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Abstract—Hardware Trojan (HT) consists a chip-level 

viruses which aim to leak encrypted information or degrade the 
performance of the infected device. They are a modification to 
the original design of a circuit and consist of two components, 
trigger, and payload. The trigger is the mechanism that calls the 
payload under rare conditions. The payload mechanism is 
responsible for the type of attack the infected circuit will receive. 
HTs can be inserted into any phase of the Application-Specific 
Integrated Circuits (ASICs) production chain. They can stay 
stealthy and be undetected. HTs viruses are a crucial issue in the 
field of electronics, with the potential to become an outbreak in 
the next years. A major problem is that, at the academic and 
research level, there is a general lack of data, a lack of uninfected 
benchmark circuits, a lack of the small type of uninfected and 
infected circuits, and a large imbalance in the amount of data 
between uninfected and infected circuits. We used and designed 
these limited benchmark circuits for the Gate Level Netlist 
(GLN) phase with a professional tool and extracted area, power, 
and time analysis features. Through these features, we created a 
synthetic data creation tool known as GAINESIS through which 
we created our CAS-HtBase. CAS-HtBase aims to provide the 
researchers with a new HT database based on GLN analysis 
exclusively for ASICs. The format of CAS-HtBase allows the 
development of Machine Learning (ML) models without 
conversions to the database. 
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I. INTRODUCTION 
Hardware Trojans (HTs) viruses are one of the most 

important problems in hardware security. They are associated 
with unwanted changes that affect an Integrated Circuit (IC). 
They degrade the system, lead to destruction or and leak 
encrypted information through that. HTs can be inserted at 
any phase of IC development and remain inactive until 
activated by a rare activation condition. These viruses are 
stealthy with a wide range of mechanisms and sizes. The need 
for smaller and more sophisticated circuits is the reason for 
the existence of these viruses. Specifically, the design 
companies to reduce manufacturing costs, outsource to third-
party foundries the design of their circuits. There for 
corruption reasons, the original designs can be modified, with 
the insertion of HTs. 

HTs consists of two mechanisms. An activation 
mechanism is known as a trigger and an effective mechanism 
is known as a payload (Fig. 1). The trigger is activated under 
rare conditions like events or signals and the payload circuitry 
starts the attack on the infected circuit. These mechanisms are 
categorized into two activation logics, combinational and 
sequential. In combinational logic, the activation of HT on 
the infected circuit is based on the simultaneous existence of 
a set of rare events. While on sequential logic HTs require a 
series of rare events to activate. The type of attacks can be 
grouped into two main categories, general-purpose processor 

and cryptographic engine attacks. General-purpose processor 
attacks via the kernel, memory, or at lower levels of the 
processor, aim to the degradation or destruction of the 
infected system. While the cryptographic engine attacks aim 
to leakage of encrypted information through the infected 
system. 

As mentioned, HTs can be inserted at any phase of IC 
development and remain inactive until activated by a rare 
activation condition. Ideally, the specific viruses should be 
detected at each stage of the pre-silicon, verification, and 
post-silicon, the fabrication production phase of an IC. The 
disadvantage is the necessity of the golden model for the 
designed IC, in both phases. The information is not always 
obtainable, particularly for designs based on Intellectual 
Properties (IPs) provided by mediator manufacturers. HTs 
attacks can be categorized according to the stage and 
production phase of the circuit they target and infect. 
Specifically, they can be categorized for the pre-silicon stage 
in four categories, register transfer level (RTL), GLN, 
placement and routing (PNR), and graphic database system II 
(GDSII). While in fabrication and testing for the post-silicon 
stage (Fig. 2). Depending on the phase that the virus is 
designed to target, the attacker can have specific benefits. In 
pre-silicon attacks, the attacker through the virus can gain full 
access to design files and source code or hack computer-aided 
design tools and scripts to produce a modified IC 
representation without changing the source code. On the 
other hand, in post-silicon attacks which take place after tape-
out of the circuit, the attacker can add or delete components 
of the original IC through reverse engineering, IC metering, 
and layout geometry modification. 

The majority of studies dealing with the development of 
methodologies as countermeasures against HT focus on 
FPGA circuits in the post-silicon stage. There is limited 
information and published studies on ASICs and especially 
for the pre-silicon stage of them. Generally, ASICs are 
challenging due to the variety of design phases, especially in 
the pre-silicon stage. Also, ASICs need professional tools for 
the design of each phase.  

