
A high-performance FPGA architecture for
Acceleration of SVM Machine Learning Training

Charalampos Kardaris
Department of Electrical

and Computer Engineering
NTUA, Athens, Greece
ckardaris@outlook.com

Christoforos Kachris
Institute of Communications

and Computer Systems
NTUA, Athens, Greece

kachris@microlab.ntua.gr

Dimitrios Soudris
Department of Electrical

and Computer Engineering
NTUA, Athens, Greece

dsoudris@microlab.ntua.gr

Abstract—Support Vector Machines (SVMs) is one of the
most popular machine learning algorithms as it provides high-
performance and needs minimal tuning. It can be used for
classification, regression and other learning tasks. Its design
makes the training of large datasets time-consuming, so it is
important that solutions are developed that attempt to tackle
this problem. One such solution is presented in this paper. Based
on the LIBSVM library, one of the most popular and widely used
implementations of SVMs, we developed the design that can be
executed on an heterogeneous computing system, consisting of
an FPGA accelerator card, along with CPU.

The first step of the process is to determine the most com-
putationally intensive and parallelizable part of the algorithm.
That is found to be a matrix row computation, involving inner
products and a mathematical function (one of exp, pow, tanh)
for each of the elements. Then, we develop a kernel, that can
fully utilize the abilities of the FPGA accelerator card, regarding
data processing and computations. In our case that is the Alveo
U200 Data Center accelerator card. The results show that the
proposed implementation achieves up to 14x speedup in the row
computation part of the algorithm compared to a multi-threaded
CPU execution on a Ryzen3 2200G, a CPU with a base clock
speed of 3.5 GHz.

Index Terms—machine learning, FPGA acceleration, support
vector machines, SVM, LIBSVM, high level synthesis

I. INTRODUCTION

Machine Learning is one of the biggest trends of our
technological era. The optimization efforts in the whole field
are based, as is usually the case, in two pillars. Development
of better algorithms and acceleration of currently established
ones. The efforts presented in this paper, take the second
route. This paper describes the process of accelerating SVM
algorithms using an efficient FPGA architecture and provides
a performance evaluation, demonstrating the benefits of such
implementation.

The main contributions of the paper are the following:

• A thorough profiling and analysis of the most time-
consuming functions of SVM algorithms

• A high-performance implementation of the SVM algo-
rithm utilizing the hardware resources of the FPGAs

• A detailed performance evaluation and assesment of
the proposed scheme and comparison with CPU-based
implementations.

II. LIBSVM

The SVM algorithm was introduced as a method to solve
two-class classification problems. Different formulations of
the initial algorithm have been proposed in order to perform
multi-class classification, regression analysis and other learn-
ing tasks. The LIBSVM library supports a number of these
formulations:

• C-Support Vector Classification
• ν-Support Vector Classification
• Distribution Estimation (One-class SVM)
• ε-Support Vector Regression (ε-SVR)
• ν-Support Vector Regression (ν-SVR)

Each of the above is a quadratic minimization problem.
For example C-SVC is defined as follows.
Given training vectors xi ∈ Rn, i = 1, ..., l, in two classes, and
an indicator vector y ∈ Rl such that yi ∈ {1,−1}, C-SVC
solves the following primal optimization problem.

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l

(1)

where φ(xi) maps xi into a higher-dimensional space and
C > 0 is the regularization parameter. Due to the possible
high dimensionality of the vector variable w, usually we solve
the following dual problem.

min
a

1

2
aTQa− eTa

subject to yTa = 0,

0 ≤ ai ≤ C, i = 1, . . . , l

(2)

where e = [1, . . . , l]T is the vector of all ones, Q is an
l×l positive semi-definite matrix, Qij ≡ yiyjK(xi,xj) and
K(xi,xj) ≡ φ(xi)

