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Abstract—Next-generation Intelligent Transportation 

Systems (ITS) require collaboration between vehicular 

communication systems and transport networks to provide 

highly safety-critical services. For accurate land-vehicle 

positioning, they rely on high-end Global Navigation Satellite 

System (GNSS) receivers which are cost-wise inefficient while 

discontinuities are prevalent in multi-story urban centers. In 

this paper, a Cooperative Positioning (CP) solution is presented 

to improve the accuracy of low-cost GNSS receivers, mainly in 

obstructed propagation areas. Specifically, a multi-attribute 

decision-making (MADM) methodology is proposed for the 

dynamic neighboring vehicles’ ranking. Afterward, the target’s 

vehicle receiver can select the optimal neighboring vehicle to 

cooperate with and retrieve GNSS corrections from, improving 

its own Position-Velocity-Time (PVT) state. Experimental 

criteria data are employed to emulate a scenario of neighboring 

cars equipped with low-cost GNSS receivers to evaluate the 

feasibility and ranking performance of the proposed MADM 

algorithm. The positioning data time series and the numerical 

results are then presented, exhibiting interesting findings, and a 

good ranking and selection performance.  

Index terms—intelligent transportation systems, cooperative 

positioning, low-cost GNSS, multi-criteria decision making, 

ranking methods, NMEA. 

 

I. INTRODUCTION 

 

Intelligent Transportation Systems (ITS) have evolved 
dramatically over the last decades and advanced ITS 
applications are on the verge of large-scale deployment [1-2]. 
Loop detectors, dynamic message signs, entrance ramp 
meters, electronic toll collection, traffic telematics were some 
traditional ITS technologies designed to prioritize safety, and 
improve traffic and commuters’ convenience [1-2]. However, 
the increased motorization, urbanism, population density, and 
speed limits gradually surpassed the existent transport 
network’s capacity. To overcome this barrier, the 5.8 GHz 
band was allocated to the Dedicated Short-Range 
Communications (DSRC) enabling, thus, the connected ITS 
(C-ITS) and Automated Vehicles (AVs) [3]. Therefore, next-

generation ITS are expected to solve congestion-based 
problems and optimize road safety among others [1-2]. For a 
beneficial actualization, the collaboration between 
communication, information and location-based technologies 
is crucial to optimize route planning, reduce crashes and 
fatalities, and ensure the secure operation among road 
infrastructure and vehicles [1-3]. Specifically, the ITS 
applications can be categorized into three major fields: a) 
active road safety, b) traffic efficiency and management, and 
c) infotainment. The identified disadvantages are the high 
equipment and maintenance cost, the control system hacking 
security, the underserved road infrastructures, the traffic data 
collection and privacy regulations [3].  

By means of DSRC, wireless e.g., Wi-Fi, cellular mobile 
network e.g., 5G, or any other standardized connectivity 
framework, a C-ITS vehicular network can be established. A 
Vehicle Ad Hoc Network (VANET) is a self-organized 
network with a highly variable topology and node density 
where vehicles comprise the network nodes or routers. They 
are able to broadcast PVT information to other vehicles 
(V2V), to infrastructure (V2I), to pedestrians (V2P), to 
internet cloud (V2C), to network (V2N), and in general, to 
everything (V2X) [1-3].   

The exact location of each vehicle is derived from the 
Global Navigation Satellite System (GNSS), a multi-
constellation satellite network that allows receivers on Earth 
to estimate their exact Position-Velocity-Time (PVT) state 
[4]. It is the keystone for a variety of safety-critical ITS 
services and many other navigation-related applications. Most 
high-end, survey-grade GNSS receivers are capable of 
achieving centimeter-level horizontal and vertical accuracy by 
acquiring differential corrections from base stations through a 
process called Differential GNSS (DGNSS) or Real Time 
Kinematic (RTK) [4]. The Precise Point Positioning (PPP) is 
another useful method that provides satellite-delivered 
corrections, eliminating the need for base station but achieves 
decimeter-level accuracy and has a high convergence time [4].  

On the other hand, consumer-grade, low-cost and ultra-
low-cost GNSS receivers are steadily manufactured and 
drawing attention [5]. Modern smartphones, wearables and 



drones are equipped with such receivers because they’re very 
light, easy to install, they have a low energy consumption, and 
are able to connect to networks [5]. Typically, low-cost GNSS 
receivers carry patch antennas and operate on a single carrier 
(L1). 

