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Abstract—This work deals with the comparison between
different analog implementations of complementary filters with a
digital processing algorithm. For this purpose, different configu-
rations of analog filters are tested in order to possibly find a better
solution than that offered by the algorithm, used in many low-cost
applications of Unmanned Aerial Vehicle positional awareness.

Index Terms—Analog signal processing, complementary filters,
unmanned aerial vehicles, gyroscope, accelerometer.

I. INTRODUCTION

An Unmanned Aerial Vehicle (UAV) uses many sensors to
correctly perform its mission. In order to achieve adequate
positional awareness, at least, a 3-axis gyroscope and a 3-
axis accelerometer must be employed. These sensors provide
the signals, with which the onboard computer calculates the
current position and orientation of the UAV. Each of these
sensors has its own characteristics. The gyroscope produces
an accurate signal for the estimation of angle of rotation
between short intervals. It cannot, however, be reliable for
lengthy periods of time, due to the drift of the signal. On
the other hand, the accelerometer produces a signal without
any drift, because of the gravitational field of the earth, but
with a lot of high frequency noise, so it is not accurate
enough for short/medium time interval estimations of change
in orientation. In order to produce a signal with high accuracy,
the complementary filtering technique is utilized [1]-[9]. This
combines the estimation of each sensor, through a process
(analog or digital) and produces a more reliable approximation,
attenuating the noise and artifacts induced by each of the
sensors [6], [10], [11].

A systematic comparison of possible implementations of of
complimentary filters used in UAV applications is presented
in this work. The implementations under consideration are
discussed in detail in Section II, while their performance is
evaluated in Section III.

II. IMPLEMENTATIONS OF COMPLEMENTARY FILTERS

A. General setup

Let us consider the block diagram in Fig. 1. As a measuring
device, the GY521 board with a MPU6050 IC is used, which
combines a 3-axis gyroscope and a 3-axis accelerometer. The
x,y,z axes correspond to the pitch, roll and yaw motion,
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Fig. 1. Data processing path for handling the captured data and creating an
animated comparison.

respectively. It uses 6 and 16-bit ADCs for digitizing the
gyroscope and the accelerometer outputs. The gyroscope mea-
sures the change in inclination from the previous moment
of measurement and the accelerometer measures the change
in acceleration in the same time interval. This is the Iner-
tial Measurement Unit (IMU), which communicates with an
Arduino Mega board via USB. For the encapsulation of the
data a motion routine is created and is captured on video for
later reference. The motion routine was done in a way that
didn’t exceed the measuring limits of the board, regarding
the maximum measurable angular velocity and acceleration
per second. After that, the Arduino processes the raw data in
order to produce estimated angles and, in the case of Digital
Filtering (DF), to calculate the filtered values. As a next step, it
transfers every angle of rotation with its associated timestamp
on a Personal Computer (PC), which handles the simulation of
the analog filters and creates a 3D visualization of the results
of each process (i.e., filtered and unfiltered). The resulting
animation is used to visually compare the characteristics of
each process and to select, without lengthy analysis, the
process (i.e., digital or analog) and settings needed for the
specific situation. The reason for this animation is based in
the fact that, for N different settings of the filters, 3N angle-
time plots are created and this is an extremely large number
of 2D plots to be individually compared.
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Fig. 2. Noisy signals given from accelerometer and gyroscope of the x—axis.

B. Analog filtering

When the unfiltered signals are plotted, the gyroscope data
seem to have a (low frequency) DC component, because they
drift in one direction all the time. It seems that the added error
is integrated only when the sensor is moving and not when
it is stationary. On the contrary, the accelerometer data seem
to flick around an average value, showing a high frequency
noise behavior as shown in Fig. 2. To mitigate these facts, the
gyroscope data are processed through a high pass filter (HPF)
and the accelerometer data through a low pass filter (LPF)
[12], [13]. For comparison purposes, three differently tuned
I—~order Butterworth and three, similarly tuned in respect
of cutoff frequency, 2"-order Butterworth complementary
filters based on the Sallen-Key implementation [14], have been
utilized. The cutoff frequencies (f.) were 79mHz, 31.8mHz
and 15.9mHz, which correspond to time-constants (7) equal
to 2,5, 10s respectively, for a 1%'—order filter. These filters were
used together with the differentiation as well as the summation
topology, as it is shown in Figs. 3—4.

Each of the complementary filter designs was used three
times, one for each axis of rotation, in order to create a 3D
rotating block which emulates the roll and pitch motion of
the real sensor-board unit. Reliable yaw motion could not be
achieved with our sensor module, so we omitted it. In order
to scale and convert the IMU voltages to degrees of rotation,
the gain of the filters was 10.2 in all implementations. This
value was obtained through the comparison of the output of
the ADCs with the rotation of the module in our experimental
setup. The OV should correspond to 0° and the maximum value
of the accelerometer should correspond to 90°. All of the filters
where designed in OrCAD PSpice simulator, using the OP-27
operational amplifier discrete component IC.

