
Path Loss Prediction Modelling for Next-generation
Internet-of-Things Applications Using Different

Boosting Machine Learning Methods
Vasileios P. Rekkas

ELEDIA@AUTH, School of Physics
Aristotle University of Thessaloniki

541 24 Thessaloniki, Greece
vrekkas@physics.auth.gr

Sotirios P. Sotiroudis
ELEDIA@AUTH, School of Physics
Aristotle University of Thessaloniki

541 24 Thessaloniki, Greece
ssoti@physics.auth.gr

Georgia Athanasiadou
Department of Informatics
and Telecommunications
University of Peloponnese

Tripolis, Greece
gathanas@uop.gr

Panagiotis Sarigiannidis
Department of Informatics

and Telecommunications Engineering
University of Western Macedonia

Kozani, Greece
psarigiannidis@uowm.gr

George V. Tsoulos
Department of Informatics
and Telecommunications
University of Peloponnese

Tripolis, Greece
gtsoulos@uop.gr

Sotirios K. Goudos
ELEDIA@AUTH, School of Physics
Aristotle University of Thessaloniki

541 24 Thessaloniki, Greece
sgoudo@physics.auth.gr

Abstract—Wireless channel propagation characteristics are
crucial for wireless network systems. The accuracy of the path
loss (PL) prediction determines the quality of the received signal
and optimization of wireless communication networks.In this
paper, we apply and compare various machine learning (ML)
boosting methods for the prediction of path loss in cellular
communications using a flying base station (FBS). We use a ray
tracing technique to obtain the dataset for the training process of
the models. The work at hand generates prediction models, based
on five different boosting ML learners to accurately predict the
path loss of an unmanned aerial vehicle (UAV). The proposed
approach exhibits great accuracy and efficiency in predicting the
path loss.

Index Terms—Ray tracing, cellular communications, machine
learning, boosting

I. INTRODUCTION

Accurate wireless propagation models can play a crucial
role in planning, designing and evaluating the performance of
wireless communication networks [1]. PL can be affected by
a variety of factors, including absorption of electromagnetic
waves, reflection, weather conditions and refraction [2]. PL
prediction needs to be accurately modeled, in order to achieve
optimal frequency and interference analysis, management of
dynamic coverage, reliable system design and link budget
analysis and optimal network performance [2], [3]. The advent
of NGIoT next-generation Internet-of-Things (NG-IoT) brings
different research challenges and priorities. The identified
priorities encompass several components of the IoT stack
and, as a result, relate to 6G, Distributed Ledgers, Big Data,
Artificial Intelligence, Cyber Security, and Cloud Computing.
Especially, the emerging sixth-generation (6G) mobile net-
works require features like massive connectivity, increased

network capacity, and extremely low-latency. UAVs represent
a crucial part of the NGIoT ecosystem. Conventional empiric
and deterministic methods have been utilized for path loss
modeling [4]. Empirical modeling is based on frequency and
attenuation data measurements and use mathematical formu-
lation for the statistical description of the propagation factors
between transmitter and receiver antennas. The study of the
wave propagation and network planning of fifth generation
(5G) cellular networks using low-altitude UAVs in urban
environment seems to be a necessity [5]. ML algorithms
can offer various services and become a vital aspect of
future wireless networks. PL prediction can be modelled as a
supervised regression problem. Conventional ML algorithms,
can achieve great accuracy and efficiency, reduced computing
time and resources and excellent applicability [6]. In contrast
to the conventional ML approach, in this paper we aim to
evaluate the efficiency of various boosting ML methods in
urban environments for cellular communications. The rest
of this paper is organized as follows. Section II provides
the formulation procedure and modeling details. Section III
describes the boosting ML methods we employ. In section IV
simulation metrics and results are presented, while conclusions
are included in Section V.