Studies relating to the post-silicon stage, develop 
approaches as countermeasures based on side-channel 
analysis features like area, power, and time. These 
approaches use techniques based on SCA features to detect 
alterations of physical characteristics like area, time, and 
power caused by HTs. If the original SCA values of an IC 
differ, then the circuit is infected. This is because when an 
HTs is partially or fully activated, the original infected circuit 
shows more interrupting activity compared to the original 
normal circuit because consumes extra power and has extra 
space [1][2][3][4][5][6]. Other approaches consist the 
simulated methodologies such as logic testing techniques. 
These techniques generate tests to activate HTs and propagate 



the HTs payload to principal outputs for comparison with the 
golden circuit. The difficulty with these methods is coming 
up with effective assays to activate HTs [7][8][9]. A new 
trend is the development of ML models for the classification 
of HT-infected and HT-free circuits. Specifically, these types 
of approaches developed ML-based classifiers for the 
classification of HTs in different phases of ICs development. 
ML-based approaches can be used for pre-silicon 
[10][11][12] as well and post-silicon stage [13][14][15]. 
Furthermore, there are auxiliary approaches the purpose of 
which is to enhance the effectiveness of the detection 
techniques against HTs for the pre-silicon [16][17][18] or 
post-silicon stage [19][20]. 

To develop countermeasures against HTs, the academic 
and research community needs data, from the original circuits 
and their modifications with HT viruses. The majority of the 
research in the field of HTs utilizes the Trust-HUB public 
library [21][22]. Trust-Hub is a circuit design public library 
that contains HT-free and HT-infected benchmarks. Trust-
HUB database has four major limitations, the benchmarks are 
designed for field-programmable gate arrays (FPGA) and not 
for ASIC. There is a general lack of data, a lack of uninfected 
benchmark circuits, and a lack of the small type of circuits. 
The majority of the benchmarks are large in size without 
diversity, which means they are easier to detect. But actually, 
most HT viruses are very small in size and difficult to detect.  

In this paper, we aim to introduce our new circuit design 
public database named as CAS-HtBase. Our database 
consists of the area and power analysis features from 
designed circuits at the GLN phase of the pre-silicon stage of 
ASICs. It is the first database exclusively for ASIC and 
specifically for the GLN phase. For the development of our 
CAS-HtBase used 18 HT-free and 923 HT-infected 
benchmarks. Also, the CAS-HtBase structure is designed for 
direct use in the development of ML-based. 

II. CAS-HTBASE METHODOLOGY 

A. Scheme of our Methodology 
The analysis pipeline, described in the following sections, 

can be divided into the following distinct steps: a collection 
of the benchmarks in Verilog format; design of the GLN 
phase of each benchmark with a professional circuit design 
tool; generation and extraction of area, power and time 
analysis features based on in-house scripts; examination and 
creation of the CAS-HtBase. An overview of the analysis 
pipeline is depicted in Fig. 3. 

B. Benchmarks Collection 
The first step in the creation of CAS-HtBase was the 

exploration of all the free databases and libraries and the 
collection of all available benchmarks. Our exploration was 
based on studies related to HTs viruses and they report the 
repositories they relied on to implement their research. 
Repositories such as ISCAS’ 85, ISCAS’ 89, and ITC’ 99 
were investigated. Most of them were not active as they were 
set up for older conferences and are no longer operational. 
Some others did not contain the benchmarks reported or their 
database and the majority of the benchmarks were blank. The  

 
Fig. 1. Hardware trojan structure [23]. 

 
Fig. 2. Overview of ASIC production chains [23]. 

only operational repository was Trust-HUB, from which we 
collected all our samples. As mentioned, after the exploration 
of the Trust-HUB library we found four major limitations, 
there is a general lack of data, a lack of uninfected benchmark 
circuits, and a lack of small types of circuits, and the 
benchmarks are designed for FPGA and not for ASIC. 

C. GLN Design 
The majority of the studies are focused on FPGA circuits 

at the post-silicon stage. In the international bibliography, 
there is limited information from published studies, on the 
development of countermeasures against HTs on ASICs and 
especially for the pre-silicon stage. This is due to the 
complexity of ASICs. Specifically, ASICs have a variety of 
design phases especially, on the pre-silicon stage. Also, they 
need professional tools for the design of the phases. For the 
reasons set out above we focused on the study of ASICs and 
especially on the phases of the pre-silicon stage. We studied 
several phases of the pre-silicon stage of ASICs and we aimed 
at the GLN phase. The GLN phase consists of one of the most 
critical phases in circuit production chains. Because the 
designers utilize Verilog to compose netlists that describe the 
logical functionality of the circuit, based on logic gates and 
cells according to a specific cell library. These steps can be 
easily highjacked, making GLN the most vulnerable step in 
circuit production, in terms of HT infection susceptibility. We 
designed the GLN phase of the original and infected 
benchmarks via the Design Compiler NXT tool in 
combination with the FreePDK45nm free circuit library. 