Tφ(xj) is the kernel function. After979-8-3503-9958-5/22/$31.00 ©2022 IEEE

TABLE I
PROFILING OF SVM-TRAIN

`````````functions
datasets a9a skin ijcnn1 w8a Avg.

dot 79.03 37.41 63.71 72.9 63.26%
kernel rbf 8.18 21.63 11.66 12.11 13.4%
get Q 4.51 20.95 10.29 5,65 10.35%
select working set 5.31 14.45 8.31 5.08 8.29%

problem (2) is solved, using the primal-dual relationship, the
optimal w satisfies

w =

l∑
i=1

yiaiφ(xi) (3)

and the decision function is

sgn(wTφ(x) + b) = sgn

(
l∑

i=1

yiaiK(xi,x) + b

)
The definitions of the other SVM formulations can be found
in [1]. The main difficulty of solving such problems is that Q
may be too large to be stored. To address that, the LIBSVM
library implements a decomposition method called Sequential
Minimal Optimization (SMO), which requires the solution of
a simple two-variable problem for each iteration. The library
implementation also makes use of other techniques that further
aid in the management of large datasets without any need for
optimization software (i.e. caching, shrinking).

III. SOFTWARE ANALYSIS

FPGAs have the benefit that they are able to execute highly
parallel code, due to the fact that they can place on the
hardware chip and utilize many instances of the same compute
module (e.g an adder or a multiplier). In order to fully take
advantage of the capabilities of FPGA design, we first need
to determine the part of the code that is best suited for FPGA
execution. The characteristics of that code segment need to
be:

• computationally intensive
• highly parallelizable

Both are important to be present. It has to make sense to
dispatch the execution of the code to the FPGA, as in most
cases there is some overhead in doing so. Dispatching code
that is not that computationally intensive would most certainly
result in slower execution.

A. Original Code

Our implementation is based on version 3.24 of the LIB-
SVM library.

B. Profiling

We used the GNU gprof utility in order to get a timing
report from various executions of the svm-train program
using different datasets. The results are presented in Table I.

C. Hardware Function Selection

The function that takes most of the execution time is the
dot product function named dot. Nevertheless, this function
is not well suited to be executed on the FPGA on its own.
The profiles reported it being called a huge number of times,
with each execution not taking almost zero time. The overhead
of dispatching it to the FPGA and getting back the results
would be too big. Upon further inspection of the report and the
source code, we detected the following call stack: get_Q()
-> kernel() -> dot().

The fact that all calls of the dot function are coming for
the get_Q function mean that the latter is a better candidate
for hardware acceleration. The relevant code inside get_Q is
as follows.

f o r ( j = s t a r t ; j < l e n ; j ++) {
d a t a [ j ] = ( f l o a t ) ( y [ i ]* y [ j ]*

( t h i s−>*k e r n e l f u n c t i o n ) ( i , j ) ) ;
}

The existence of this loop with count len - start (with
len in the order of the number of training vectors) and a
variable i that stays constant throughout creates for a nice
setting for FPGA execution. What this code actually does
is compute row i of matrix Q presented in Equation 2 of
Section II. The loop starts from index start, because values
preceding that and starting from index 0 are cached in software
and are available instantly. More information about the way
this is done exists in [1] and the source code is straight-
forward, as well.

IV. ACCELERATOR DESIGN

In order to explain the design choices that we made we have
to take into account:

• the mechanics of the original algorithm
• the capabilities provided to us by utilizing the Alveo™

U200 accelerator card
• the aspect of retaining the existing functionality

Expanding the last item, our goal from the beginning was to
alter the original code as little as possible. Our attempt was
to accelerate the original algorithm using the available tools
and not make modifications that would may give significant
speedups, but would alter core parts of it. The results of our
FPGA version would have to match the results of the original
software version. We were able to produce two versions of
the kernel code that are doing exactly that. The first version
stores data in the FPGA global memory in double format,
exactly like the original code, and the second version stores
them in float format. The first version produces identical
results to the original software, while the second version
trades some accuracy with speed (more on the design specifics
can be found in Subsection IV-B and on the performance
results in Section V). We considered other versions, looking
to further exploit this trade-off, but the loss in accuracy
was deemed too much, which would be only be avoided
with a whole restructuring of the original code. This effort

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://github.com/cjlin1/libsvm/releases/tag/v324
https://github.com/cjlin1/libsvm/releases/tag/v324


index: 1

value: 3

