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Abstract—In this paper, a method for beehive monitoring is 

proposed that is focused on the spectral analysis of the bees’ 

sound. Towards that direction, a system was implemented that 

allowed for constant acoustic monitoring and the creation of a 

database of audio recordings. Also, an experiment was 

performed to simulate two different states of the beehive’s 

colony. One healthy state with the queen bee present and normal 

bee activity and one state where the queen bee is removed. The 

two different states are being analyzed in terms of their spectral 

content to establish their characteristic frequencies. Also, a set 

of features are extracted, the Mel Frequency Cepstral 

Coefficients (MFCC), and their distribution on each mel band is 

examined for a set of data taken from multiple days on two 

different beehives. By comparing these distributions, it was 

possible to make a clear distinction between these two states for 

both hives and to detect the state of the beehive based on half-

hour measurements. 
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I. INTRODUCTION 

The bee is considered one of the most important insects for 
humans and the ecosystem, mainly because they play a key 
role in plant pollination and due to their honey and its 
byproducts. They are essential for the preservation and 
prosperity of the ecosystem as well as for agriculture. In the 
recent years, an increase in bee mortality has been 
documented that is linked to the Colony Collapse Syndrome 
(CCD), associated with a sudden disappearance of the 
honeybees from their hive [1]. There are multiple factors 
causing this syndrome with some of the most common being 
pests and diseases, beekeeping practices and breeding, 
climatic change, agricultural and the use of pesticides [2]. This 
decline in bee numbers has serious ecological and economic 
consequences that can affect the stability of the ecosystem, the 
maintenance of wild plant diversity, crop production, food 
security and human welfare [3]. For that matter, the need for 
intensive monitoring arises to protect the bee population and 
prevent these negative effects. 

A vast variety of methods can be found in literature for 
monitoring the colony of a beehive. Some approaches include 
monitoring the weight, the temperature, the humidity and gas 
concentrations inside the beehive, the sound and vibrations 
that are produced, as well as the traffic of specific types of 
bees [4]. The purpose of the monitoring process is to 
determine eventually if the bee colony is in a healthy state or 
not. A basic approach to determine the health of a hive is to 

inspect if the queen bee is present. The absence of the queen 
bee can be caused by multiple factors and has significant 
negative effects for the hive. So, an effort has been made by 
researchers to distinguish and detect these two states. 

A common practice with interesting results is the acoustic 
monitoring of the beehive and the analysis of the bees’ sound 
in the hive. Bees have been observed to produce a variety of 
different sounds for their communication [5]. Early studies of 
the phenomenon indicated that the overall sound of a hive is 
the combination of the sound of each individual bee resulting 
in a low frequency hamming effect [6]. Most of the spectral 
content is found in the frequency range of 100 – 1000 Hz, with 
the most dominant frequencies being documented around 300, 
410 and 500 Hz [7]. 

For the raw acoustic data, a feature extraction process is 
often followed that is used to generate a set of values either in 
the time or the frequency domain that contain information 
about the audio signals. A commonly applied technique in 
many speech-recognition and music information retrieval 
applications is the Mel-Frequency transformation and the 
extraction of the Mel Frequency Cepstral Coefficients 
(MFCC) [8]. This process involves transforming the raw 
audio signal in such a way that it mimics the psychoacoustic 
effect and the perception of loudness of the human ear. This 
can be applied in beehive monitoring applications since in 
many cases the different bee sounds are easily detectable by 
an experienced human ear. From these extracted features, 
different machine learning or deep learning models can be 
trained on the audio data, in order to perform the classification 
process. Some of the most commonly applied approaches 
include the Support Vector Machines (SVM), the Logistic 
Regression, random forests, and k-nearest neighbors, [9], as 
well as Convolutional Neural Networks implementations [10], 
and the Hidden Markov Models (HMM) [11]. 

In this work, the focus was given, initially, on performing 
a spectral analysis of a set of acoustic measurement data, in an 
effort to document the spectral signature between two discrete 
states of beehive, a healthy state with the queen bee present 
and one with the queen absent. Apart from that, the MFCC 
features were extracted and were evaluated on their ability to 
distinguish between these two states by examining the 
distribution of their values. The results of this study can be 
utilized and provide a background in order to implement a 
classification algorithm, either machine learning or 
conventional, to reliably distinguish between these states. 