 



 
Fig. 3. Scheme of our CAS-HtBase methodology. 

D. Feature Extraction 
We designed in total 941 benchmarks, 18 original HT-

free, and 923 modified HT-infected benchmarks. For each 
designed benchmark we created three files with information 
about the area, power, and time analysis of each benchmark. 
The elements inside the files were in a log form. Which made 
the elements unusable and unreadable. To solve these 
problems, we developed our in-house Python scripts and we 
parsed the essential information for each benchmark. For 
each benchmark in total were collected 51 features. 
Specifically, 13 areas, 37 power, and 1-time analysis features 
(Table I). 

TABLE I. INITIAL 51 FEATURES 

Analysis Feature 
Area Number of ports 

Number of nets 
Number of cells 
Number of combinational cells 
Number of sequential cells 
Number of buf/inv 
Number of references 
Combinational area 
Buf/Inv area 
Non-combinational area 
Total cell area 

Power Cell Internal Power 
Net Switching Power 
Total Dynamic Power 
Cell Leakage Power  
Register Internal Power 
Register Switching Power 
Register Leakage Power 
Register Total Power 
Sequential Internal Power 
Sequential Switching Power 
Sequential Leakage Power 
Sequential Total Power 
Combinational Internal Power 
Combinational Switching Power 
Combinational Leakage Power 
Combinational Total Power 
Total Internal Power 
Total Switching Power 
Total Leakage Power 
Total Power 

Performance Slack 

TABLE II. FINAL 11 FEATURES 

Analysis Feature 
Area Number of ports 

Number of nets 
Number of cells 
Number of sequential cells 
Number of references 

Power Net Switching Power 
Total Dynamic Power 
Combinational Switching Power 
Combinational Total Power 
Total Switching Power 
Total Power 

E. Data Examination & Finalization 
The next step was the examination and finalization of the 

data. As mentioned, our initial dataset consisted of 51 GLN 
analysis features. First, we examined the data for missing 
values. Missing values can lead to wrong statistics during ML 
modeling and for this reason, it is mandatory to check them 
when a new database is going to be created. From the 
examination, it was occurred that there are no missing values 
in the dataset. Next, we examined the distribution of the 
dataset, but from the examination it was occurred that 40 of 
51 features consisted exclusively from zero values. As a 
result, from the 51 features remained 11 features. Of them, 5 
features are based on area analysis, and 6 features are based 
on power analysis (Table II).  

F. Lack of Data and GAINESIS tool 
Αs mentioned there is a general lack of data which also 

affected and our CAS-HtBase. In order to be able to solve this 
problem we developed our GAINESIS tool [23]. Our 
GAINESIS tool is a tool based on generative adversarial 
networks (GANs) [24], which is able to generate new 
synthetic data. For its development we relied on the 941 
benchmarks and the 11 features. Initially, based on these 
benchmarks we developed seven ML classifiers, gradient 
boosting (GB) [25], logistic regression (LR) [26], k-nearest 
neighbor (KNN) [27], support vector machine (SVM) [28], 
random forest (RF) [29], multilayer perceptron (MLP) [30] 
and extreme gradient boosting (XGB) [31]. The best 
performed classifier was the GB-based. Next, we used those 
benchmarks and we developed four GAN-based models, 
GAN, conditional generative adversarial network (CGAN) 
[32], Wasserstein generative adversarial network (WGAN) 
[33] and Wasserstein conditional adversarial network 
(WCGAN) [34]. Based on those models we created and 
compared three different in size synthetic datasets and 
developed new GB-based classifiers. The best performed 
synthetic data produced from our WCGAN-based model. Our 
new GB-based classifiers were developed based on a 
combination of the synthetic data with the original real data. 
In our final step we compared our initial classifier with our 
new classifiers. Our best performed new classifier managed 
to increase the performance compared with the initial 
classifier. The final results presented that the data generated 
by our GAINESIS tool was able to develop robust classifiers. 

III. RESULTS 

A. CAS-HtBase Distribution 
CAS-HtBase consists of HT-free and HT-infected 
benchmark circuits, synchronous and asynchronous from real 
and synthetic data. Specifically, HT-free benchmarks 
retrieved from the design of the 14 synchronous benchmarks: 
AES, B-15, ETHERNET MAC-10GE, MEM-CTRL, PIC-
16F84, RS-232, S1423, S13207, S15850, S35932, S38417, 
S38584, VGA-LCD &WB-CONMAX and 4 asynchronous: 
C2670, C3540, C5315, and C6288. In total 18 HT-free 

