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Abstract—Even though Knowledge Distillation (KD) has been
extensively studied during the recent years considering classi-
fication tasks, the research considering forecasting problems is
extremely limited, despite the fact that the underlying reasons
for the need of KD, linked with requirement for effective and
fast models, are also apparent in such problems. In this work,
we propose an online distillation method, named Online Self-
Distillation for Forecasting (OSDF) for ameliorating the baseline
forecasting performance considering the Electric Load Demand
Forecasting (ELDF) problem on Greek energy market. The
experimental evaluation, considering a typical and a fully realistic
setup validates the effectiveness of the proposed OSDF method.

Index Terms—Online distillation, Self-distillation, Energy load
demand forecasting, Greek energy market

I. INTRODUCTION

Electric Load Demand Forecasting (ELDF) describes the
task of predicting the expected electricity demand by analyzing
historical load data. ELDF falls into three categories based
on the time-scale. That is, short-term load forecast which
concerns forecasting of a few hours up to one-day ahead or
a week ahead, mid-term load forecast which concerns a time-
period of a week to one year, and the long-term forecast with
a time frame of up to several years ahead. In this paper we
deal with short-term forecasting.

ELDF constitutes, in general, a challenging task in the
energy markets due to the variety of factors affecting the
forecasting performance [1], [2]. Load demand forecasting
is associated with many critical applications ranging from
power system operation and planning to energy trading [3],
allowing power companies to achieve an efficient balance
between demand and supply, avoiding excess reserve of power
generation or power interruptions due to load shedding. The
aforementioned reasons dictate the demand for accurate load
demand forecasting models. This demand has fueled the
research interest over the past years [4].

Motivated by the remarkable accomplishments of DL algo-
rithms in a wide variety of problems, ranging from image

classification [5], and image retrieval [6] to financial time
series forecasting [7], DL algorithms have been proposed
so as to tackle the ELDF task [8]–[10] achieving notable
performance.

For instance, in [11] a Deep Belief Network (DBN) em-
bedded with parametric Copula models is proposed to forecast
the hourly load of a power grid. This model achieved superior
performance as compared to previous approaches in both daily
and weekly predictions of hourly granularity. In a very recent
work [12], a study for the prediction performance considering
the following’s day load demand separately for all four seasons
of the year has been conducted. An hybrid model of a neural
network and an Long Short-Term Memory (LSTM) achieved
the best results.

In this work, we deal with the Greek energy market.
Surveying the relevant literature, we come across several
works of ELDF on the Greek Energy Market. For instance,
in [13], the effect of dimensionality reduction methods in
the day-ahead forecasting performance of neural networks
is investigated. Furthermore, in [14] a fuzzy-based ensemble
that uses hybrid DL networks is proposed for load demand
prediction of the next week. More specifically, initially, a
fuzzy clustering technique creates an ensemble prediction and
after that a pipeline of Radial Basis Function Neural Network
(RBFNN) transforms the data in order to be fitted in a CNN.
Finally, the output of this pipeline goes into an hybrid neural
network consisting of an RBF, a CNN and two fully connected
layers. Additionally, in [15] a methodology which helps the
exploitation of the statistical properties of each time series
with main focus the optimization of CNN’s hyper-parameters
is proposed.

Subsequently, in [16] a more realistic approach of ELDF
on Greek energy market is investigated. More specifically,
the vast majority of the aforementioned methods make two
basic assumptions, considering the ELDF problem. First, it is
assumed that any historical load data before the day whose
load demand we want to predict are available and can be979-8-3503-9958-5/22/$31.00 ©2022 IEEE



used. Second, real weather information of the aforementioned
day is also considered available. In [16], a more realistic
setup is followed, considering an information gap between the
prediction day and the past load data, retaining however the
assumption regarding the weather information. A strategy for
filling the aforementioned information gap is proposed, along
with a novel loss function.

Finally, in [17], an evaluation study regarding the optimal
input features and an effective model architecture considering
the ELDF problem on the Greek energy market is performed.
Subsequently, using the optimal features and model, a novel
regularization method is proposed, ameliorating the baseline
forecasting.

