
979-8-3503-9958-5/22/$31.00 ©2022 IEEE

CAS-HtBase: a new database for the study of HTs at
the pre-silicon stage of ASICs

Konstantinos G Liakos
Department of Electrical and Computer Engineering

School of Engineering, University of Thessaly
Volos, Greece

kliakos@e-ce.uth.gr

Fotis C Plessas
Department of Electrical and Computer Engineering

School of Engineering, University of Thessaly
Volos, Greece

fplessas@e-ce.uth.gr

Abstract—Hardware Trojan (HT) consists a chip-level

viruses which aim to leak encrypted information or degrade the
performance of the infected device. They are a modification to
the original design of a circuit and consist of two components,
trigger, and payload. The trigger is the mechanism that calls the
payload under rare conditions. The payload mechanism is
responsible for the type of attack the infected circuit will receive.
HTs can be inserted into any phase of the Application-Specific
Integrated Circuits (ASICs) production chain. They can stay
stealthy and be undetected. HTs viruses are a crucial issue in the
field of electronics, with the potential to become an outbreak in
the next years. A major problem is that, at the academic and
research level, there is a general lack of data, a lack of uninfected
benchmark circuits, a lack of the small type of uninfected and
infected circuits, and a large imbalance in the amount of data
between uninfected and infected circuits. We used and designed
these limited benchmark circuits for the Gate Level Netlist
(GLN) phase with a professional tool and extracted area, power,
and time analysis features. Through these features, we created a
synthetic data creation tool known as GAINESIS through which
we created our CAS-HtBase. CAS-HtBase aims to provide the
researchers with a new HT database based on GLN analysis
exclusively for ASICs. The format of CAS-HtBase allows the
development of Machine Learning (ML) models without
conversions to the database.

Keywords—database, application-specific integrated circuits,
hardware trojan, gate-level netlist, machine learning models

I. INTRODUCTION
Hardware Trojans (HTs) viruses are one of the most

important problems in hardware security. They are associated
with unwanted changes that affect an Integrated Circuit (IC).
They degrade the system, lead to destruction or and leak
encrypted information through that. HTs can be inserted at
any phase of IC development and remain inactive until
activated by a rare activation condition. These viruses are
stealthy with a wide range of mechanisms and sizes. The need
for smaller and more sophisticated circuits is the reason for
the existence of these viruses. Specifically, the design
companies to reduce manufacturing costs, outsource to third-
party foundries the design of their circuits. There for
corruption reasons, the original designs can be modified, with
the insertion of HTs.

HTs consists of two mechanisms. An activation
mechanism is known as a trigger and an effective mechanism
is known as a payload (Fig. 1). The trigger is activated under
rare conditions like events or signals and the payload circuitry
starts the attack on the infected circuit. These mechanisms are
categorized into two activation logics, combinational and
sequential. In combinational logic, the activation of HT on
the infected circuit is based on the simultaneous existence of
a set of rare events. While on sequential logic HTs require a
series of rare events to activate. The type of attacks can be
grouped into two main categories, general-purpose processor

and cryptographic engine attacks. General-purpose processor
attacks via the kernel, memory, or at lower levels of the
processor, aim to the degradation or destruction of the
infected system. While the cryptographic engine attacks aim
to leakage of encrypted information through the infected
system.

As mentioned, HTs can be inserted at any phase of IC
development and remain inactive until activated by a rare
activation condition. Ideally, the specific viruses should be
detected at each stage of the pre-silicon, verification, and
post-silicon, the fabrication production phase of an IC. The
disadvantage is the necessity of the golden model for the
designed IC, in both phases. The information is not always
obtainable, particularly for designs based on Intellectual
Properties (IPs) provided by mediator manufacturers. HTs
attacks can be categorized according to the stage and
production phase of the circuit they target and infect.
Specifically, they can be categorized for the pre-silicon stage
in four categories, register transfer level (RTL), GLN,
placement and routing (PNR), and graphic database system II
(GDSII). While in fabrication and testing for the post-silicon
stage (Fig. 2). Depending on the phase that the virus is
designed to target, the attacker can have specific benefits. In
pre-silicon attacks, the attacker through the virus can gain full
access to design files and source code or hack computer-aided
design tools and scripts to produce a modified IC
representation without changing the source code. On the
other hand, in post-silicon attacks which take place after tape-
out of the circuit, the attacker can add or delete components
of the original IC through reverse engineering, IC metering,
and layout geometry modification.