index: 3

value: 8

index: 5

value: 5

0 3 0 8 0 5sqy

Fig. 1. Linked list to array conversion - 6 feature training vector

would also require a more detailed accuracy analysis of the
training, something that was out of the scope of our work. Our
implementation does only one basic change to the original
source code (along with some other necessary additions in
order to facilitate that change), which is to substitute the code
of the loop in Section III-C, with a call to our Host function
called callRowKernel and add 3 function calls needed to
translate the logic of the original program for FPGA execution.

The design choices will be presented in the following
manner. We will provide the relevant information regarding
the original implementation in software and the capabilities
of the accelerator card and then explain our design choices.
Subsection IV-A will deal with the Host side code and
Subsection IV-B with the Kernel side code.

A. Host Code

The first thing we need to address is the way the training
vector data was stored in the original code. The authors, in
that version of the code, had decided to put more weight on
sparse data. This lead to the usage of linked lists to store the
data, with each element storing the index and value of the
non-zero dimensions of the training vectors. Consequently, the
dot product function would have to traverse the relevant
linked lists. The need for repetitiveness inside the Kernel
code made us abandon that way and instead store the data
inside the DMA global memory of the accelerator card
in sequential fashion using arrays, padding with zeros when
needed. Also, to cover the case of an SVM formulation
using classification labels and maybe using the RBF Kernel
we added 2 elements at the beginning of our arrays. The
first storing yi and the second storing the sum of squares
dimensions∑

i=0

x2i for the given training vector (see Figure 1).

One of the major advantages of using the Alveo™ U200 is
the fact that its global memory has 4 banks. This permits
RW operations to happen from 4 different kernels at the same
time. To properly use this feature we divided the training
vector data in 4 arrays to be stored in the global memory.

Another major advantage is the 512-bit width of the
transfer bus between the FPGA and the global memory of
the accelerator card. This makes possible 512-bit transfers
in one clock cycle. In our algorithm, this translates to the
transfer of 8 doubles per clock cycle on the first version
or 16 floats in the second version. To accommodate this
feature, we extend the dimensions of the training vector to a
multiple of 8 (or 16 respectively), padding with zeros when

1

1

2

3

4

2
3
4

Transfer Row 1
Transfer Row 2

Kernel Row 1

Kernel Row 2

Kernel Row 3

Kernel Row 4

Fig. 2. Initial approach to parallel kernel execution

needed. That way, transfers in the Kernel code would never
cross training vector dimension boundaries.

Without explaining how the Kernel code works (see
Subsection IV-B), we need to explain what it does, so that we
can describe the process of calling it in the Host side. Each of
the 4 kernels is assigned to one of the 4 banks of the global
memory. Each kernel takes as input parameters the training
vector i (supposing we are performing the computation of
row i of matrix Q), a start parameter (denoting the first
vector in the bank that we want to compute the SVM kernel
function for - this is closely related to the start variable
of the original code) and a products parameter (denoting
the number of training vectors that we want to compute the
SVM kernel function for, starting beginning from start and
return the results). Carefully selecting these parameters for the
4 kernels we can partition the len - start computation
of the original loop into more chunks that can be executed in
parallel, thus achieving a good speedup.

The initial approach was to partition the computation in
4 chunks, one for each kernel. This was fairly logical to
do, since we can only execute up to 4 kernels in parallel.
The attempt was successful for small datasets, but for large
datasets the overhead of transferring the results from the FPGA
global memory back to the host after the kernels had finished
executing was not permitting the acceleration that we had
anticipated (see Figure 2).

To tackle this problem we further partitioned the computa-
tion designated for each kernel into more chunks. That way
the transfer of the results happens in parallel with the next
kernel execution in line (see Figure 3).

The final item we had to address from the original source
code was swapping. The algorithm at various points dur-
ing the execution performs a Shrinking procedure. This
procedure marks some training vectors as unnecessary for
the rest of the training process. To do that it swaps these
vectors with others from the “end” of the list and reduces
the‘working length”. Using a linked list makes this quite easy,
by manipulating their pointers. What we had to do to update
the data in the global memory of the accelerator card, was
