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Abstract—A fractional-order controller design, which is suitable
for implementing a cardiac pacemaker control system is intro-
duced in this work. The main offered benefit, with regards to
the corresponding convectional implementation, is the reduced
passive and active component count. The provided simulation
results confirm the aforementioned benefit and the performance
of the proposed structure.

Index Terms—fractional-order controllers, fractional-order
impedances, curve-fitting based approximation, cardiac pace-
maker systems

I. INTRODUCTION

The employment of fractional-order controllers offers the
capability of achieving more accurate shaping of the open-loop
frequency response for fulfilling the imposed specifications on
phase margin, settling time etc., than that offered by their con-
ventional integer-order counterparts [1]–[4]. This is originated
from the extra degrees of freedom, resulting from the variable
(non-integer) order of the integration and differentiation stages
of the controller. Significant research effort has been per-
formed for developing fractional-order controllers structures
through the utilization of the following general procedures:
a) by substituting the integer-order capacitors of conventional
controllers by suitable RC networks, which approximate the
behavior of the corresponding fractional-order capacitors [5],
and b) by approximating the transfer function of the controller
using an integer-order rational transfer function, resulting from
the employment of appropriate tools which approximate the
fractional-order Laplacian operator [6], [7]. The first one is
an easy procedure, in the sense that just only one design step
is required for deriving the structure of the fractional-order
controller.

A simple general structure for implementing fractional-
order proportional-integral-derivative (PIλDμ) controllers is
presented in this work, which is based on the first one of
the aforementioned procedures. The transfer function of the
controller is expressed as ratio of an integer and a non-integer
impedance, and the magnitude and phase frequency charac-
teristics of the fractional-order impedance are approximated
through the utilization of a curve-fitting based approximation
tool. The paper is organized as follows: the conventional
implementation is presented in Section II, while the proposed
one is introduced in Section III. The behavior of the proposed
controller, as well as of the controller-plant system, are eval-
uated through simulation results in Section IV.

II. PROPORTIONAL INTEGRAL DERIVATIVE CONTROLLER
FOR CARDIAC PACEMAKER

Assuming that 0 < λ < 1 and 0 < µ < 1 are the orders
of the integration and differentiation stages, with Ki and Kd

being their associated constants, then the transfer function of
a PIλDμ controller is given by (1)

C(s) = Kp+
Ki

sλ
+Kds

µ , (1)

with Kp being the constant associated with the proportional
stage.
Using Current Feedback Operational Amplifiers (CFOAs) as
active elements, a possible implementation of the transfer
function in (1) is depicted in Fig. 1.
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Fig. 1. Implementation of a PIλDμ controller using CFOAs as active elements.

Taking into account the properties of the terminals of the
CFOA given by the following formulas: υY = υX , υO =
υZ , iZ = iX , and iY = 0, as well as that the impedance of
fractional-order capacitor of order 0 < a < 1 and pseudo-
capacitance Cα (in F/s1−α) is given by the expression:
Z = 1/Cαs

α, it is obtained that this topology implements
the transfer function:

H(S) =
Rp

Rλ
+

1

RλCλsλ
+RµCµs

µ . (2)

Comparing (1)–(2) the following design equations are derived:

Kp =
Rp

Rλ
, Ki =

1

RλCλ
, Kd = RµCµ . (3)
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The approximation of the behavior of the fractional-order
capacitors in Fig. 1 can be performed through the utilization
of appropriately configured Foster or Cauer RC networks.
Following this and choosing among a variety of approximation
tools, such as the Oustaloup, Matsouda, continued fraction
expansion etc., the expression of the impedance of a fractional-
order capacitor is approximated by a nth-order rational integer-
order impedance function of the form:

Zapprox (s) = R
Bns

n +Bn−1s
n−1 + . . . +B1s+B0

sn +An−1sn−1 + . . . +A1s+A0
,

(4)
with Ai and Bi (i = 0 . . . n) being positive and real coef-
ficients and R being an arbitrary resistance. The impedance
function in (4) can be implemented by the Foster type-I
network in Fig. 2 and the associated design equations are
summarized in (5)

R0 = RBn Ri = R
ri
|pi|

Ci = R
1

ri
, (i = 1, 2...n) ,

(5)
with ri and pi being the residues and poles of (4) [8].
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Fig. 2. Foster type-I RC network for approximating the behavior of fractional-
order impedances.
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Fig. 3. Block diagram of the closed-loop system for the cardiac pacemaker.

