
Hardware Acceleration of Transformer Networks
using FPGAs

Georgios Tzanos
Dep. of Electr. and Computer Engineering

NTUA
Athens, Greece

grg.tzan@gmail.com

Christoforos Kachris
ICCS-NTUA

& DUTH
Greece

kachris@microlab.ntua.gr

Dimitrios Soudris
Dep. of Electr. and Computer Engineering

NTUA
Athens, Greece

dsoudris@microlab.ntua.gr

Abstract—Natural Language Processing (NLP) allows program
computers to process and analyze large amounts of natural
language data. In the last few years, NLP has shown tremen-
dous growth, with many organizations presenting models such
as BERT (Bidirectional Encoder Representations from Trans-
formers), GPT2 (Generative Pre-trained Transformer 2), GPT3
(Generative Pre-trained Transformer 3), etc. The cornerstone
of these models and the reason for the growth of the NLP is
mainly due to the Transformer networks. However, very few
architectures have been presented, for the acceleration of the
Transformer networks using FPGAs. In this paper, we propose
a novel architecture for Transformer Networks optimized on
FPGAs. The performance evaluation on a Xilinx Alveo U200
FPGA achieved up to 80.5x speed-up over a single-core CPU
and up to 2.3x speedup over a 40-thread Xeon CPU running
BERT model.

I. INTRODUCTION

Transformer Networks [2] are behind every state-of the
art Language model, such as BERT [5], GPT3 [6], etc.
The reason for this is that Transformers were developed
to solve the problem of sequence transduction, or neural
machine translation. That means any task that transforms an
input sequence to an output sequence. This includes speech
recognition, text-to-speech transformation, etc. Recurrent Neu-
ral Networks (RNNs) and Convolutional Neural Networks
(CNNs) [3,4] have been used to deal with this problem because
of their properties but it turned out to be not enough. This
computational complexity motivated efforts to enhance these
tasks using hardware-specific optimizations by leveraging dif-
ferent heterogeneous architectures combining CPUs, GPUs,
FPGAs. The increasingly growing demands for efficient and
fast processing of the new generation algorithms today can
be addressed by high performance computing systems such as
FPGAs. This architecture shows immense parallelization and
reconfigurability and can be mapped well to repetitive tasks,
such as Transformer Networks. Specifically, many companies
tend to search for efficient ways for high performance and
low energy cost solutions, and FPGAs play a major role in
this evolution.

FPGAs as parallel platforms can reduce the total
computational overhead with an underlying hardware
solution which boosts the performance on these kind of
tasks. An optimized implementation can take advantage of

the FPGA hardware resources for high performance and
much lower energy footprint, something very crucial for
data centers that operate today on these large scale tasks. In
this paper, we present an implementation of a Transformer
network on FPGAs and we achieve a speed-up compared
with CPU multi-core solutions. More specifically, in this
work we make the following contributions:

• We perform a thorough analysis of the most computa-
tional intensive tasks that could be offloaded to FPGAs

• We implement a novel Transformer network fully utiliz-
ing the advantages of FPGAs

• We evaluate the speed-up of the Transformer network on
an FPGA accelerator (Up to 80.5x speedup).

II. RELATED WORK

While a lot of work has been published in software opti-
mization for CPU and hardware optimizations on GPU for
Transformer networks, very little work has been published
related to custom hardware acceleration of any Transformer-
based networks on FPGA. Two ASICs have been recently pro-
posed, OPTIMUS [7] and A3 [8], that each accelerate different
parts of Transformer inference. OPTIMUS optimized matrix
multiplication for Transformers by exploiting sparsity. It has
dedicated exponential, divider, and square root components
for non-linearities, leading to wasted area since each is only
used a small fraction of the time. FTRANS [1] has currently
published an FPGA accelerator for BERT and related Trans-
former net-works. FTRANS takes a very specialized approach
for implementing Transformers, in which it has dedicated
encoder and decoder modules. Each of these modules has
many specialized components. Moreover another publication
on this direction is NPE [9]; an FPGA-based overlay processor
that can efficiently execute a variety of NLP models. NPE
offers software-like programmability to the end user and,
unlike FPGA designs that implement specialized accelerators
for each nonlinear function, can be upgraded for future NLP
models without requiring reconfiguration. Compared to our
work, both Ftrans and NPE use custom ways to implement the
Transformer network, while in our case we directly replace all
or some of the parts of the Transformer network with FPGA
kernels.