keep track of those swaps, and before a new row computation
was needed, make the necessary changes to the arrays and
migrate them to the global memory, replacing the old



Transfer Row 1
Transfer Row 2

Kernel Row 1

Kernel Row 2

Kernel Row 3

Kernel Row 4

1 1 1 1

2 2 2 2

3 3 3 3

3 3 3 3

Fig. 3. Final approach to parallel kernel execution

sequence of values. This creates some overhead, compared
to the original software version, but it happens so rarely that
it doesn’t affect the acceleration of the training.

B. Kernel Code

The functionality of the code was first mentioned in Sub-
section IV-A. In a little more detail, what each kernel has to
do is start reading the training vector values from the global
memory, do the necessary computations and return the results
back to the global memory. From there they are transferred
back to the host.

This process of reading from the memory and writing back
to it, and considering that only one DMA transfer operation
can be happening at any given time (read or write), sets a
lower bound regarding the time complexity of the whole task.
As mentioned before, the data bus is able to transfer 8
doubles or equivalently 16 floats per clock cycle. We took
advantage of this feature, not only for the reading process,
but for the writing process as well. The LIBSVM algorithm
expects float values to be returned, so we make writes of
16 floats at a time, so as to not disrupt the reading process
that much. The resulting latency of our implementation is
approximately n ∗ d + n

16 cycles, where n is the number of
training vectors to compute the SVM kernel function for and
d is the number of dimensions divided by 8 (or 16 in the case
of the second version), as they were selected in the Host side
code. For example, to compute a row of 1 million elements
of 32 dimensions each, each kernel would take a little more
than 4.0625 (or 2.0625 for the second version) million clock
cycles.

In order to achieve this result, where the actual time of
execution is only determined by the time needed to read the
data and write the results back to the global memory, we
made use of the pipeline and dataflow directives. In the
code these are specified using #pragma HLS PIPELINE
and #pragma HLS DATAFLOW in the required areas. The
pipeline directive permits the parallel execution of a loop’s
body, starting each iteration as soon as possible, even before
the previous one has finished. The dataflow directive, along
with the usage of hls::streams, facilitates the passing of
data from one hardware module to the next (in code terms,
output from one function that is input to another), before the

load

group 1 group 2 group 3 group 11 group 12...

function

write

Fig. 4. Kernel dataflow

first module has finished its execution. To better explain the
dataflow directive usage we will describe the route of data
through the hardware modules in our design. Figure 4 provides
a visual representation of the functions/modules defined in
each kernel.

Module load reads data from the global memory; 8
doubles or 16 floats on every clock cycle. We know the
total dimensions for every training vector, so we know how to
group those reads per training vector. Every clock cycle, each
of the 8 (or 16) values is multiplied with the corresponding
value from the base vector (the vector with index i), a
tree-style addition of the 8 (or 16) results starts (3 levels or
4 levels respectively) and the result of these is streamed to
one of the 12 group modules. These functions start adding
the incoming values in sequential manner in groups of size
dimensions

8 (or dimensions
16 ). These sums are the dot products

for every training vector with the base vector. The sum
is streamed to the function module, which computes the
SVM kernel function. From there the results are streamed one
by one to the write module, which groups them by 16 and
writes them back to the global memory.

The interesting part of the dataflow model is the presence
of the 12 group modules. In our attempt to make the kernels
as general as possible in order to be able to train datasets
with different number of features using the same FPGA
bitstream, we had to abandon the notion of a tree-style addition
for the dimensions

8 (or dimensions
16 ) values coming from the

load module, as the Vivado HLS compiler would simply not
pipeline the whole process, not being able to determine the
depth of the tree at compile time. For that reason, a sequential
addition process was selected. The problem was that each
addition takes more clock cycles to be completed, while the
load module is pipelined and can produce an output value
in every clock cycle. In order to not have the values of the
following training vectors wait idle in a queue and stall the
whole pipeline, we thought about feeding these values to a
different module. Each of these group modules is computing
the dot product for a different training vector. The trick is that
by the time the first value of the 13th training vector is ready to
passed to a group module, the addition process of the 1st will