In this paper, we also deal with ELDF task on the Greek
energy market, proposing an online self-distillation method
for improving the performance of a day-ahead forecasting
model. Considering generic classification tasks, Knowledge
Distillation (KD) [18] has been established as an auspicious
technique for training fast and effective models by transferring
the knowledge acquired usually from more powerful models.
Despite its effectiveness, KD suffers from some shortcomings
associated with the complex training pipeline (i.e., compu-
tationally demanding and time-consuming procedure), since
the so-called teacher model should be trained, and after its
convergence, the acquired knowledge is transferred to the so-
called student model. Thus, online distillation has been arisen
in the recent literature as a method from circumventing these
flaws, by simplifying the training pipeline to a single-stage,
omitting the stage of pre-training the teacher model [19], [20].

Event though, KD has been extensively studied during
the recent few years with a wide spectrum of applications
[21], [22], the research on distillation considering forecasting
problems is very limited, despite the fact that the underlying
reasons for the need of KD, linked with requirement for
effective and fast models, are apparent in such scenarios
too, [16]. Surveying the literature, we first come across a
KD-based method for wind power prediction in [23]. The
method aims to bridge large (park with bid data) and small-
scale (turbine with small data) forecasting by proposing a
KD regression approach. Subsequently, considering financial
forecasting problems, a KD method that exploits sentiment
information as a source of additional supervision throughout
the training procedure is proposed in [24].

In this paper, apart from the typical setup described above,
regarding the unconstrained availability of previous load data
and weather information, we also implement a fully realistic
setup where neither weather information is used and also there
is an information gap in the past load data. We apply the
proposed online distillation method, so as to mine further
knowledge about the way the model learns to forecast in order
to ameliorate its prediction performance on both the setups and
evaluate the forecasting performance.

The rest of the manuscript is structured as follows. First,
the proposed online distillation method is presented in Section
II. Subsequently, in Section III the experiments performed in
order to validate the proposed online distillation method are

provided. Finally, some conclusions are drawn in Section IV.

II. PROPOSED METHOD

In this paper, we propose a novel online distillation method
for ameliorating the performance of a neural model, consider-
ing the energy load demand forecasting task.

Generally, KD is established in the idea that, considering
a classification problem, it is beneficial to train a model with
the so-called soft labels that encode additional information
about the way the model learns to generalize, instead of
training it with the ground truth targets (hard labels). This
additional information can be derived either from the same or
another model. Considering, for example, the digit recognition
task [25], KD argues that by incorporating the additional
knowledge that a digit 9 is similar to another digit 8, the
generalization ability of the classifier is enhanced. In this
paper, the aforementioned idea is extended to forecasting tasks.
Specifically, considering the electric load demand forecasting
task, we argue that, since similar input features lead to similar
forecasted load values, we can improve the generalization
ability of the model by incorporating these similarities to
the training process, instead of merely training with the
actual load values. That is, by ignoring the similarities of the
input features, outliers can significantly contribute to the loss,
leading to poor generalization performance.

Therefore, we propose a simple yet effective online distil-
lation method, named Online Self-Distillation for Forecasting
(OSDF) which is able to acquire further knowledge about the
way the model learns to forecast the load values, beyond the
true load values, from the forecasting model itself, and also in
an online manner. As it is also experimentally validated, it is
advantageous to soften the ground truth targets, so as to regard
the knowledge of the model, that is captured in the model’s
prediction, to the final prediction. This knowledge encodes the
similarities of the input features, leading to better performance,
as compared to the conventional training where the model is
forced to merely match the ground truth, which may lead to
over-fitting. Therefore, in the proposed method, the soft targets
are computed as a combination of the true load values (ground
truth targets) and the forecasted values.

More specifically, for an input space X ⊆ ℜD and an output
space F ⊆ ℜd, we consider a neural network for load demand
forecasting, ϕ(· ;W) : X → F with weights W . Considering
a given input sample xi, i = 1, · · · , N, its corresponding
output of the network, ϕ(xi,W), and its ground truth vector
gi ∈ ℜd, the soft target si in the proposed training procedure
is computed as follows:

si = gi + λϕ(xi,W), (1)

where λ ∈ (0, 1) controls the relative importance of the
contributed loss components.

Thus, in this paper, instead of training with the ground truth
targets, we propose to train the forecasting model with the
soft target si ∈ ℜd, in order to ameliorate the generalization



ability of the model. We use a common loss function consid-
ering forecasting tasks for training the model, i.e., the Mean
Absolute Percentage Error (MAPE) loss.