Let us consider for example the closed-loop system of the
cardiac pacemaker demonstrated in Fig. 3, where C(s) is
the transfer function of the controller, P (s) is the product
of the transfer functions which describe the dynamics of the
pacemaker and the heart [9]–[11]. These are given by the
expressions in (6)–(7)

C(s) = 0.72594 +
0.1

s0.01
+ 0.1s0.9786 , (6)

P (s) =
1352

s(s+ 20.8)(s+ 8)
. (7)

Also, R(s) is the actual heart rate, while Y (s) is the desired
heart rate.
Assuming that Rλ = 10MΩ and Rµ = 100kΩ the values
of the pseudo-capacitances calculated using (3) are: Cλ =
1µF/s0.99 and Cµ = 1µF/s0.0214. Utilizing a 3rd–order
Oustaloup approximation in the range [10-1,102]rad/s, then

TABLE I
PASSIVE ELEMENTS VALUES FOR APPROXIMATING THE

FRACTIONAL-ORDER CAPACITORS IN FIG. 1.

Element Value
Cλ = 1µF/s0.99 Cµ = 1µF/s0.0214

R0 931 kΩ 1.15 kΩ
R1 36.5 kΩ 3.83 kΩ
R2 38.3 kΩ 169 kΩ
R3 39.2 kΩ 90.9 MΩ
C1 191 nF 11.5 µF
C2 8.45 µF 12.1 µF
C3 383 µF 1.07 µF

the values of passive elements of the network in Fig. 2
calculated using (5), rounded to the E96 series defined in IEC
60063, are summarized in Table I.

III. PROPOSED IMPLEMENTATION OF THE CONTROLLER

In order to overcome the obstacle of the increased number
of active and passive component count, an alternative topology
for realizing the transfer in (1) is introduced in this paper, and
is demonstrated in Fig. 4. The realized transfer function is
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Fig. 4. CFOA based proposed topology for implementing the transfer function
of a PIλDμ controller.

given by (8)

H(s) =
Z2

Z1
, (8)

where Z1 = R and Z2 = RC(s) or Z1 = R/C(s) and
Z2 = R, with R being a resistance of arbitrary value.
The choice of the impedance which will have a fractional-
order form depends on the behavior of the controller transfer
function at high frequencies. More specifically, Z2 will be
fractional in the case of capacitive behavior (i.e., the gain
is monotonically increased), while the opposite holds in the
case of inductive behavior. The last one is the case of the
controller described by (1) and, therefore Z1 = 1/RC(s) and
Z2 = R. The approximation of Z1 will be performed using the
Sanathanan-Koerner (SK) least square iterative method based
on the following steps [12].

• Obtain the frequency response data of Z1, within the
desired frequency range, using the MATLAB freqresp and
frd functions.

• Assuming an approximation order, obtain the state-space
model of the data using the command fitfrd, and then con-
vert this model to a transfer function using the MATLAB
command ss2tf.



TABLE II
PASSIVE ELEMENTS VALUES FOR APPROXIMATING THE

FRACTIONAL-ORDER IMPEDANCE IN FIG. 4

Element Value
R0 15.8 Ω
R1 187 Ω
R2 10.7 kΩ
R3 1.24 kΩ
C1 127 µF
C2 10.2 µF
C3 174 µF

TABLE III
COMPARISON OF THE THEORETICAL AND APPROXIMATED OPEN AND

CLOSED-LOOP PERFORMANCES OF THE SYSTEM IN FIG. 3

Parameter Value
Theoretical Approximation

Phase margin (o) 70.39 70.34
Gain crossover frequency (rad/s) 6.34 6.34

Rise time (ms) 308.1 236.4
Settling time (ms) 472.7 355.4

The obtained impedance transfer function will have the form
of (4) and, therefore, it is realizable by the topology in Fig. 2.