The majority of studies dealing with the development of
methodologies as countermeasures against HT focus on
FPGA circuits in the post-silicon stage. There is limited
information and published studies on ASICs and especially
for the pre-silicon stage of them. Generally, ASICs are
challenging due to the variety of design phases, especially in
the pre-silicon stage. Also, ASICs need professional tools for
the design of each phase.

Studies relating to the post-silicon stage, develop
approaches as countermeasures based on side-channel
analysis features like area, power, and time. These
approaches use techniques based on SCA features to detect
alterations of physical characteristics like area, time, and
power caused by HTs. If the original SCA values of an IC
differ, then the circuit is infected. This is because when an
HTs is partially or fully activated, the original infected circuit
shows more interrupting activity compared to the original
normal circuit because consumes extra power and has extra
space [1][2][3][4][5][6]. Other approaches consist the
simulated methodologies such as logic testing techniques.
These techniques generate tests to activate HTs and propagate

the HTs payload to principal outputs for comparison with the
golden circuit. The difficulty with these methods is coming
up with effective assays to activate HTs [7][8][9]. A new
trend is the development of ML models for the classification
of HT-infected and HT-free circuits. Specifically, these types
of approaches developed ML-based classifiers for the
classification of HTs in different phases of ICs development.
ML-based approaches can be used for pre-silicon
[10][11][12] as well and post-silicon stage [13][14][15].
Furthermore, there are auxiliary approaches the purpose of
which is to enhance the effectiveness of the detection
techniques against HTs for the pre-silicon [16][17][18] or
post-silicon stage [19][20].

To develop countermeasures against HTs, the academic
and research community needs data, from the original circuits
and their modifications with HT viruses. The majority of the
research in the field of HTs utilizes the Trust-HUB public
library [21][22]. Trust-Hub is a circuit design public library
that contains HT-free and HT-infected benchmarks. Trust-
HUB database has four major limitations, the benchmarks are
designed for field-programmable gate arrays (FPGA) and not
for ASIC. There is a general lack of data, a lack of uninfected
benchmark circuits, and a lack of the small type of circuits.
The majority of the benchmarks are large in size without
diversity, which means they are easier to detect. But actually,
most HT viruses are very small in size and difficult to detect.

In this paper, we aim to introduce our new circuit design
public database named as CAS-HtBase. Our database
consists of the area and power analysis features from
designed circuits at the GLN phase of the pre-silicon stage of
ASICs. It is the first database exclusively for ASIC and
specifically for the GLN phase. For the development of our
CAS-HtBase used 18 HT-free and 923 HT-infected
benchmarks. Also, the CAS-HtBase structure is designed for
direct use in the development of ML-based.

II. CAS-HTBASE METHODOLOGY

A. Scheme of our Methodology
The analysis pipeline, described in the following sections,

can be divided into the following distinct steps: a collection
of the benchmarks in Verilog format; design of the GLN
phase of each benchmark with a professional circuit design
tool; generation and extraction of area, power and time
analysis features based on in-house scripts; examination and
creation of the CAS-HtBase. An overview of the analysis
pipeline is depicted in Fig. 3.

B. Benchmarks Collection
The first step in the creation of CAS-HtBase was the

exploration of all the free databases and libraries and the
collection of all available benchmarks. Our exploration was
based on studies related to HTs viruses and they report the
repositories they relied on to implement their research.
Repositories such as ISCAS’ 85, ISCAS’ 89, and ITC’ 99
were investigated. Most of them were not active as they were
set up for older conferences and are no longer operational.
Some others did not contain the benchmarks reported or their
database and the majority of the benchmarks were blank. The

Fig. 1. Hardware trojan structure [23].

Fig. 2. Overview of ASIC production chains [23].

only operational repository was Trust-HUB, from which we
collected all our samples. As mentioned, after the exploration
of the Trust-HUB library we found four major limitations,
there is a general lack of data, a lack of uninfected benchmark
circuits, and a lack of small types of circuits, and the
benchmarks are designed for FPGA and not for ASIC.