II. FORMULATION

A 3D in-house ray tracing software is used to compute
the path loss in an urban cellular network in the city center
of Tripolis, Greece. A FBS is placed in an outdoor urban
environment, at a point A (xBS ,yBS) and flies in three
different heights (2, 4, and 6m) obtaining the path loss values
for different horizontal coordinates xi,yi for the UAV heights.
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The FBS transmissions are used for the calculation of the path
loss, with the transmission frequency at 2100 MHz (3G/4G
network). A data-set is constructed,using the results of the
software and is used to train the ML models. The four input
parameters are the geometrical height h of the FBS, the
horizontal coordinates (xi,yi) of the point of interest and the
distance d of the point from the FBS, measured in meters,
while the single output parameter is the path loss value at the
point of interest, in dBm. The data-set is consisted of 18.898
samples and, for validation purpose, is randomly split into a
set for the training procedure (80%) and a test dataset (20%).
Each boosting ML prediction model uses this dataset as input
feature and suitable performance metric indicators are used to
validate the results.

III. MACHINE LEARNING MODELS
ML techniques have been widely investigated for ray trac-

ing and path loss prediction problems. In this work various
boosting ML methods are applied to study the performance
and accuracy approximation in path loss problems. Boosting
is a ensemble learning approach, that trains and combines
base classifies/regressors to produce an accurate classifica-
tion/regression model [7].

A. Adaptive Boosting(Adaboost)

Adaboost is a strong ensemble method that combines var-
ious weak classifiers with poor accuracy, in order to obtain
a strong classifier. AdaBoost increases the weight of false
classified data points, or decreases the weight of the correct-
classified data points. In each iteration, Adaboost trains the
data sample and ensures accurate predictions, by highlight-
ing the false classified data and obtaining new distribution
samples every time,based on the results. Adaboost can reduce
the weight of the unimportant data and prioritize the key
data points, on the top of the training procedure. This way,
Adaboost, while being simple, can improve the accuracy and
convergence speed, despite any increase in diversity of the
samples [8].

B. Gradient Boosting Decision Tree (GBDT)

GBDT is an ensemble algorithm that combines Gradient
Descent Method, ensemble Learning and Decision Trees. It
uses weak decision trees as the base learners and uses a
gradient boosting technique to sum the predictions and con-
clusion of the series of trees, as the final model. GBDT adjusts
the errors, trains a new decision tree from the previously
trained one and uses, at each iteration, the loss function to
establish the direction of the gradient descent to fit the residual
between actual value and the prediction of the method. GBDT
is accurate, efficient and has great interpretability, becoming
rather popular for different wireless network challenges [9].

C. Extreme gradient boosting (XGBoost)

XGBoost is an ensemble based on trees or linear classifiers.
It combines several weak classifiers to form a model with
better efficiency. XGBoost optimizes the structured loss func-
tion by using a second-order Taylor expansion to optimize the

objective function and improve accuracy. XGBoost changes
the weight of training samples in the training process and uses
the weights of the leaf nodes and the tree depth, to reduce and
adjust the complexity of the final approach. XGBoost is widely
used due to its high accuracy, high speed and strong anti-noise
ability [10].

D. Light Gradient Boosting Machine (LGBM)

LGBM is a gradient boosting ensemble framework that
builds a strong regression tree model by combining weak
tree learners. It uses a leaf-wise splitting algorithm to develop
vertically and a histogram-based method to define the best split
parameters and reduce standard deviations. LGBM chooses the
leaf with the highest growth loss, to grow the final tree model.
LGBM has increased accuracy, higher computing speed and
lower system memory usage [11].

E. Categorical boosting (Catboost)

CatBoost is a high-performance novel learning algorithm
based on GBDT and uses binary decision trees as weak base
learners to generate an accurate model. One primary contrast
among CatBoost and other boosting algorithms is that the
CatBoost uses symmetric tree and a new method of calculating
the values of the leaf nodes to generate the tree, which helps
improve the robustness of the model.In Catboost, the set of
the feature points are randomly arranged to generate various
random permutations, which helps maintain the diversity of
the coupled input points and prevent over fitting. CatBoost
models can process categorigal variables, as well as numerical.
It can address the challenge of prediction bias, thus improving
accuracy, has less predicting time and is rather efficient for low
latency environments [12].

