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Abstract—We present results on the bit error probability (BEP)
of Reed Solomon (RS) codes for an optically pre-amplified pulse
position modulation receiver. We first derive analytical relations
for the BEP calculation of the RS coded system and validate their
accuracy via Monte Carlo simulations. The analytical relations
are then utilized to assess the BEP performance of the system in
the presence of weak and strong fading. Our simulations show
that coding provides a net gain in weak fading, but no gain is
observed in strong fading.

Index Terms—Optical Wireless Communications, Pulse Posi-
tion Modulation, Pre-amplified Optical Receiver, Reed Solomon
Codes, M-Malaga fading, γ − γ fading

I. INTRODUCTION

Optical Wireless Communications (OWC) dedicated to
earth-to-space links offer a great alternative over their radio
counterparts due to low cost components, low complexity
receivers and high bandwidth availability. Nevertheless, power
budget design limitations are introduced by atmospheric trans-
mission phenomena, like scintillation, absorption and scatter-
ing. A plethora of methods have been proposed to improve
the performance of OWC systems and reduce the impact of
the aforementioned effects, including optical amplification,
orthogonal modulations and channel coding [1].

Optical pre-amplification improves the receiver sensitivity
and reduces the severity of fading [2]. The trade-off of using an
amplifier in the receiver is the addition of the amplifier’s noise
to the received signal. Moreover, pulse position modulation
(PPM) is a high order orthogonal modulation scheme that can
be used to further improve the system sensitivity at the expense
of bandwidth utilization [3]–[5]. One of the drawbacks of
PPM, however, is that it is prone to burst errors since each
PPM symbol is typically mapped to more than one bits. Given
the orthogonality of PPM symbols, an erroneous decision on
the received symbol leads to registering up to log2 Q bit errors,
where Q is the modulation order.

An efficient solution to overcome these errors is the uti-
lization of error correction codes, and in particular codes that
support burst error correction. In this direction, RS codes are

a popular choice of codes for PPM links due to their high
effectiveness in dealing with burst errors. This is possible
since RS codes form and correct symbols of their own; as
such RS codes will correct a burst of incorrect bits provided
that its boundaries remain within a single RS symbol. In PPM
modulation, RS burst error correction is feasible assuming that
the PPM symbol length (in bits) is shorter than the RS one,
which is typically the case in real-world applications.

In the current work we present analytical relations for the
BEP of a pre-amplified PPM receiver with RS coding. The re-
lations are based upon a previous analysis of the pre-amplified
receiver [6] and a widely utilized approximation for RS codes
[7]. The analytical results are validated via Monte Carlo (MC)
simulations and it is verified that a significant coding gain can
be attained for this system. Moreover, the simulations reveal
that [6] provides a more accurate BEP approximation at low
signal levels and this observation facilitates the performance
evaluation of the coded system in the presence of fading. The
corresponding simulation results reveal that the use of RS
codes may provide and additional margin in the power budget
design under weak fading.

The rest of the paper is structured as follows: Section II
details the system model with and without RS coding, as well
as analytical and simulation BEP results. Section III discusses
the performance of the two systems in M-Malaga and γ − γ
fading. Both weak and strong fading conditions are considered
so as to explore the applicability of coding in each scenario.
Finally, Section IV concludes the paper and summarizes the
main results.

II. SYSTEM PERFORMANCE

A. System Model

The system under consideration is shown in Fig. 1. The
binary information is first partitioned into RS symbols with
size equal to m bits and k successive data symbols are used to
generate n−k = 2t parity symbols, thus forming the RS(n, k)
error correction block. RS codes are minimum distance codes,
hence they can correct the largest possible number of errors for
given code parameters. The RS minimum distance is dmin =979-8-3503-9958-5/22/$31.00 ©2022 IEEE



Fig. 1: System Model.

n − k + 1 and can correct up to t = ⌊(n − k)/2⌋ symbols
errors. The coding rate is defined as Rc = k/n.