C. GLN Design
The majority of the studies are focused on FPGA circuits

at the post-silicon stage. In the international bibliography,
there is limited information from published studies, on the
development of countermeasures against HTs on ASICs and
especially for the pre-silicon stage. This is due to the
complexity of ASICs. Specifically, ASICs have a variety of
design phases especially, on the pre-silicon stage. Also, they
need professional tools for the design of the phases. For the
reasons set out above we focused on the study of ASICs and
especially on the phases of the pre-silicon stage. We studied
several phases of the pre-silicon stage of ASICs and we aimed
at the GLN phase. The GLN phase consists of one of the most
critical phases in circuit production chains. Because the
designers utilize Verilog to compose netlists that describe the
logical functionality of the circuit, based on logic gates and
cells according to a specific cell library. These steps can be
easily highjacked, making GLN the most vulnerable step in
circuit production, in terms of HT infection susceptibility. We
designed the GLN phase of the original and infected
benchmarks via the Design Compiler NXT tool in
combination with the FreePDK45nm free circuit library.

Fig. 3. Scheme of our CAS-HtBase methodology.

D. Feature Extraction
We designed in total 941 benchmarks, 18 original HT-

free, and 923 modified HT-infected benchmarks. For each
designed benchmark we created three files with information
about the area, power, and time analysis of each benchmark.
The elements inside the files were in a log form. Which made
the elements unusable and unreadable. To solve these
problems, we developed our in-house Python scripts and we
parsed the essential information for each benchmark. For
each benchmark in total were collected 51 features.
Specifically, 13 areas, 37 power, and 1-time analysis features
(Table I).

TABLE I. INITIAL 51 FEATURES

Analysis Feature
Area Number of ports

Number of nets
Number of cells
Number of combinational cells
Number of sequential cells
Number of buf/inv
Number of references
Combinational area
Buf/Inv area
Non-combinational area
Total cell area

Power Cell Internal Power
Net Switching Power
Total Dynamic Power
Cell Leakage Power
Register Internal Power
Register Switching Power
Register Leakage Power
Register Total Power
Sequential Internal Power
Sequential Switching Power
Sequential Leakage Power
Sequential Total Power
Combinational Internal Power
Combinational Switching Power
Combinational Leakage Power
Combinational Total Power
Total Internal Power
Total Switching Power
Total Leakage Power
Total Power

Performance Slack

TABLE II. FINAL 11 FEATURES

Analysis Feature
Area Number of ports

Number of nets
Number of cells
Number of sequential cells
Number of references

Power Net Switching Power
Total Dynamic Power
Combinational Switching Power
Combinational Total Power
Total Switching Power
Total Power

E. Data Examination & Finalization
The next step was the examination and finalization of the

data. As mentioned, our initial dataset consisted of 51 GLN
analysis features. First, we examined the data for missing
values. Missing values can lead to wrong statistics during ML
modeling and for this reason, it is mandatory to check them
when a new database is going to be created. From the
examination, it was occurred that there are no missing values
in the dataset. Next, we examined the distribution of the
dataset, but from the examination it was occurred that 40 of
51 features consisted exclusively from zero values. As a
result, from the 51 features remained 11 features. Of them, 5
features are based on area analysis, and 6 features are based
on power analysis (Table II).

F. Lack of Data and GAINESIS tool
Αs mentioned there is a general lack of data which also

affected and our CAS-HtBase. In order to be able to solve this
problem we developed our GAINESIS tool [23]. Our
GAINESIS tool is a tool based on generative adversarial
networks (GANs) [24], which is able to generate new
synthetic data. For its development we relied on the 941
benchmarks and the 11 features. Initially, based on these
benchmarks we developed seven ML classifiers, gradient
boosting (GB) [25], logistic regression (LR) [26], k-nearest
neighbor (KNN) [27], support vector machine (SVM) [28],
random forest (RF) [29], multilayer perceptron (MLP) [30]
and extreme gradient boosting (XGB) [31]. The best
performed classifier was the GB-based. Next, we used those
benchmarks and we developed four GAN-based models,
GAN, conditional generative adversarial network (CGAN)
[32], Wasserstein generative adversarial network (WGAN)
[33] and Wasserstein conditional adversarial network
(WCGAN) [34]. Based on those models we created and
compared three different in size synthetic datasets and
developed new GB-based classifiers. The best performed
synthetic data produced from our WCGAN-based model. Our
new GB-based classifiers were developed based on a
combination of the synthetic data with the original real data.
In our final step we compared our initial classifier with our
new classifiers. Our best performed new classifier managed
to increase the performance compared with the initial
classifier. The final results presented that the data generated
by our GAINESIS tool was able to develop robust classifiers.