Thus, in the proposed method, the loss, Losdf is formulated
as follows, using the computed soft targets:

Losdf =
1

N

N∑
i=1

∣∣∣∣si − ϕ(xi,W)

si

∣∣∣∣
(1)
=

1

N

N∑
i=1

∣∣∣∣gi + λϕ(xi,W)− ϕ(xi,W)

gi + λϕ(xi,W)

∣∣∣∣
=

1

N

N∑
i=1

∣∣∣∣gi − (1− λ)ϕ(xi,W)

gi + λϕ(xi,W)

∣∣∣∣. (2)

Then, the model can be trained using stochastic gradient
descent to minimize the loss:

∆W = −η
ϑLosdf

ϑW
, (3)

where η corresponds to the learning rate, while it is noted that
more advanced optimization methods can also be used, such
as Adam [26].

We should note that the similarities encoded in the soft
targets are dynamically learned during the training procedure
which is driven by the ground truth targets. Therefore, it
is expected that as the training progresses, more meaningful
similarities are revealed, and thus more reliable soft targets are
generated, which is also experimentally confirmed. Finally, it
should be noted that the proposed online distillation method
can also be realized in an offline fashion, however, this comes
with additional cost, as we previously described.

III. EXPERIMENTAL EVALUATION

A. Dataset

In this work, we propose an online self-distillation method
for tackling the ELDF task on the Greek Energy Market.
We use historical load data provided by the Greek Public
Power Corporation. We also use weather information (i.e.,
temperature) obtained from OpenWeather1. We use 6 years of
data for the model’s training, that is load and temperature data
for years 2012-2017, for validation load and temperature data
for the year 2018, while for testing we use data for the year
2019.

B. Evaluation Metrics

MAPE is used as evaluation metric. Each experiment is
repeated ten times, and we report the mean value of MAPE.
Furthermore, we provide the curves of mean MAPE through-
out the training epochs. Finally, training time in seconds is
also reported.

1https://openweathermap.org/

C. Model Architecture and Input Features

In this work, a simple and lightweight MLP model is used
since as it is stated in [16] simple models can accomplish
competitive performance as compared to more complex ones.
The model consisting of four layers, including the input and
output layers. Regarding the input features, we use several
inputs which are generally used in forecasting models [16],
[17]. More specifically, we use the load of previous day, load
of the day a week before, and load of the day a month before.
Additionally, we use weather information of the previous day,
of the day a week before, and of the day a month before, as
well as temperature of the Target Day (TD), i.e., the day whose
load demand we aim to predict. Finally, we utilize two binary
indicators for weekend and holiday in order to assist the model
capture the periodic and unordinary temporal characteristics
of the load time series, while an indicator of which day of
the week is the TD is also utilized. The input features are
described in Table I. As it will be explained in the subsequent
Section, different input features are utilized based on the setup.
The output layer consists of 24 neurons, for each of the 24
hours of the day whose load demand we want to predict. The
two intermediate layers consist of 1,000 and 400 neurons.

TABLE I
DESCRIPTION OF INPUT FEATURES

Abbreviation Dim. Description
Ld 24 Load of the day that is 1 day before TD
Lw 24 Load of the day that is 7 days before TD
Lm 24 Load of the day that is 28 days before TD
Td 24 Corresponding temperature for Ld

Tw 24 Corresponding temperature for Lw

Tm 24 Corresponding temperature for Lm

T 24 Corresponding temperature for TD
D 1 Indicator of which day of the week is the TD
W 1 Indicator of TD being weekend
H 1 Indicator of TD being holiday

D. Implementation Details

The OSDF method is implemented using the Pytorch frame-
work. The models are trained with Adam optimizer with an
initial learning rate of 0.003. The mini-batch is set to 64
samples. The parameter λ in eq. (1) is set to 0.001. The models
are trained on an NVIDIA GeForce GTX 1080 with 8GB of
GPU memory for 1,000 epochs.