The RS codewords are then modulated using PPM, which
utilizes Q time slots to distinguish between an equal number
of PPM symbols. The PPM symbol energy Es is contained
in one of the slots and the binary representation of the
slot identifies the log2(Q) bits that correspond to the PPM
symbol. As a result the RS codewords are partitioned prior
to modulation and, following the discussion in [8], good
performance requires that the bit-length of an RS symbol is
higher than the bit-length of a Q-PPM symbol, or equivalently
m > log2(Q). This approach ensures that successive PPM
errors contribute to a single RS error at the decoder, thus
enhancing its burst error correction capabilities. The structure
of an RS block code where Q-PPM modulation is used is
presented in Fig. 2.

B. Bit Error Probabilities

The PPM symbols are transmitted over the optical wireless
channel and at the receiver’s end the optical signal is amplified,
detected and demodulated. The demodulation process relies
on identifying which slot contains the PPM symbol energy
and this is achieved by selecting the slot with the highest
energy (soft-decision demodulation). Due to the optical noise
that is introduced from the amplifier, demodulation errors
are expected and the PPM symbol error probability for the
uncoded system Psm has been previously calculated as [6,
eq. (12)]

Psm =
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q=1

(
Q− 1

q

)
(−1)q+1

× exp

(
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where Q is the modulation order, M are the amplifier’s noise
modes, λ = E/N0 = Eb/N0 log2(Q) is the symbol energy
to noise ratio, Eb is the energy per bit after amplification, and
N0 = nsp h f (G−1) is the optical noise spectral density at the

Fig. 2: Coding block structure.

amplifier output. The coefficients cqn are calculated following
[6, eq. (13)]. The BEP for the uncoded system, is given by

Pu
e =

Q

2(Q− 1)
Psm . (2)

The bit stream at the demodulator output is then decoded
using the Berlekamp–Massey algorithm, which allows for the
correction of up to t RS symbol errors. Assuming that PPM
symbol errors are independent, the probability that an RS
symbol is in error Ps is calculated from Psm as

Ps = 1− (1− Psm)p , (3)

where p = m/ log2(Q) is the number of PPM symbols per
RS symbol. The decoder will not be able to correct the
received bits whenever more than t RS symbol errors are
present, and the corresponding BEP of the RS coded system
is approximated by [7, eq. (31)]

P c
e ≈ n+ 1

2n

n∑
i=t+1

(
n− 1

i− 1

)
P i
s (1− Ps)

n−i . (4)

In the last equation it is also required to include the
power penalty that is introduced from the coding rate, thus
λ = k/nEb/N0 log2(Q).

Equations (2) and (4) are plotted in Fig. 3 for Q = 4, 16
and three RS codes with a different length and a similar code
rate. The analytical results demonstrate that the coded system
is able to correct the symbol errors that are imparted from the
noise of the amplifier. The predicted gain amounts to 2−3 dB
for Q = 4 at a BEP = 10−6, with a longer code providing
additional gain. A similar behavior is observed for Q = 16,
where the coded system outperforms the uncoded one, even
though the coding gain is somewhat reduced compared with
Q = 4.

C. Validation via Monte Carlo Simulation

The advantage of (4) lies in the simplicity in deriving the
probability of bit error since the PPM symbol error probability
Psm and the code parameters are the only requirements.
However, its accuracy needs to be investigated, especially at
low signal energies which are typically expected in a fading
environment. To this end, MC simulation results are plotted
in Fig. 3, along with the analytical ones that were obtained
via (2) and (4). The simulations were performed by RS
encoding random bit streams, which where then modulated



Fig. 3: Analytical and simulated BEP performance of the uncoded and coded system.

into PPM symbols. The slot signals in each PPM symbol
where randomly generated from a central χ2 distribution in
the slots without any energy, and a non-central χ2 distribution
for the slot with the symbol energy [6]. The demodulator
selected the slot with the highest signal value and reported
the corresponding bits to the decoder, which recovered the
original bit stream after possibly correcting errors. The BEP
was measured by comparing the transmitted bits with the
outputs of the demodulator and the decoder.

