 

8.8 12.5 

Stacking Regressor with XGB and 
LGBM estimators 

6.8 18.9 

Stacking Regressor with XGB, 
LGBM, Ada Boost with Extra Tree, 
Random Forest and Decision Tree 
estimators 

4.8 18.9 

 

To ensure that the most efficient ML method is proposed, 
Ada Boost with the Extra Tree Regressor estimator was 
applied at input datasets generated for two extra rooms, of 
different dimensions. The Mean Absolute Errors for the 3D 
case for rooms of 3x3x2.8 and 6.5x6.5x3.5 (with LED lamp at 
the center of the ceiling) are in the same range, that is 12.70% 
and 12.57%, respectively.  

We plot 3D heatmaps (Fig. 6) to show performance of ML 
methods on predicting RSS values (dB) in random locations 
inside the room. 

As soon as training has been performed prediction time for 
each RSS value at any location in the room ranges from 2 to 
3ms, a value that is considered extremely low when compared 
to computation times of ray tracing numerical models (e.g., 
1sec for one bounce reflections model, 94sec for 3 bounces 
and 197sec for five). 

V. CONCLUSIONS 

Radio Environment Maps (REMs) comprise a handy tool 
to gain knowledge about the radio channel of places like 
industrial areas, power plants, hospital environments etc., and 
helps to deliver fast network planning in order to achieve the 
requirements and KPIs in the context of 5G URLLC services 
in places of interest. Fast and accurate planning of a variety of 
places (e.g., different rooms in a hospital) is essential in 
ensuring service availability, hence tedious simulation of 
various environments is not favored. In this work we propose 
the use of ML assisted systems for obtaining fast, from 300 to 
65000 times faster than calculating, depending on the number 
of reflections bounces considered, and accurate REMs for 
optical wireless systems like VLC. Initial results in predicting 
RSS values using Rx location as feature (predictor) showed a 
very promising accuracy performance measured by mean 
absolute error (12.5% MAE). In future work we seek to use 
more features, such as the HPA of Tx, the FOV of Rx, to 
improve accuracy by applying methods of artificial neural 
networks (ANN) and to create data sets publicly available. 
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Fig. 6. Heatmap of received power (dB) in random locations inside the 
room. On top 3D real data and below predicted RSS values by Ada Boost 
with Extra Tree Regressor estimator. 
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