E. Experimental Setup

Two sets of experiments are performed for evaluating the
proposed method. In the first set of experiments, the typical
setup followed in the relevant literature is implemented. In this
setup, all the previous load data before the TD are available.
Furthermore, weather information (i.e., temperature) of TD
is also available. In this case, all features presented in Table
I are utilized (i.e., 171 features). It should be noted, that
most of the methods of current literature make the assumption
that the weather information of TD is available since this
information can be acquired by solving another problem,
known as air temperature forecasting [27]. In the second set of



experiments we implement a fully realistic setup where there is
an information gap of 4 days before the TD, while temperature
of TD is also unavailable. More specifically, considering the
Greek Energy Market, previous week’s energy data are being
published each Thursday, creating a gap of ranging from four
to ten missing days. In this paper, we investigate the scenario
where there is a gap of four days. Therefore, in order to move
to the energy load demand forecasting of the TD, we have
to fill the aforementioned gap. To address this issue, we use
a single model to predict the load of missing days, and then
proceed to the final prediction of the TD. In this case, we
use all the features except for all the temperature information
(i.e., 75 features). The two implemented setups are illustrated
in Fig. 1.

Fig. 1. Description of the two setups regarding the accessibility of previous
load data and the weather information. In the typical setup, followed by the
literature, both weather information and all previous data are used for the
forecasting task. In the second fully realistic setup, the weather information
of the target day is not available, and also there is also a gap of four days
in the previous load data. Available load data are printed in green, while
unavailable load data are printed in red.

F. Experimental Results

In this Section we present the experimental results for eval-
uating the proposed online distillation method for the ELDF
task on the Greek Energy Market. We apply the proposed
online distillation method considering the two different setups,
and we compare the performance with the baseline training
process of training without distillation. Best results are printed
in bold.

First, the evaluation results in terms of MAPE considering
the typical setup are presented in Table II. As it is shown
the proposed method improves the baseline performance.
Furthermore, test MAPE throughout the training epochs for the
proposed OSDF method against the baseline training without
distillation is presented in Fig. 2, where the superiority of the
proposed method is illustrated.

Subsequently, in Table III and correspondingly in Fig. 3 the
evaluation results for the fully realistic setup are provided. As
it can be observed, the proposed OSDF method remarkably
ameliorates the baseline forecasting performance of training

without distillation. Furthermore, it can be observed that
forecasting performance considering the fully realistic scenario
is worse as compared to the typical and the partially realistic
ones, which is reasonable since in the last case there is
the information gap of the previous load data. In the recent
literature [16], have been proposed strategies for improving the
forecasting performance in such scenario, however we did not
proceeded in this direction since this is beyond the scope of
this work, which aims to propose and a novel online distillation
method.

TABLE II
MAPE (%) FOR THE PROPOSED OSDF METHOD AGAINST THE BASELINE
TRAINING WITHOUT DISTILLATION, CONSIDERING THE TYPICAL ELDF

SCENARIO.

Method MAPE (%)
W/o Distillation 1.975

OSDF 1.964

Fig. 2. Test MAPE throughout the training epochs for the proposed OSDF
method against the baseline training without distillation, considering the
typical ELDF scenario.

TABLE III
MAPE (%) FOR THE PROPOSED OSDF METHOD AGAINST THE BASELINE
TRAINING WITHOUT DISTILLATION, CONSIDERING THE FULLY REALISTIC

ELDF SCENARIO.

Method MAPE (%)
W/o Distillation 5.967

OSDF 5.754

It should finally be emphasized that the proposed online dis-
tillation method achieves to improve the performance without
affecting the training and inference time, since the additional
knowledge through the soft targets is obtained from the
model itself in an online manner. More specifically, 1 training
epoch without distillation considering the typical setup (with
input of 171 features) requires 0.286 sec, while the proposed
distillation method requires additionally 4.81×10−5 sec.

IV. CONCLUSIONS

In this paper, we proposed an online distillation method
in order to improve the baseline forecasting performance



Fig. 3. Test MAPE throughout the training epochs for the proposed OSDF
method against the baseline training without distillation, considering the fully
realistic ELDF scenario.

considering the Electric Load Demand Forecasting (ELDF)
problem on Greek energy market. The proposed OSDF method
is able to mine further knowledge beyond the ground truth
targets from the model itself and also in an online fashion.
The experimental evaluation, considering a typical and a fully
realistic setup validated the effectiveness of the proposed
method.
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