The plots in Fig. 3 show that the simulation and analytical
results for the uncoded system coincide, which verifies the
validity of the simulation. It can also be seen that (4)

presents a good fit only for the high Eb/N0 regime. As Eb/N0

decreases and the system is dominated by noise, the simulation
shows that the coded and uncoded systems exhibit a similar
BEP and (2) is a better approximation than (4). This can be
explained by the fact that the number of RS symbol errors
that occur per block are more than t, hence the decoder
can not correct them and reports the original erroneous bit
stream. Given these results, a more accurate approximation
that describes the performance of the coded system for both
the high and low Eb/N0 regions is

Pe = min{P c
e , P

u
e } . (5)



Fig. 4: ABEP performance of the uncoded and coded system in γ − γ and M-Malaga fading.

III. SYSTEM PERFORMANCE UNDER FADING

In an OWC system the optical signal is transmitted through
the atmosphere and the time varying inhomogeneities of
the atmospheric refractive index introduce fluctuations at the
received energy. The energy fluctuations are modelled as
a random variable h and, assuming that the channel does
not change significantly within the PPM symbol duration,
the instantaneous BEP is calculated from (2), (4) and (5)
by replacing λ with λh. The average BEP (ABEP) of the

system is then obtained via MC simulation after evaluating
the instantaneous BEP over a large number of possible channel
states hn following

P ave
e =

1

N

N∑
n=1

Pe(λhn) . (6)

In our simulations, we randomly generated N = 106 channel
amplitudes hn using the γ − γ [9] and M-Malaga channel



TABLE I: γ − γ Channel Model Parameters

Parameter Weak Strong
α 16.5347 14.9057
β 5.50966 1.1138

TABLE II: M-Malaga Channel Model Parameters

Parameter Weak Strong
α 50 2.2814
β 14 33
γ 0.06 0.1354
Ω

′
1.4847 3.7270

models [10]. The corresponding pdfs are equal to
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1
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2

,

(8)

respectively, and have been normalized so that the random
fluctuations do not provide any loss or gain (E{h} = 1).
Gm,n

p,q (·) is the Meijer G-function [11, eq. (9.301)] and the
distribution parameters are described in detail in the literature
[9], [10]. The parameter values that were used in the simula-
tions are summarized in Tables I and II.

The simulation results are presented in Fig. 4 for weak
and strong fading and the three different RS codes. The
results show that the coded ABEP performance surpasses the
uncoded one in weak fading and a gain of approximately
1 dB is observed at high Eb/N0. Longer and shorter codes
also provide similar gains due to their comparable code rates.
Moreover, the uncoded 16-PPM system performs better than
the RS coded 4-PPM one for all ABEPs up to 10−6, while
the 8-PPM system (not shown for brevity) has an intermediate
performance. Thus, given the available bandwidth and Eb/N0

it is possible to select the combination of the modulation
order and the code length that achieves the optimal ABEP in
weak fading. In contrast, the results show that the RS codes

do not improve the ABEP performance under strong fading,
since the system operates constantly at a low Eb/N0 and the
two systems (coded and uncoded) exhibit an almost identical
instantaneous BEP following the results of Fig. 3.

IV. CONCLUSION

In this paper, the error correction capabilities of RS coding
were investigated for a pre-amplified PPM OWC system.
Analytical expressions for the coded BEP were derived and
compared with simulation results, leading to an accurate BEP
approximation of the coded system in both the low and high
Eb/N0 regimes. The approximation was then utilized to assess
the ABEP performance of the coded system and show that
RS codes are beneficial in weak fading scenarios provided
that an adequate power margin is available, while they offer
practically no gain in strong fading conditions.
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