II. EXPERIMENTAL SETUP 

For the experimental process, the agricultural facilities of 
the Aristotle University of Thessaloniki in Greece were 
chosen, where there are multiple beehives that are being 
studied. For this study’s needs, two hives were selected for an 
experimental procedure that took place over a period of five 
months during the productive period of the bees. During the 
first months, the hives were left undisturbed until a certain 
point when the queen bee was removed by both hives and was 
returned after six days. The hives under inspection, were 
equipped with an acquisition system that allowed to constantly 
monitor them throughout this period. As a result, a database 
was created with audio recordings for two distinguishable 
states of the beehive, one healthy state with the queen bee 
present and one with no queen bee.  

All of the measuring equipment are installed on a separate 
chamber (fig. 1) that is placed on top of the hive. It is separated 
from the bees’ chamber by a thin wooden layer so that the bees 
have no access to it. The acquisition system for each hive 
consists of a set of two microphones (Behringer ECM8000) 
that are connected via wire to a computer with an external 
sound card (Focusrite Scarlet 8i6), recording at a sampling 
rate of 44.1 kHz and a 16-bit resolution. The system is also 
equipped with a set of temperature and humidity sensors 
(BME280) that are installed both inside and outside the hive. 
These sensors are connected to a Raspberry Pi that is used to 
handle the acquisition and send the data to the computer. As a 
result, the system can also monitor both the environmental and 
the internal conditions of the hive. 

III. METHOD – DATA ANALYSIS 

The proposed method is focused on analyzing the raw 
audio data on the frequency domain to establish the spectral 
signature of the bees’ sound. Towards that goal, the data are 
first transformed from a time series into spectrograms, 
indicating the frequency components for each time segment of 
the recording. From that, the most dominant frequency 
components can be derived, as well as a set of representative 
features. These features and the distribution of their values are 
compared for the two states of the experiment so that a clear 
distinction can be established between them. 

The different steps of the analysis are summarized in fig. 
2. The first three steps of the procedure are part of the pre-
processing of the raw audio data. First, the data are 
downsampled from the initial 44.11 kHz sampling rate down  

 

 

Fig. 1. Picture of the acquisition system installed on a dedicated chamber 

on top of the beehive. 

to 4096 Hz, resulting in a measurable frequency range up to 
2048 Hz. Since most of the spectral content of the bees’ sound 
is documented below 1 kHz, this new sampling rate is 
sufficient. As a result, a large portion of the external noise in 
frequencies outside that range is removed and, also, the 
complexity of the spectral calculations is reduced. 

The signal is, then, pre-emphasized, which is a typical step 
of the MFCC extraction process that flattens the amplitudes of 
the spectrum by amplifying the higher frequency components. 
A value of 0.97 was chosen for the pre-emphasis coefficient, 
which is a typical value used in literature. After that, a Finite 
Impulse Response (FIR) band-pass filter is applied with a 
frequency range of 80 - 2000 Hz. This filter is used to 
attenuate the noise components generated by the supply circuit 
(60 Hz) and any residual higher frequencies. 

The next step is calculating the spectrogram of the audio 
time series. This is done by performing the Short Time Fourier 
Transform (STFT), which is a process that involves framing 
and windowing the time series into small segments and 
calculating the Discrete Fourier Transform (DFT) on each 
segment. The result is the spectrogram, which is a two-
dimensional array with amplitudes, with one axis 
corresponding to the N frequency bins that the N-point Fourier 
transform produced, and the other axis corresponding to the 
multiple frames of the overall signal. By examining the 
frequency content of the spectrogram, the most dominant 
frequencies of each time segment are derived. 

The processing steps that follow are used for the feature 
extraction. The spectrogram is transformed through the Mel-
Frequency Transform and is divided into N mel bands. This is 
accomplished by applying a series of triangular filters at 
certain frequencies. The resulting spectrum, called cepstrum, 
is customized in a way that it is more discriminative at lower 
frequencies and less discriminative at higher frequencies. By 
calculating the Discrete Cosine Transform (DCT), a set of 
coefficients are derived that correspond to the N different mel 
bands [12].  