C. Digital processing for filtering the signals

When the Arduino collects the data from the sensor, it
converts them into angles. The degrees per second measured
by the gyroscope are integrated over the time span and the
accelerometer. As it is mentioned in Fig. 5, the roll angle is
integrated to the previous cumulative roll angle, then, taking
96% of it and adding 4% of the calculated acceleration angle,
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Fig. 3. 1%-order Butterworth complementary filter topology.The first stage
creates the LPF and HPF and the second stage adds them.
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Fig. 4. 2"_order Butterworth complementary filter topology.The HPF is
created through the differentiation from the unit signal. After the summation
of both filtered signals there is the topology of an inverter.
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Fig. 5. Digital processing path for filtering the gyroscope and accelerometer.

in order to produce the software processed estimation. All the
filtered and unfiltered data are forwarded to the computer for
further processing. When all the data will be passed through
the Arduino and OrCAD PSpice, they will be forwarded in the
Processing integrated development environment (IDE) and will
be displayed as cuboids that rotate, in order to be compared
with the actual footage taken when the raw data were captured.
Also, a hardware circuit was made in order to verify that the
simulated analog filters were performing as expected. This is
demonstrated in Fig. 6.

The source code material for the above is avail-
able in https://github.com/konteliss/Complementary-Filters-
Comparison/tree/master.

III. COMPARISON RESULTS
A. Calculating the position

When comparing the simulated analog filters with the
hardware realized one, it was clear that the simulation was up
to par. This result indicates that the simulated analog filters
produce reliable results and that they could be trusted for the
full data set that they produced. Considering simulated analog
filters and digitally processed data, the simulated filters had
different characteristics depending on the order. In Fig. 7, each
block represents the rotation of the sensor, as measured from
the gyro (red) or the accelerometer (blue) or the calculated
values given from each processing path (i.e. digital processing
or analog filtering). This Figure depicts the reported rotation
the moment the sensor was made to have zero rotation on each
axis.

For comparison purposes, the values of the x and y axis
of rotation of each block for this time-stamp and two more,
without rotation, are given in Tablel. No-one of the simulated
analog filter achieves the performance of the software pro-
cessed data, and this could be explained by the values picked
for the cutoff frequencies. The trend was that higher cutoff
frequencies resulted in a better approximation and none of
the higher order filters we used attenuated the high frequency
noise as the 1%-order did.

From these results the software combination should be
picked as the optimal solution for positional awareness. To
improve the results of the analog filters, different cutoff
frequencies should be considered and simulated in order to
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Fig. 6. (a) Input and (b) Output of 1%—order low pass filter, with 7=2s.

eliminate the long relaxation time and improve the accuracy
of the system.

B. Comparing power requirements

The evaluation we made previously, was made only based
on the resulting position. No other factor was taken into ac-
count. From the data-sheets of the Arduino and the simulated
filters we measured the required power for producing each
result. For each operational amplifier used in the analog filters
there is a need for 100mW [15]. Consequently, for the three
1'~order complementary filters there is a need of 900mW of
power. For the 2"—order implementation, which uses five op-
amps for each filter, there is a need of 1.5W. Given a 50%
safety margin, a source capable of 2.25W should be used for
such analog filters. In the case of the software processing, the
Arduino and the sensor cumulatively consume approximately
400mW. The largest portion of the power is consumed by
various unnecessary processes of the Arduino. If there was a
need it could be lower with further optimization of the code
used. We ought to take into consideration the fact that the
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Fig. 7. Visual representation of gyroscope and accelerometer reported states,
immediately after the sensor is relaxed after some movement, compared to
the six differently tuned analog filters.

TABLE I
VALUES OF ROTATION IN THE CASE OF ZERO ROTATION OF THE SENSOR.

Rotation (°) t =16.38s | t = 25.93s | t = 30.79s
x y x y x y
Gyroscope 13 11 38 22 61 29
Accelerometer 2 -11 0 0 0 0
Software combination | 0 0 0 0 0 0
S—order (1 = 2s) 0 3 2 3 6 2
S—order (1 = 55) 3 3 11 3 17 2
IS'—order (7 = 10s) 7 8 19 12 29 13
2" order (7 = 2s) 2 -11 6 6 0 0
2" order (T = 5s) 2 -11 19 13 0 0
2" _order (7 = 10s) | 2 -11 29 18 0 0

operational amplifiers need £15V for their operation and use
many cables and other components to function properly, in
comparison to the Arduino board which only requires 3.3V
or 5V but can also be used as the bare-bone IC design of the
Atmel ATMEGA2560.

IV. CONCLUSIONS

The main derivation of this study is that for the filtering
of accelerometer and gyroscope signals, the use of software
processing is preferable. Only when the application requires
the employment of analog design technology, then a 1%'—order
complementary filter with 7=2s or lower can be considered.
High attention should be put in selecting the correct cutoff
frequency, for the chosen sensor, due to the different charac-
teristics obtained for different values of the associated time-
constants. Further analysis has to be done for other mainstream
IMUs including those with a 3-axis magnetometer. With the
latter one can obtain reliable yaw motion and be sure that,
within reasonable timescales, the correct orientation could be
maintained due to the earths magnetic field. Also, beyond the
inside-out tracking done by the IMUs, GPS can be used for
outside-in tracking, of any UAVs with line of sight to a GPS
satellite. Further research steps include the employment of
alternative techniques, such these presented in [16]-[20], for
optimizing the performance of the system through the offered
extra degrees of freedom in the filters frequency response.
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