III. RESULTS

A. CAS-HtBase Distribution
CAS-HtBase consists of HT-free and HT-infected
benchmark circuits, synchronous and asynchronous from real
and synthetic data. Specifically, HT-free benchmarks
retrieved from the design of the 14 synchronous benchmarks:
AES, B-15, ETHERNET MAC-10GE, MEM-CTRL, PIC-
16F84, RS-232, S1423, S13207, S15850, S35932, S38417,
S38584, VGA-LCD &WB-CONMAX and 4 asynchronous:
C2670, C3540, C5315, and C6288. In total 18 HT-free

benchmark circuits. The HT-infected benchmark circuits
consisted of modifications of the original HT-free
benchmarks and are in total 923 HT-infected benchmarks.
Specifically, the majority of the benchmarks came from the
design of the S13207 circuit, with 15.4% (145 of 941), C2670
circuit with 14.8% (139 of 941), and C6288/C5315 circuits
with 11.8% respectively (222 of 941), S15850 circuit with
11.5% (108 of 941) and C3540 circuit with 10.6% (100 of
941). S1423 and S35932 circuits consist of 9.2% of our
database with 91 and 65 benchmarks respectively. The
minority of the benchmarks coming from the circuits: AES
with 2.3% (22 of 941), RS232 with 2% (20 of 941), B-
15/ETHERNET MAC-10GE with 0.5% respectively (10 of
941), PIC-16F84/S38417/S38584/WB-CONMAX with 0.4%
respectively (16 of 941) and MEM-CTRL/VGA-LCD with
0.2% per circuit (4 of 941) (Fig. 4).

Fig. 4. CAS-HtBase benchmark distribution.

Fig. 5. CAS-HtBase, “GAINESIS” menu.

Fig. 6. CAS-HtBase, “DATASET” menu.

B. CAS-HtBase and GAINESIS
Interested users can download our CAS-HtBase in its

original form through our laboratory's website or use the
GAINESIS tool and create the amount of data they need. Our
tool consists of three menus, home page, synthesis-
GAINESIS and dataset menu. Home page menu provides
general information about our laboratory. The GAINESIS
menu is used to produce new synthetic data based on our
original CAS-HtBase. Through this menu the users can
choose the output directory of the new synthetic data. Next,
they can specify the number of the new synthetic data which
they want to create as well the type of the data, infected or
uninfected and to proceed to synthesis of the new data (Fig.
5). Finally, through our dataset menu the users can see more
information about our original CAS-HtBase or download it
to the initial form (Fig. 6).

C. CAS-HtBase Format
An important factor that we considered when we designed

our CAS-HtBase was to be used directly without conversions
for the development of statistical measurements and ML
models. CAS-HtBase format is to comma-separated values
(CSV) file, to be able for the users to import it and read it
directly as a data frame. CAS-HtBase consists of 13 elements,
circuit name, and circuit label: zero and one (0 - 1). The zero
number indicates that the benchmark is HT-infected and one
number that is HT-free. The other features are the five areas
and six power analysis features for each benchmark. We
added as an element the circuit label to be able the users to
develop supervised or unsupervised ML models, or to use
them as an extra feature to their supervised models.

IV. CONCLUSION
A major problem in the research and academic

community dealing with HT viruses is the general lack of
data, the lack of uninfected reference circuits, the lack of
small uninfected and infected circuits, and the large
imbalance in the amount of data between uninfected and
infected circuits. The work becomes even more difficult
combined with the limited information and published studies
for the ASICs and especially for the pre-silicon stage of them.
For these reasons, we designed these limited benchmark
circuits for the GLN phase to create a database exclusively
for ASICs.

CAS-HtBase has been designed to accommodate all the
experimental benchmark circuits, aiming at the creation of a
holistic database consisting of features from all the pre-
silicon phases of the design of ASICs. The main purpose of
this database is to be studied and used by the research and
academic community for further study of HTs viruses in
ASICs. This attempt consists of the initial version of the
holistic CAS-HtBase and is composed exclusively of GLN
analysis features. In total CAS-HtBase consists of 941
benchmarks, 18 HT-free and 923 HT-infected. 4
Asynchronous and 14 synchronous benchmark circuits and
11 GLN features, 5 area & 6 power analysis features.