IV. RESULTS 

The processing steps were applied on a set of data taken 
from six different days for the two beehives that were 
monitored during the experimental procedure. Three days are 
taken from the period when the beehive is in the healthy state 
and three after the queen’s removal, in order to compare the 
two states of the experiment.  

First, the spectrograms are calculated along with the peak 
frequencies at each point in time. Some indicative 
spectrograms of hive A are shown in fig. 3, calculated over 
30-minute measurements, where the top figures correspond to 
the healthy state of the beehive and the bottom to the queenless  

 

 

Fig. 2. The processing steps to extract the spectrograms and the MFCC 

features. 



state. With a first look, there are significant differences 
between the two spectrograms, with the queenless state 
exhibiting new frequency components and significantly 
higher amplitudes overall. Also, it is possible to recognize 
some characteristic frequency components in both states, 
likethe ones at around 100 Hz, 250 Hz and 500 Hz, which in 
the healthy state are narrow with low amplitude. In the 
queenless state, these components are higher in amplitude and 
the peaks are more spread out. Also, new frequencies are 
introduced, like the ones around 400 Hz and 130 Hz, that in 
the healthy state are not visible. 

For the MFCC feature extraction, a total of nine mel bands 
were selected in such a way that the measurable range is 
divided in bands of approximately 200 Hz, centered around 
the frequencies exhibited by the spectrograms. As a result, the 
spectrum is divided in nine bands ranging at the frequencies 
listed below: 

• 80, 279, 478, 677, 876, 1080, 1326, 1629 and 2000 Hz 

Each of the nine features corresponds to a specific band of 
the spectrum, so certain bands are expected to differentiate  
 

 

 

Fig. 3. Spectrograms for the two states of the beehives. 

 

Fig. 4. Probability densities of the MFCC value distributions on the nine 

mel bands for six different days of measurements for hive A. 

between the two states as well as the corresponding features. 
This is indicated in fig. 4, where the probability densities of 
the nine feature values (mel bands) are depicted, for six half-
hour measurements taken from different days at roughly the  
 



 

Fig. 5. Probability densities of the MFCC value distributions on the nine 

mel bands for six different days of measurements for hive A. 

 

the same hour. As depicted, there is a clear distinction between 
the distributions of the two states (blue for healthy and red for 
queenless), for the majority of the bands. Some bands are, 
also, exhibiting similar distributions, which is expected since 
not all parts of the spectrum differentiate between the two 
states, like the higher frequency bands (6,7 and 8). As a result, 
it is possible to distinguish between the two states based on 
the distributions that these features exhibit during a half-hour 
measurement. The results are, also, similar in the case of hive 
B. This time only the first six mel bands are considered (fig. 
5) and a clear distinction can be made between the two states. 
In this case, however, that distinction is exhibited in different 
mel bands than hive A, which is attributed to the unique 
spectral signature of each hive. As a result, in both hive cases 
the two states are distinguishable based on the distributions of 
the features.  

V. CONCLUSION 

Summing up, a system for acoustic monitoring was 
implemented to constantly monitor two hives for a prolonged 
period of time to analyze two different states of the beehive, 

the healthy state with the queen bee present and one state with 
the queen absent. By examining the spectrograms of these 
states, the two states exhibited different spectral contents and 
the most dominant frequencies were established for each state. 
Also, by extracting the MFCC features and inspecting their 
distributions over different days of measurements, it was 
possible to distinguish between these states based on half-hour 
measurements. 

For future development, one of the goals is to explore and 
evaluate more features from the audio signals and the data 
from the temperature and humidity sensors, as well as perform 
more tests and measurements on multiple beehives on 
different environments to evaluate the generality of the 
proposed method. Another goal is the development and 
evaluation of different machine learning approaches in order 
to automatically classify between these two states, with the 
lowest possible power consumption, implementation cost and 
complexity. 
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