The discontinuity of GNSS satellite signal in obstructed 
propagation environments due to multipath, atmospheric 
delay and visibility errors indicates the fusing of low-cost 
receivers with other technologies to enhance their accuracy 
and reliability [4]. Inertial Navigation Systems (INS), Ultra-
Wideband (UWB), cameras are some commonly employed 
technologies to compensate the errors [4]. Even so, a hybrid 
INS/GNSS or an RTK implementation are unsuitable for 
ordinary portable devices and are far from low-cost. Instead, 
Cooperative Positioning (CP) uses radio-communication to 
connect vehicles and create V2V links so that the low-cost 
GNSS receivers can exchange information and obtain 
differential corrections by estimating inter-vehicular ranges 
(IVRs), carrier phase, relative speed [6]. 

In this paper, a Cooperative Differential GNSS (C-
DGNSS) scenario is investigated where an ego-vehicle and 
several neighbor vehicles are considered connected and 
equipped with low-cost GNSS receivers. The objective is the 
ego-vehicle to identify the optimal neighbor to cooperate and 
acquire GNSS corrections to improve its relative positioning 
accuracy. For this reason, a Multi-Attribute Decision-Making 
(MADM) module is employed to rank the alternative vehicles 
in the vicinity via a number of position-related criteria and 
assist the target vehicle. The proposed C-DGNSS concept 
aims to enhance the performance of low-cost GNSS receivers 
in safety-critical scenarios. The scenario is emulated using real 
data from experimental sessions in various operating 
conditions (i.e., suburbs, urban canyons, and countryside). 
The experimental data input (i.e., criteria values) to the 
MADM module are National Marine Electronics Association 
(NMEA) sentences. An evaluation of the MADM algorithm 
in terms of ranking performance and optimal selection is 
realized. Then, the derived emulations’ ranking tables, time 
series diagrams, MADM algorithms’ performance results are 
presented and discussed. 

The rest of the paper is organized as follows: In Section II 
related work about the low-cost GNSS receivers and 
cooperative positioning is introduced. In Section III the 
MADM module and its functionality are described. In Section 
IV the emulation environment (trajectory, alternative vehicles, 
input parameters) is detailed and MADM emulations using 
experimental data are provided. The ranking and numerical 
results are exhibited and commented. Finally, Section V 
concludes the paper.   

 

II. PRELIMINARIES/RELATED WORKS 

 
In [5] the authors perform experimental measurements in 

a closed trajectory with urban surroundings. By employing 
only low-cost GNSS receivers they evaluate several Single 
Positioning (SP) and CP algorithms. They demonstrate that 
the SP is more accurate than CP. The dropped CP accuracy 
signifies the presence of NLoS and multipath effects. 
However, the CP is realized through a fixed V2I link with a 
road-side unit, not through V2V.  

In [6] the authors propose CooPS, a combined 
GNSS/V2X system, to cooperatively optimize absolute and 
relative accuracy. They carry out successful experiments with 
a low-cost, 5 Hz GNSS receiver and exhibit an accuracy order 
of 1.0 and 1.5 m for road and lane, accordingly.  

In [7-8] the authors propose low-cost solutions for land 
vehicle navigation and positioning accuracy improvement. 
Specifically, they propose MEMS INS/GNSS integrations and 
provide field experiments’ results to show the feasibility and 
efficiency of their work. In [9] a low-cost GNSS receiver 
aided with RTK is proposed and achieves reliable and precise 
positioning in forest canopies.  

In [10] and [11] the authors propose a “moving base 
station” CP approach to enhance the accuracy and precision of 
low-cost GNSS receivers embedded into smartphones. The 
results exhibit a 40% increased accuracy when applying the 
moving base station method compared to an RTK GNSS 
solution generated by a virtual reference station. 

 

III. PROPOSED MADM METHODOLOGY 

 
Safety-critical and delay-critical ITS applications demand 

the acquirement of GNSS corrections from the mobile 
neighbor vehicles by the fewest data transactions. In order to 
pick the optimal neighbor car for cooperation, the ego-vehicle 
in C-DGNSS receives serially position-related information 
from the M alternatives and ranks them using N criteria/ 
attributes. The NMEA 0183 is a universal data protocol to 
connect communication apps and hardware devices. The 
NMEA simply provides ASCII strings where each data field 
contains location-based parameters. Some of the main 
message identifiers within the NMEA messages are as 
follows: Geographic 3D coordinates ($GNGNS), visible 
GNSS satellites ($GNGSV), dilution of precision 
($GNGSA), accuracy standard deviation ($GNGST).  