979-8-3503-9958-5/22/$31.00 ©2022 IEEE

III. TRANSFORMER NETWORKS

BERT adopts the structure of the encoders from Trans-
formers. While there are many BERT variants, the particular
structure can be described by three parameters: number of
encoders L, number of attention heads A, and hidden
layer size H . We focus on BERTBASE , which is composed
of 12 encoders, each with 12 attention heads and a hidden
size of 768 (L = 12, A = 12, H = 768). The general
structure for BERT can be found in [2]. The model starts
with an embedding layer that converts each input language
sequence into features. For instance, an input sequence with
512 tokens in BERTBASE would be converted to a 512×768
matrix, where each token is replaced by a 768-length feature
vector. Here, a token refers to a few adjacent characters, where
a word is made up of one or more tokens. The embedding
step has negligible computations but requires lots of memory.
Therefore, we assume this initial step is performed off-chip
and we focus on accelerating the computationally-intensive
encoders.

Transformer networks use a technique called attention. The
attention, as we would say in the field of neuroscience, is the
ability to be able to selectively concentrate on specific data
while ignoring other data of our environment. In deep learning
we imitate this technique through attention mechanisms and
one way to achieve this is to encode a sequence not into
a single fixed vector but to create a model that produces
a vector for each output step by adding a set of weights
which will later be optimized. Consequently it does not simply
learn what to produce in the output but how to put weights
selectively on specific input data maximizing the probability
of a correct output. Bert has multiple Attention blocks. Each
Attention block converts the input using GEMM (General
Matrix Multiplications) operations and then uses GEMM
(General Matrix Multiplications) operations and Non-
Linear functions such as Softmax, Layernorm and Gelu
to produce the output.

GELU Activation. The Gaussian Error Linear Unit
activation is defined by the following equation:

GELU = xP (X ≤ x) = x · 1
2

[
1 + erf

(
x/

√
2
)]

(1)

It is commonly approximated using the tanh function as
in Equation(2) and can also be approximated directly using a
lookup table.

GELU ≈ 0.5× (1 + tanh
[√

2/π
(
x+ 0.044715x3

)]
) (2)

Layer Normalization. Layer normalization first requires
computing the mean and variance of a matrix across rows.
Given a matrix of dimension NxK, we compute the mean
and variance for row i

µi =
1

K

K∑
k=1

xi, k , σ2
i =

1

K

K∑
k=1

(xi,k − µi)
2 (3)

Then, the mean and variance are applied to each element
using Equation(4) to get the normalized output x̂. Finally, each
x̂i is scaled and shifted by trained vectors γ and β to get the
layer normalization output y, as shown in Equation(5)

x̂i,k =
x1,k − µk√

σ2
k + ε

(4)

yi,k = x̂i,kγk + βk (5)

Softmax.The definition of Softmax is shown in Equation
(6). Softmax can be difficult to implement in hardware
because of the exponential and division operations. It can
be directly realized using dedicated exponential and division
units, at the cost of under-utilized resources and extra area
overhead.

softmax(xj) =
exj∑
i e

xi
(6)

IV. ACCELERATOR ARCHITECTURE

A. Transformer Network Architecture

To select which parts of Transformer Network are worth
implementing on hardware, we first had to perform a detailed
profiling on a 40-thread Intel Xeon processor . Then we
identified the algorithms of the hardware function we are going
to accelerate and all the optimizations on the host and kernel
side so to reduce the overall latency of the design.

TABLE I
PROFILING OF THE TRANSFORMER NETWORK.