CAS-HtBase format is .csv for direct usage for statistical
measurements and ML-based models’ development. Through
our CAS-HtBase in combination with our GAINESIS tool we
can be alleviate the imbalance problem, the general lack
problem and the lack of uninfected circuits problem for GLN-
phase, but not the lack of small type of circuits.

CAS-HtBase and GAINESIS tool can be found on our
site: https://caslab.e-ce.uth.gr/ToolsandDatabases.html. Our
CAS-HtBase and our tool are free with open access to the
public and can be used by academics – researchers or the
general public.

In the future we will create our small-in-size circuits,
aiming to solve the lack of diversity that is present in free
benchmark circuits, and through these, we will upgrade our
CAS-HtBase. Also, we will focus to create databases for
other pre-silicon IC production phases such as RTL, PNR,
and GDSII. The main aim is to provide a holistic generative
database for the pre-silicon stage of the ICs production chain.

REFERENCES
[1] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar,

“Trojan detection using IC fingerprinting,” 2007, doi:
10.1109/SP.2007.36.

[2] J. Aarestad, D. Acharyya, R. Rad, and J. Plusquellic, “Detecting trojans
through leakage current analysis using multiple supply pad IDDQs,”
IEEE Trans. Inf. Forensics Secur., 2010, doi:
10.1109/TIFS.2010.2061228.

[3] R. Rad, J. Plusquellic, and M. Tehranipoor, “A sensitivity analysis of
power signal methods for detecting hardware trojans under real process
and environmental conditions,” IEEE Trans. Very Large Scale Integr.
Syst., 2010, doi: 10.1109/TVLSI.2009.2029117.

[4] F. Koushanfar and A. Mirhoseini, “A unified framework for
multimodal submodular integrated circuits trojan detection,” IEEE
Trans. Inf. Forensics Secur., 2011, doi: 10.1109/TIFS.2010.2096811.

[5] C. Lamech, R. M. Rad, M. Tehranipoor, and J. Plusquellic, “An
experimental analysis of power and delay signal-to-noise requirements
for detecting trojans and methods for achieving the required detection
sensitivities,” IEEE Trans. Inf. Forensics Secur., 2011, doi:
10.1109/TIFS.2011.2136339.

[6] K. Xiao, X. Zhang, and M. Tehranipoor, “A clock sweeping technique
for detecting hardware trojans impacting circuits delay,” IEEE Des.
Test, vol. 30, no. 2, pp. 26–34, 2013, doi:
10.1109/MDAT.2013.2249555.

[7] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia,
“MERO: A statistical approach for hardware Trojan detection,” 2009,
doi: 10.1007/978-3-642-04138-9_28.

[8] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI:
Identification of stealthy malicious logic using boolean functional
analysis,” 2013, doi: 10.1145/2508859.2516654.

[9] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “VeriTrust: Verification
for hardware trust,” IEEE Trans. Comput. Des. Integr. Circuits Syst.,
2015, doi: 10.1109/TCAD.2015.2422836.

[10] K. Hasegawa, M. Oya, M. Yanagisawa, and N. Togawa, “Hardware
Trojans classification for gate-level netlists based on machine
learning,” 2016, doi: 10.1109/IOLTS.2016.7604700.

[11] K. G. Liakos, G. K. Georgakilas, and F. C. Plessas, “Hardware Trojan
Classification at Gate-level Netlists based on Area and Power Machine
Learning Analysis,” 2021, doi: 10.1109/ISVLSI51109.2021.00081.

[12] S. P. Moustakidis, K. G. Liakos, G. K. Georgakilas, and N.
Sketopoulos, “A novel holistic approach for hardware trojan detection
powered by deep learning (HERO),” Attract’20. 2020.

[13] C. Bao, D. Forte, and A. Srivastava, “On application of one-class SVM
to reverse engineering-based hardware Trojan detection,” 2014, doi:
10.1109/ISQED.2014.6783305.

[14] C. Bao, Y. Xie, Y. Liu, and A. Srivastava, “Reverse engineering-based
hardware trojan detection,” in The Hardware Trojan War: Attacks,
Myths, and Defenses, 2017.

[15] M. Xue, J. Wang, and A. Hux, “An enhanced classification-based
golden chips-free hardware Trojan detection technique,” 2017, doi:
10.1109/AsianHOST.2016.7835553.