have been completed. The math that supports this is simple.



TABLE II
RESOURCES PER KERNEL - DOUBLE VERSION

Resource Used Available Utilization
BRAM 18K 278 319 87.1%

DSP48E 426 1132 37.6%
FF 93777 361686 26%

LUT 62764 177415 35.4%
URAM 8 80 10%

TABLE III
RESOURCES PER KERNEL- FLOAT VERSION

Resource Used Available Utilization
BRAM 18K 242 319 75.9%

DSP48E 391 1132 34.5%
FF 83087 361686 23%

LUT 53867 177415 30.4%
URAM 8 80 10%

The compile reports showed that each addition takes at most
12 cycles to be completed. In that case the dot product of a
training vector with the base vector takes 12 · dimensions

8 (or
12· dimensions

16 ) cycles to be completed. In that time, the load
module has produced exactly that many values, corresponding
to 12 different training vectors. At the end, the number of
cycles needed to make an addition dictated the number of
modules needed to compute the dot products in parallel.

Up to now, we have only described the process of computing
the dot product, but the data stored for each training vector
contain also its label y and its sum of squares sq. These, after
being multiplied and added respectively with the correspond-
ing values of the base vector, are streamed directly from the
load module to the function module. The latter computes
one of the following SVM kernel functions:

• Linear: y · dot
• Polynomial: y · (gamma · dot+ coef)degree

• RBF: y · e−gamma·(sq−2·dot)

• tanh: y · tanh(gamma · dot+ coef)

where gamma, degree, coef are SVM parameters.

C. FPGA Resources

The only parameter that can be changed and affects the re-
source usage of the kernels is the maximum number of dimen-
sions per training vector supported. For MAX_DIMENSIONS
= 8000 the resource usage for each kernel is shown in Table
II for the double version and Table III for the float version.

V. PERFORMANCE EVALUATION

The objective of this section is to present the speedups
achieved using our implementation compared to the original
software version. The FPGA speedups are relative to a multi-
threaded execution on the CPU that utilizes all 4 available
cores. We try to explore how the training set size and the
number of features affect these speedups.

In order to do that, we did a grid-like exploration, defined by
different training set sizes and number of features. To achieve
that in an objective manner we created some custom datasets.
The original dataset was Epsilon. This is a dense dataset that

	400 	800 	1200 	1600 	2000 	100000	200000	300000	400000	500000
	0

	20
	40
	60
	80

	100
	120

Num.	of	features
Num.	of	training	vectors

Time
(in	ms)

	0
	20
	40
	60
	80
	100
	120

Fig. 5. Double version: How the training size affects the execution time

	400 	800 	1200 	1600 	2000 	100000	200000	300000	400000	500000
	0

	10
	20
	30
	40
	50
	60
	70

Num.	of	features
Num.	of	training	vectors

Time
(in	ms)

	0
	10
	20
	30
	40
	50
	60
	70

Fig. 6. Float version: How the training size affects the execution time

contains 400000 training vectors with 2000 features each.
What we did was a take a subset of this dataset with 20000
training vectors. For each number of features that we wanted
to test (5, 10, 25, 50, 75, 100, 200, . . . , 2000), we removed
the features that we didn’t need and we copied this new base
set of 20000 training vectors many times in order to create
new custom datasets with (20000, 40000, . . . , 500000) training
vectors. The final step was to measure execution times for 1
row computation on the CPU and the FPGA.

Figures 5, 6 and 7 contain information about the execu-
tion time measured for every set of parameters (number of
dimensions and training size) for the 3 different versions we
checked (double FPGA version, float FPGA version and multi-
threaded CPU version). The black points denote the actual
measurements and the lines are fitted to the data in each case.
The fitting of the lines is almost perfect for all 3 versions, with
the multi-threaded one having only some minor deviances, that
are mostly created by measurement accuracy errors. There is a
linear relationship between the number of features, the training

	400 	800 	1200 	1600 	2000 	100000	200000	300000	400000	500000
	0	50	100

	150	200	250	300	350
	400	450

Num.	of	features
Num.	of	training	vectors

Time
(in	ms)

	0	50
	100
	150	200	250
	300	350
	400	450

Fig. 7. Multiple threads: How the training size affects the execution time

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#epsilon


	0 	200 	400 	600 	800 	1000 	1200 	1400 	1600 	1800 	2000

Sl
op

e

Num.	of	features

Double	version
Float	version
CPU	version

Fig. 8. Slope of execution time lines by number of features

	2
	4
	6
	8

	10
	12
	14
	16
	18
	20

	0 	200 	400 	600 	800 	1000 	1200 	1400 	1600 	1800 	2000

M
ax

	sp
ee

du
p

Num.	of	features

Double	version
Float	version

Fig. 9. Maximum speedup by number of features

size and the actual execution time of one row computation.
We can also observe that the maximum speedup that can

be achieved varies different for every different number of
features. In Figure 8 we have the graphs of the functions of the