Task Percentage
GEMM Ops 70%
GeLU2 10%
SoftMax 2.7%
LayerNorm 1.85%
Misc 15.45%

For the implementation of the Transformer network we
used the following architecture. Our goal was to speedup the
network compared to a CPU implementation. To achieve this
we developed our implementation on two main ideas. The
first one was to optimally accelerate the GEMM (GEneral
Matrix Multiply) operations of the network sgemm and
batch sgemm, which consume about 70% percent of the
runtime (Table 1). The acceleration of these two kernels sets
our implementation in position to compete with the CPU. The
second one was to integrate sgemm and batch sgemm, which
are the most computational intensive parts of the Transformer
network, with functions of very little impact on the runtime,
such as Gelu, Softmax and Layernorm, in order to prevent
unnecessary data transfers from the host to the kernel and
vice versa something that it would definitely cost to our
implementation.

The first part of our implementation (Fig 1.) contains
the parallel execution of three sgemm kernels, since the

multiplication of vectors q(query), k(key), v(value) with
embedding vectors of the Transformer network are completely
independent to each other. In the second part of our imple-
mentation (and for all the parts after this, we enter a sequen-
tial order of execution), we implemented a batch sgemm
kernel combined with a Softmax kernel. In the third part
of our implementation we chose to implement a standalone
batch sgemm, while in the fourth part we have a combination
of sgemm and Layernorm. Finally, in the fifth part with
another combination of kernels, by combining the sgemm
and Gelu(activation function) kernel, while for the last part
we can reuse the computational kernel of the fourth part.

To make the final decision for our architecture we had
to take into consideration the need of balancing between
resources utilization of a single device and the maintainability
of the kernels in the SW/HW co-design. The factors above led
us to this hybrid implementation, which neither contains all
the functions in a single kernel, nor implements each function
as a standalone kernel.

Fig. 1. FPGA Transformer Network Architecture

Moreover the dataflow between so many functions in a
single kernel was not supported on the compiler. Furthermore,
the re-configuration of the network, with different parameters,
would be a lot more difficult in a compact and monolithic
kernel. At the same time the combination of some functions
into a single kernel helped us to optimize some critical data
movements. Finally the need for complete parallelization of
the first three sgemms of the first part is another reason that
lead us, in some occasions, to create separate but identical
kernels that can be called and be executed in parallel.

B. GEMM kernels

In the case of sgemm kernel, we applied block-tiled matrix
multiplication, for parallel multiplication of multiple elements,
while for the batch sgemm kernel the small dimension of the
sub-matrices allow us to use a systolic array approach for the
multiplication.

C. Softmax, Layernorm, Gelu

In the case of Softmax, Layernorm and Gelu functions,
the implementations does not aim at any speedup compared to
the CPU implementations. Any different approach would result
in consumption of additional hardware resources without any
impact on the overall speedup.

The specific architecture is being repeatedly executed in
a loop as much as the number of hidden layers and the
number of attention heads. For future work, this gives us
the opportunity for an architecture with multiple devices that
can run in parallel as each attention head can be executed
completely simultaneously and independently of the others.

V. IMPLEMENTATION

The kernels have been developed on Vivado HLS target-
ing the Alveo U200 FPGA card. We managed to keep the
resources in balance allowing kernels to run at a high clock
frequency of 411MHz .

A. Sgemm

1) Host Optimizations: In order to accelerate sgemm
we followed the steps below. First, we used multiple DDR
BANKS assigning each one of the matrices that participating
in the GEMM operation (with A and B as matrix inputs, alpha
and beta as scalar inputs, and C as a pre-existing matrix which
is overwritten by the output), in a different DDR BANK.

C = (alpha)AB + (beta)C (7)

The use of multiple DDR BANKS results in faster com-
munication between device and host as it enables the use of
multiple communication channels between them, allowing the
host to send data in parallel, from the Global Memory to the
FPGA. The next step was to achieve the absolute parallelism
in the execution of the three sgemm kernels of the first part of
the architecture scheme. Thus, in order to do so we used the
clEnqueueTask command in a for-loop, enabling the parallel
execution between these tasks. Finally we transpose matrix
A → AT in order to have the two matrices parallel to their
common dimension.