Following the aforementioned steps and considering the
same frequency range of interest as well as the same order
of approximation with in the previous case, the values of the
passive element of the RC network calculated using (5) and
assuming that R = 10kΩ are summarized in Table II.
The efficiency of the presented approximation is evaluated at
transfer function level through the MATLAB software and the
results are provided in Table III, where it is evident that a
satisfactory accuracy is achieved.

With regards to the achieved reduced circuit complexity, the
results of comparison are provided in Table IV, where they are
obvious the benefits offered by the proposed scheme.

IV. SIMULATION RESULTS

The behavior of the system will be evaluated using the
OrCAD PSpice simulator and the corresponding model of
the AD844 discrete component IC, which will be employed
as CFOA. The magnitude and phase frequency responses of
the controller are provided in Fig. 5, with the corresponding
theoretically predicted ones given by dashes, confirming the
accurate operation of the introduced scheme of the controller.

The responses of the controller-plant system are demon-
strated in Fig. 6. The closed-loop behavior of the system

TABLE IV
COMPARISON RESULTS OF THE CIRCUIT COMPLEXITY FOR THE

TOPOLOGIES IN FIGS. 1 AND 4

Parameter Value
Conventional (Fig. 1) Proposed (Fig. 4)

Number of CFOAs 3 1
Number of resistors 14 5

Number of capacitors 6 3
Matching requirement YES NO
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Fig. 5. Simulated gain and phase responses of the proposed controller.
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Fig. 6. Open-loop transfer function gain and phase responses of the system
controller-plant.

ou
tp

ut
 (V

)

0

0.2

0.4

0.6

0.8

1

1.2

time (s)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

 approx.
 sim.

ou
tp

ut
 (V

)

0.6

0.8

1.0

1.2

time (s)
0.5 1

Fig. 7. Step response of the system controller-plant.



TABLE V
SIMULATION RESULTS OF THE SYSTEM IN FIG. 3

Parameter Value
Approximation Simulation

Phase margin (o) 70.34 70.31
Gain crossover frequency (rad/s) 6.34 6.25

Rise time (ms) 236.4 236.2
Settling time (ms) 355.4 393.23
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Fig. 8. Monte-Carlo analysis results of the phase margin of the control system.

is evaluated by stimulating it by a step voltage and the
derived output waveform is provided in Fig. 7. The derived
performance simulation results for both open-loop and closed-
loop configuration are given in Table V, where it is readily
obtained that the system behaves in a satisfactory level of
accuracy.

The sensitivity of the system is evaluated using the Monte-
Carlo analysis tool offered by the Advanced Analysis tool of
the OrCAD PSpice suite, for N=500 runs and 10% random
tolerances of the passive elements values.
The obtained statistical plots of the phase margin and gain
crossover frequency are demonstrated in Figs. 8–9, where
the associated values of the standard deviation are 2.5o

and 0.38rad/s. Taking into account that the corresponding
nominal values are 70.31o and 6.25rad/s, it is concluded
that the proposed implementation offers reasonable sensitivity
characteristics.
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Fig. 9. Monte-Carlo analysis results of the gain crossover frequency of the
control system.

V. CONCLUSIONS

The general topology for implementing fractional-order
controllers, which is introduced in this work, offers design
versatility and flexibility because the transfer function of the
controller is considered, instead of the transfer functions of
the intermediate stages. Thanks to this concept, structures with
minimized circuit complexity are derived.
It must be also mentioned at this point that the presented proce-
dure is general, in the sense that it can be utilized for realizing
various types of non-integer controllers, filters, oscillators etc.
[13], [14]. Exploitation of relevant electronically adjustable
structures is the subject of ongoing research.
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