IV. PERFORMANCE MEASURES AND RESULTS

A. Metrics

A quantitative examination of the ML algorithms that are
used for the path loss estimation, can be made with suitable
evaluation statistic metrics. These error metrics are calculated
by comparing the predicted target values of the model with the
actual values of the measured test data. The error measurement
metrics that are used in our study, are the Mean Absolute Error
(MAE), the Root Mean Squared Error (RMSE) and the Mean
Absolute Percent Error (MAPE). Their definitions are given
in the following equations (1)-(3) [13]:

MAE =
1

n

n∑
i=1

|yi − ŷi| (1)

RMSE =

√√√√(
1

n
)

n∑
i=1

(yi − ŷi)2 (2)

MAPE =
1

n

n∑
i=1

|yi − ŷi
yi

|x100% (3)

where n denotes the test set number of input records, y are
the real measured data and ŷ the predicted ones of the i-th
data record.



B. Numerical Results

In order to obtain the best suitable model for this case, we
have evaluated different boosting learners, namely AdaBoost,
GTBD, XGB, LGBM and Catboost. For the evaluation of our
models we use the Scikit-Learn open source ML library im-
plemented in Python language , by using suitable conventional
error measurement metrics as shown in Table I.

CatBoost performs better than the other algorithms in terms
of path loss prediction errors, as it has outperformed all
other methods in all the previously mentioned performance
indicators. The MAE value is 1.76 dB, the RMSE value is
2.789 dB and the MAPE value is 1.464%. AdaBoost and
LGBM methods are close to the optimal, with MAPE values
of 1.499% and 1.491% respectively, which suggests them as
alternative approaches to the path loss prediction problem.
Even though XGB obtains the worst results, with a value of
MAPE 1.758%, the percentage error is low, which indicates
that XGB can efficiently predict the path loss. In general, all
methods showed satisfactory accuracy in predicting the path
loss values, as MAPE values were less than 2%.

TABLE I
ERROR MEASUREMENT METRICS FORPATH LOSS PREDICTION

Algorithm MAE MSE RMSE MAPE %
Adaboost 1.865 9.903 3.147 1.499

GTB 1.927 9.487 3.080 1.612
XGB 2.076 11.270 3.357 1.758

LGBM 1.80 8.238 2.870 1.491
CatBoost 1.760 7.777 2.789 1.464

Figs. 1-2 are scatter plots that present the correlation between
the actual measured values (black line) and the predicted
values obtained by the ML methods (coloured dots). The
prediction model is more accurate, when the prediction dots
are closer to the line, that represents the actual measured test
values. The correlation shows a diminutive difference between
real and predicted values, due to the small MAPE values for
estimating the path loss values. Figs. 3-4 are histograms that
present the statistical difference distribution of the true test and
the model predicted values. In Figs. 1-4 the results of Catboost
and LGBM are depicted, as these approaches acquired the best
accuracy in predicting the path loss.

Fig. 2b is an histogram that shows the correlation between
estimated and ground truth values.

Figs. 5-7 show the comparative results of all methods for
path loss prediction. It is evident that Catboost outperforms
the other methods, due to the use of symmetric trees and
the robustness of the method, while the worst performance
is measured for the XGB learner. It should be pointed that
the computational power required for ML model computation
is quite lower than the one required for RT computation. The
proposed ML approaches have low complexity, high accuracy,
robustness and computing speed.

Fig. 1. Estimated versus real measurement values.

Fig. 2. Estimated versus real measurement values.

Fig. 3. Statistical distribution of the difference between estimated and real
values.

V. CONCLUSION

In this paper, we have proposed a boosting modeling pro-
cedure for the modeling of path loss derived from FBS in an
urban environment for cellular communications. We combined
ray tracing data with five different boosting ML methods,
namely AdaBoost, GTBD, XGB, LGBM and Catboost. A
comparison regarding the efficiency in path loss prediction
of the methods was conducted, with satisfactory results. Cat-
boost outperformed the other algorithms, with all approaches
scoring MAPE values below 2%, showing that boosting ML
approach can offer a solution to the path loss prediction and
planning. Future challenges include expanding and testing this



Fig. 4. Statistical distribution of the difference between estimated and real
values.

Fig. 5. MAPE (dB).

Fig. 6. RMSE (dB).

framework for 5G wireless networks, study of different Deep-
Learning (DL) approaches and evalueation of the framework
in a more complex environment (e.g. additional FBS heights,
different point of interest, sub-urban environment etc.)
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