The NMEA messages are radio-transmitted. They are 
suitable because they connect incompatible GNSS receivers 
while the users don’t have to develop receiver-specific 
implementations.  

The proposed MADM unit constitutes a fast and 
computerized decision-making methodology that converges 
on the optimal alternative or yields a ranking of a given set of 
alternatives [12]. Initially, a decision matrix of size (M x N) 
is constructed with the normalized criteria values i.e., the 
performance of ith alternative to jth attribute/criterion. Then, 
criteria weights are assigned either objectively or 
subjectively/directly [12]. Finally, the MADM methodology 
manipulates the normalized data according to the weighted 
criteria and produces a ranking output [12]. There are 
numerous MADM methods and normalization approaches in 
the literature. Their decision-making processes and similar 
features typically classify them to scoring-based, outranking-
based, hierarchy structure-based, distance-based and others 
for optimal ranking and selection [12]. In our work, the 
following two MADM methods will be considered for a 
proof-of-concept demonstration. 

The Simple Additive Weighting (SAW) is a scoring-
based MADM algorithm [12]. SAW is very simplistic and 
understandable as it works with the minimum complexity and 
latency. Specifically, normalized criteria values are drawn 
from the decision matrix, and a scoring function linearly 



aggregate them into a single value for each alternative. 
However, SAW makes plenty of unrealistic assumptions 
while exhibiting ranking instability when the input data are 
varying e.g., negative criteria values, large fluctuations in 
data. 

The Technique for Order of Preference by Similarity to 
Ideal Solution (TOPSIS) is a distance-based MADM 
algorithm [12]. TOPSIS works with a moderate complexity 
and latency but it’s proven stable even if the input values are 
greatly varying. It considers a pair of ideal geometric points 
and considers that the optimal alternative is the one that has 
the smallest distance from the ideally best and the largest 
distance from the ideally worst point. The potential drawback 
of this method is the use of Euclidean distance which may be 
inefficient if the criteria are highly correlated. 

 

IV. SIMULATION RESULTS 

 
The emulated data used for testing and validation of the 

proposed methodology concern five passenger vehicles 
moving simultaneously for 40.88 min (about 2500 epochs) 
[13]. Each car moved at different trajectory consisting of 
variable observation conditions: (i) open area, (ii) urban 
canyon with narrow streets and multi-story buildings, and (iii) 
suburban environment with tall trees of dense foliage, causing 
significant losses and partial interruption of the satellite signal. 
Emulation framework implemented using: a) real GNSS PVT 
data, b) MATLAB script and c) MATLAB toolbox for testing 
MADM algorithms. GNSS PVT data occurred from low-cost 
ITS compatible GNSS receivers [13].  

GNSS receivers are configured to compute PVT solution 
at 1Hz rate and report it through standardized GNS and GST 
messages of NMEA protocol. Table I exhibits the list of 
criteria used per NMEA sentence. The number of visible 
GNSS satellites (NS), (2) the root mean square of the double-
difference L1 phase residuals (Range RMS), (3) the horizontal 
accuracy standard deviation (Hz std), (4) the position’s 
solution ambiguity status (Amb Stat), and (5) the horizontal 
dilution of precision (HDOP). Furthermore, the Range RMS, 
Hz std, V std are all measured in meters, while the Amb Stat 
may output an autonomous, a differential GNSS, a float, and 
a high-resolution fixed solution. The HDOP takes values 
inversely proportional to the number of visible satellites low 
in the sky (ideally < 1).  

TABLE I.  POSITION-RELATED CRITERIA FOR THE MADM MODULE  

a/a Criteria name 
NMEA 

Type 
Sentence Field no 

1 Number of satellites GNS 7 Benefit 

2 Range RMS GST 2 Benefit 

3 Horizontal std GST 6,7 Expense 

4 Integer ambiguity status GNS 6 Benefit 

5 HDOP GNS 8 Expense 

 

Finally, the criteria are classified to “Expenses” and 
“Benefits”. The first class means that the lower the criterion 
value, the better (minimum), while the second class denotes 
that the higher the criterion value, the better (maximum). 