 



benchmark circuits. The HT-infected benchmark circuits 
consisted of modifications of the original HT-free 
benchmarks and are in total 923 HT-infected benchmarks. 
Specifically, the majority of the benchmarks came from the 
design of the S13207 circuit, with 15.4% (145 of 941), C2670 
circuit with 14.8% (139 of 941), and C6288/C5315 circuits 
with 11.8% respectively (222 of 941), S15850 circuit with 
11.5% (108 of 941) and C3540 circuit with 10.6% (100 of 
941). S1423 and S35932 circuits consist of 9.2% of our 
database with 91 and 65 benchmarks respectively. The 
minority of the benchmarks coming from the circuits: AES 
with 2.3% (22 of 941), RS232 with 2% (20 of 941), B-
15/ETHERNET MAC-10GE with 0.5% respectively (10 of 
941), PIC-16F84/S38417/S38584/WB-CONMAX with 0.4% 
respectively (16 of 941) and MEM-CTRL/VGA-LCD with 
0.2% per circuit (4 of 941) (Fig. 4). 
 

 
 
Fig. 4. CAS-HtBase benchmark distribution. 
 

 
 

Fig.  5. CAS-HtBase, “GAINESIS” menu. 
 
 

 
Fig. 6. CAS-HtBase, “DATASET” menu. 
 
 

B. CAS-HtBase and GAINESIS  
Interested users can download our CAS-HtBase in its 

original form through our laboratory's website or use the 
GAINESIS tool and create the amount of data they need. Our 
tool consists of three menus, home page, synthesis-
GAINESIS and dataset menu. Home page menu provides 
general information about our laboratory. The GAINESIS 
menu is used to produce new synthetic data based on our 
original CAS-HtBase. Through this menu the users can 
choose the output directory of the new synthetic data. Next, 
they can specify the number of the new synthetic data which 
they want to create as well the type of the data, infected or 
uninfected and to proceed to synthesis of the new data (Fig.  
5). Finally, through our dataset menu the users can see more 
information about our original CAS-HtBase or download it 
to the initial form (Fig. 6). 

C. CAS-HtBase Format 
An important factor that we considered when we designed 

our CAS-HtBase was to be used directly without conversions 
for the development of statistical measurements and ML 
models. CAS-HtBase format is to comma-separated values 
(CSV) file, to be able for the users to import it and read it 
directly as a data frame. CAS-HtBase consists of 13 elements, 
circuit name, and circuit label: zero and one (0 - 1). The zero 
number indicates that the benchmark is HT-infected and one 
number that is HT-free. The other features are the five areas 
and six power analysis features for each benchmark. We 
added as an element the circuit label to be able the users to 
develop supervised or unsupervised ML models, or to use 
them as an extra feature to their supervised models. 

IV. CONCLUSION 
A major problem in the research and academic 

community dealing with HT viruses is the general lack of 
data, the lack of uninfected reference circuits, the lack of 
small uninfected and infected circuits, and the large 
imbalance in the amount of data between uninfected and 
infected circuits. The work becomes even more difficult 
combined with the limited information and published studies 
for the ASICs and especially for the pre-silicon stage of them. 
For these reasons, we designed these limited benchmark 
circuits for the GLN phase to create a database exclusively 
for ASICs. 

CAS-HtBase has been designed to accommodate all the 
experimental benchmark circuits, aiming at the creation of a 
holistic database consisting of features from all the pre-
silicon phases of the design of ASICs. The main purpose of 
this database is to be studied and used by the research and 
academic community for further study of HTs viruses in 
ASICs. This attempt consists of the initial version of the 
holistic CAS-HtBase and is composed exclusively of GLN 
analysis features. In total CAS-HtBase consists of 941 
benchmarks, 18 HT-free and 923 HT-infected. 4 
Asynchronous and 14 synchronous benchmark circuits and 
11 GLN features, 5 area & 6 power analysis features.  

CAS-HtBase format is .csv for direct usage for statistical 
measurements and ML-based models’ development. Through 
our CAS-HtBase in combination with our GAINESIS tool we 
can be alleviate the imbalance problem, the general lack 
problem and the lack of uninfected circuits problem for GLN-
phase, but not the lack of small type of circuits.  



CAS-HtBase and GAINESIS tool can be found on our 
site: https://caslab.e-ce.uth.gr/ToolsandDatabases.html. Our 
CAS-HtBase and our tool are free with open access to the 
public and can be used by academics – researchers or the 
general public. 

In the future we will create our small-in-size circuits, 
aiming to solve the lack of diversity that is present in free 
benchmark circuits, and through these, we will upgrade our 
CAS-HtBase. Also, we will focus to create databases for 
other pre-silicon IC production phases such as RTL, PNR, 
and GDSII. The main aim is to provide a holistic generative 
database for the pre-silicon stage of the ICs production chain. 
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