2) Kernel Optimizations: On the kernel side, after we had
transposed matrix A, we were able to apply multiple burst
reads accessing the data of the matrices in a sequential way
like a FIFO, preventing further delays while we copy the data
to local BRAMs of two dimensions. Matrix multiplication
[10] requires to access matrix B multiple times, so in order
to prevent multiple reads from the global memory to local
memory we copy all the matrix to local BRAMs. Therefore,
we avoided memory requests of the same data and also

achieved faster burst data transfers to global memory as bigger
chunks of memory are transferred at higher rates. while the
matrix A is being copied in tiles of 8 rows Asub[8][n],
keeping the resources utilization low. Finally we, created 1
more extra table in the local memory, the Bsub[8][m] in
which we load the rows of table B in blocks of 8, in order
to be able to enforce HLS directives such as #pragma
HLS ARRAY PARTITION , for maximum parallelism.

Fig. 2. Systolic array for Batch sgemm

B. Batch sgemm

In the implementation of batch sgemm now, in which we
batch multiple independent small GEMM operations into a
group, we used the technique of systolic array multiplication
(Fig. 2) and the reason we used this particular technique is that
the small dimensions of the submatrices, makes them suitable
for loop unrolling, leading to better latency.

From the host side, to retain the correct sequential order of
execution of the kernels we used the clEven objects from
the OpenCL API to enforce the kernels to be executed in
the correct order. Moreover, from the kernel side, to further
improve the systolic array technique we used four rows of each
matrix to be multiplied concurrently decreasing the iteration
over the common dimension by a factor of four, increasing the
parallelism. Finally we applied the HLS directive DATAFLOW
(enables task-level pipelining, allowing functions and loops to
overlap in their operation, increasing the concurrency of the
RTL implementation, and increasing the overall throughput of
the design), to minimize the iteration interval over the batches
iteration.

C. Rest of the kernels

The rest of the kernels we implemented, were not used
alone but as parts of the combination with GEMM kernels.

• Batch sgemm+ Softmax
• Sgemm+ Layernorm
• Sgemm+Gelu

The functions Layernorm, Softmax and Gelu due to the
limited impact they have on the runtime, are not key kernels

Fig. 3. Kernels evaluation

for the Transformer network acceleration, so their implementa-
tions were based on their low resource consumption in order
for the integration to the device to be feasible. During the
implementation on the part of the host we send all the data that
is necessary for the calculation of the respective combination
of kernels. At this point, inside the kernel we use again the
HLS pragma DATAFLOW ensuring that the output of the first
function will be used as input to the followed function as soon
as it is available,minimizing by this way the time for the data
transferring between the two functions.

D. Common Optimizations

To achieve large throughput we had to enable a high
degree of parallelism in application execution by avoiding data
dependencies. We constructed a highly parallel and pipelined
architecture with minimum latency. We achieved initiation
interval II=1 in every loop and by using the dataflow directive
the kernel can process all the data as soon as they arrived
at memory interfaces and write them back to DDRs as soon
as they are ready. Last but not least, AXI4-master interface
for burst read and write was used, inferring multiple bursts of
512-bit width in each kernel. This specific option gives us the
ability to send a large volume of data to the kernels, reducing
the time needed to copy the data in the local memory of the
FPGA. Specifically what we did was to create vectors from 32
float16 numbers each. This has the effect of taking advantage
of the full bandwidth offered by the AXI-4 protocol by reading
and writing 32 numbers simultaneously per cycle.

VI. EVALUATION

A. System Setup

To evaluate our implementation we mapped the architecture
on an Alveo U200 FPGA card while as a host an Intel Xeon
processor with 40 cores has been used.

Moreover in order to integrate our work in a Transformer
network we used an existing implementation [11] of a Trans-
former network written in C/C ++ which was also part of a

BERT model. To be able to implement our proposed architec-
ture in our device, we had to change some parameters of the
network. Specifically, we configured some optional parameters
of the Transformer network such as the batch size, making
our network a smaller one. In the specific experiments we used
batch size = 1.