slope of the lines of Figures 5, 6, 7, that show the execution
time of the different version we measured. In the same way
that the functions of speedup for every number of features are
fractions of the linear functions of execution time, the function
of the maximum speedup by number of features (see Figure
9) is a fraction of these linear functions of the slopes. This
relationship defines the shape of the graph in Figure 9 (again
it’s a hyperbola), that shows that for small number of features
the maximum speedup is higher. The limits are about 3.5x and
7x for the double and the float version respectively.

VI. RELATED WORK

To the best of our knowledge and according to the list
of “Interfaces and Extensions to LIBSVM” available on the
library website, there has not been implemented a direct
extension to LIBSVM, utilizing FPGAs. Of course, Machine
Learning training using Support Vector Machines is a very
popular research field, so there exist many other SVM imple-
mentations on FPGAs.

Sequential Minimal Optimization is not well-scalable for
huge data applications. In [2] Stochastic Gradient Descent is
used as an alternative. This work also experiments with both
single-precision floating point and fixed-point(5 bits integer
and 20 bits fractional part) numerical representations. Their
speedups seem to be very high, but their limitation is the low
number of features supported by their design.

Instead of replacing SMO altogether there have been efforts
to improve it for hardware acceleration. One of the disad-
vantages of the conventional SMO implementation used in
LIBSVM is the need of data from only 2 row computations in
each iteration. Caching further reduces this amount at times
and only one new row computation is needed per iteration.
This prevents the parallelization of more computations in
the FPGA and thus it is technically a bottleneck of the
original algorithm. The work in [3] addresses this limitation,
by creating a variant of SMO called Hybrid Working Set
(HWS), that creates working sets of bigger size of which
the computations are grouped in columns, thus increasing the
spatial locality of data.

The SVM kernels supported in LIBSVM are not all well-
tailored for parallel hardware execution. Functions such as exp
and tanh do not exploit all the capabilities of reconfigurable
architecture. In [4] an implementation is proposed utilizing
the Hardware Friendly Kernel (HFK). As it name implies, this
kernel is better suited for hardware parallelization, having the
advantage of being able to be computed with only shifts and
additions rather than multiplications. This work also produces
exciting speedups, but is again limited by the supported
number of features (up to 64) of their design.

VII. CONCLUSION

In this paper, we present the results of our work in an
attempt to accelerate the LIBSVM library for Machine Learn-
ing training on FPGAs. Extra care was taken in order to
parallelize the FPGA kernel code to a point where the only
bottleneck was memory transfer operations to and from the
DMA memory of the accelerator card, a bottleneck that could
not be avoided, since, by providing support for training of
a large amount of data, we could not store the necessary
values in the space restricted FPGA local memory. The timing
experiments show that, compared to a multithreaded CPU
execution on a Ryzen™ 3 2200G, a CPU with a base clock
speed of 3.5 GHz, we can achieve speedups of about 7x in
the general case of our fastest version and up to 14x in some
edge cases. This edge cases refer to datasets with few number
of features and a substantial number of training vectors.

REFERENCES

[1] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support
vector machines. ACM Transactions on Intelligent Systems and Tech-
nology, 2:27:1–27:27, 2011. Software available at http://www.csie.ntu.
edu.tw/∼cjlin/libsvm

[2] Felipe Fernandes Lopes, João Ferreira and Marcelo Fernandes. Parallel
Implementation on FPGA of Support Vector Machines Using Stochastic
Gradient Descent. Electronics. 8. 10.3390/electronics8060631, 2019.

[3] Sriram Venkateshan, Alap Patel and Kuruvilla Varghese. Hybrid Work-
ing Set Algorithm for SVM Learning With a Kernel Coprocessor on
FPGA. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on. 23. 2221-2232. 10.1109/TVLSI.2014.2361254, 2015.

[4] Daniel Holanda Noronha, Matheus Torquato and Marcelo Fernandes. A
Parallel Implementation of Sequential Minimal Optimization on FPGA.
Microprocessors and Microsystems. 69. 10.1016/j.micpro.2019.06.007,
2019.

[5] Xilinx® Inc., Vivado Design Suite User Guide: High-Level Synthesis
(UG902 v2019.2), January 13, 2020

[6] Xilinx® Inc., Vitis Unified Software Platform Documentation: Applica-
tion Acceleration Development (UG1393 v2019.2), February 28, 2020

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	LIBSVM
	Software Analysis
	Original Code
	Profiling
	Hardware Function Selection

	Accelerator Design
	Host Code
	Kernel Code
	FPGA Resources

	Performance Evaluation
	Related Work
	Conclusion
	References