[16] H. Mardani Kamali, K. Zamiri Azar, K. Gaj, H. Homayoun, and A.
Sasan, “LUT-Lock: A novel LUT-based logic obfuscation for FPGA-
Bitstream and ASIC-hardware protection,” 2018, doi:
10.1109/ISVLSI.2018.00080.

[17] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A Novel Technique
for Improving Hardware Trojan Detection and Reducing Trojan
Activation Time,” IEEE Trans. Very Large Scale Integr. Syst., vol. 20,
no. 1, pp. 112–125, Jan. 2012, doi: 10.1109/TVLSI.2010.2093547.

[18] B. Khaleghi, A. Ahari, H. Asadi, and S. Bayat-Sarmadi, “FPGA-based
protection scheme against hardware trojan horse insertion using
dummy logic,” IEEE Embed. Syst. Lett., vol. 7, no. 2, pp. 46–50, 2015,
doi: 10.1109/LES.2015.2406791.

[19] X. T. Ngo, J. L. Danger, S. Guilley, Z. Najm, and O. Emery, “Hardware
property checker for run-time Hardware Trojan detection,” 2015 Eur.
Conf. Circuit Theory Des. ECCTD 2015, pp. 1–4, 2015, doi:
10.1109/ECCTD.2015.7300085.

[20] F. Khalid, S. R. Hasan, O. Hasan, and F. Awwad, “Runtime hardware
Trojan monitors through modeling burst mode communication using
formal verification,” Integration, vol. 61, no. October 2017, pp. 62–76,
2018, doi: 10.1016/j.vlsi.2017.11.003.

[21] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” 2013, doi:
10.1109/ICCD.2013.6657085.

[22] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of Hardware Trojans and Maliciously Affected
Circuits,” J. Hardw. Syst. Secur., 2017, doi: 10.1007/s41635-017-
0001-6.

[23] K. G. Liakos, G. K. Georgakilas, F. C. Plessas, and P. Kitsos,
“GAINESIS: Generative Artificial Intelligence NEtlists SynthesIS,”
Electron., vol. 11, no. 2, 2022, doi: 10.3390/electronics11020245.

[24] I. J. Goodfellow et al., “Generative adversarial nets,” 2014, doi:
10.3156/jsoft.29.5_177_2.

[25] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Stat., 2001, doi: 10.1214/aos/1013203451.

[26] J. Berkson, “Application of the Logistic Function to Bio-Assay,” J. Am.
Stat. Assoc., 1944, doi: 10.1080/01621459.1944.10500699.

[27] T. M. Cover, “Estimation by the Nearest Neighbor Rule,” IEEE Trans.
Inf. Theory, 1968, doi: 10.1109/TIT.1968.1054098.

[28] C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn.,
1995, doi: 10.1023/A:1022627411411.

[29] L. Breiman, “Random forests,” Mach. Learn., 2001, doi:
10.1023/A:1010933404324.

[30] S. K. Pal and S. Mitra, “Multilayer Perceptron, Fuzzy Sets, and
Classification,” IEEE Trans. Neural Networks, 1992, doi:
10.1109/72.159058.

[31] T. Chen and C. Guestrin, “XGBoost,” 2016, doi:
10.1145/2939672.2939785.

[32] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets
Mehdi,” arXiv1411.1784v1 [cs.LG] 6 Nov 2014 Cond., 2018.

[33] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” 2017.

[34] S. Qin and T. Jiang, “Improved Wasserstein conditional generative
adversarial network speech enhancement,” Eurasip J. Wirel. Commun.
Netw., 2018, doi: 10.1186/s13638-018-1196-0.

https://caslab.e-ce.uth.gr/ToolsandDatabases.html

	Abstract—Hardware Trojan (HT) consists a chip-level viruses which aim to leak encrypted information or degrade the performance of the infected device. They are a modification to the original design of a circuit and consist of two components, trigger, ...
	I. Introduction
	II. CAS-HtBase Methodology
	A. Scheme of our Methodology
	B. Benchmarks Collection
	C. GLN Design
	D. Feature Extraction
	E. Data Examination & Finalization
	F. Lack of Data and GAINESIS tool

	III. Results
	A. CAS-HtBase Distribution
	B. CAS-HtBase and GAINESIS
	C. CAS-HtBase Format

	IV. Conclusion
	References