B. Kernels Evaluation

Figure 3 shows the performance of each kernel indepen-
dently. Intel MKL has been optimized for using the max-
imum threads of the CPU. The sgemm kernel has been
accelerated and it has a speedup of 2.4x compared to
cblas sgemm and batch sgemm has speedup 1.9x compared
to cblas sgemm batch. Moreover Gelu functions although
it takes only a 10% of the runtime we have managed to
accelerate it with a speedup of about 10x. The rest of the
functions do not show any speedup compared to the CPU
implementation and have been omitted in the figure. Integrat-
ing all the kernels in the Transformer network we achieve a
speedup of 2.3x inside the BERT model compared to a 40-
thread processor and 80.5x speed-up over a single-core CPU.
In terms of resource allocation, Table II shows the utilization
of the hardware resources for the Alveo U200 Data Center
card.

TABLE II
HARDWARE FUNCTIONS RESOURCES.

Resources Used Available Utilization
DSP 5861 6840 85.7%

BRAM 2592 4320 60%
LUT 910324 1182240 77.4%
FF 1938873 2364480 81.2%

VII. CONCLUSION

In this paper, we described an optimized FPGA imple-
mentation of the Transformer Networks. Our work shows
that the overall speedup can reach up to 2.3x compared to
a 40-thread CPU and up to 80.5x over a single-core CPU.
Our architecture can be expanded by using multiple FPGA
cards allowing parallel computations to independent multiple
Transformer networks inside the BERT model.

REFERENCES

[1] Bingbing Li, Santosh Pandey, Haowen Fang, Yanjun Lyv, Ji Li, Jieyang
Chen,Mimi Xie, Lipeng Wan, Hang Liu, and Caiwen Ding. 2020.
FTRANS: energy-efficient acceleration of Transformers using FPGA.
In Proceedings of the ACM/IEEEInternational Symposium on Low
Power Electronics and Design. 175–180.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, JakobUszkoreit, Llion
Jones, Aidan N Gomez, LukaszKaiser, and Illia Polosukhin. 2017.
Attention is all you need. In Advances in Neural Information Processing
Systems, pages 6000–6010.

[3] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann
NDauphin. 2017. Convolutional sequence to sequence learning.arXiv
preprintarXiv:1705.03122(2017).

[4] Alex Graves. 2012. Sequence transduction with recurrent neural net-
works.arXivpreprint arXiv:1211.3711(2012).

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert:Pre-training of deep bidirectional Transformers for language
understanding.arXivpreprint arXiv:1810.04805(2018).

[6] Tom B. Brown, Benjamin Mann, Nick Ryder,Melanie Sub-
biah, Jared Kaplan, PrafullaDhariwal, Arvind Neelakantan, Pranav
Shyam,Girish Sastry, Amanda Askell, SandhiniAgarwal, Ariel Herbert-
Voss, GretchenKrueger, Tom Henighan, Rewon Child, AdityaRamesh,
Daniel M. Ziegler, Jeffrey Wu,Clemens Winter, Christopher Hesse,
MarkChen, Eric Sigler, Mateusz Litwin, ScottGray, Benjamin Chess,
Jack Clark, ChristopherBerner, Sam McCandlish, Alec Radford,Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot
Learners.arXiv:2005.14165 [cs].

[7] Junki Park, Hyunsung Yoon, Daehyun Ahn, Jungwook Choi, and Jae-
Joon Kim.2020. OPTIMUS: OPTImized matrix MUltiplication Struc-
ture for Transformer neu-ral network accelerator. In Proceedings of
Machine Learning and Systems, I. Dhillon,D. Papailiopoulos, and V.
Sze (Eds.). Vol. 2. 363–378.

[8] Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H Oh, Yeonhong
Park, YoonhoSong, Jung-Hun Park, Sanghee Lee, Kyoung Park, Jae
W Lee, et al.2020. Aˆ 3:Accelerating Attention Mechanisms in Neural
Networks with Approximation. In2020 IEEE International Symposium
on High Performance Computer Architecture(HPCA). IEEE, 328–341.

[9] Khan, H., Khan, A., Khan, Z., Huang, L. B., Wang, K., and He,
L., “NPE: An FPGA-based Overlay Processor for Natural Language
Processing

[10] Introduction to Linear Algebra, Fifth Edition (2016) by Gilbert Strang
ISBN : 978-09802327-7-6

[11] https://github.com/zhihu/cuBERT