From five passenger vehicles that were used, the first 
vehicle (veh. #1) is the target vehicle and the remaining four 
(veh. #2, veh. #3, veh. #4, veh. #5) are the neighbor vehicles. 

Fig. 1 shows a plot of the number of visible satellites of the 
GNSS receiver for all engaged vehicles. From Fig. 1 it is 
clearly seen the various observation conditions for the 
participating vehicles. For instance, veh. #5 is moving in open 
area settings as the satellites in-view are constant during its 
trajectory exhibiting only minor fluctuations. On the contrast, 
the multipath effects in urban settings cause a high NS 
variability in Fig.1. 

 

Fig. 1. Νumber of satellites in view per neighbor vehicle (veh. 
02/03/04/05) for the entire trajectory. 

Fig. 2 plots the horizontal accuracy standard deviation (Hz 
std) of each vehicle along the whole trajectory. As expected, 
as the number of satellites decreases the Hz std increases. 
Also, the greater the fluctuation of the visible satellites the 
larger the Hz std becomes. 

 

Fig. 2. Horizontal std per neighbour vehicle (veh. 02/03/04/05) for the 
whole trajectory. 

A trajectory of 2453 timestamps (epochs) subject to N = 5 
criteria is investigated using M = 4 alternative vehicles (veh. 
02 – veh. 05) while the ranking results are determined using 
two MADM algorithms: TOPSIS and SAW. For every 
timestamp, the decision matrix is formulated using normalized 
criteria data of every neighbor vehicle via the MAX method – 
divide by the maximum value. The decision matrix is fed then 
in the MADM methods and the Ranking (R(i)) matrix of the 
alternative vehicles, with their corresponding Performance 
indicator (Q(i)) matrix are estimated.  

Table II contains the decision matrix of 1221th timestamp. 
Tables III and IV include the Ranking and Performance 
indicator results of both TOPSIS and SAW MADM methods, 
for equal weighting w = [0.2  0.2  0.2  0.2  0.2].  

TABLE II.  MADM DECISION MATRIX 

Veh. 
Criteria 

NS L1 rms Hz std Amb Stat HDOP 

02 12 0.006 0.015 Fixed 0.87 

03 8 0.004 1.123 Float 1.31 

04 11 0.004 0.101 Float 0.92 

05 11 0.006 0.093 Float 0.66 



 

TABLE III.  TOPSIS METHOD RESULTS 

R(i) Veh. Q(i) 

1 02 0.966 

2 05 0.748 

3 04 0.705 

4 03 0.000 
 

TABLE IV.  SAW METHOD RESULTS 

R(i) Veh. Q(i) 

1 02 0.968 

2 05 0.869 

3 04 0.762 

4 03 0.470 
 

We observe that TOPSIS and SAW produce very similar 
rankings for this timestamp indicating veh. 02 as the optimal 
selection. 

In Fig. 3, the selected rank I vehicle ID (optimal neighbor) 
along the trajectory is depicted by employing the TOPSIS 
method. The results are derived using the MAX normalization 
method and an assumption of equi-weighted criteria (w = 0.2). 

 

Fig. 3. Rank I vehicle ID vs epochs, using MAX normalization method, 
TOPSIS method and equi-weighted criteria. 

In order to validate the proposed method using real data of 
simultaneously moving vehicles, a pilot experiment was 
organized and took place at the Zografou Campus of National 
Technical University of Athens. Six neighbor vehicles and 
one Target Vehicle were equipped with low-cost ITS-
compatible GNSS receivers. The Target Vehicle was also 
equipped with a Tactical Grade GNSS/IMU to compute the 
reference trajectory of the vehicle and compare it with the C-
DGNSS solution produced.  

During the experiment, various moving scenarios of 
participating vehicles were scheduled and took place, under 
variable observation conditions. GNSS corrections data 
exchange between vehicles was achieved using the NTRIP 
caster/server. Data obtained from the experiment are 
investigated and preprocessed in order to have the appropriate 
form for the final C-DGNSS processing. 

 

V. CONCLUSIONS 

In this paper, a C-DGNSS solution is presented to enhance 
the positioning accuracy of low-cost GNSS receivers in 
critical ITS applications. The objective is the target-vehicle to 
identify the optimal neighbor to cooperate and acquire GNSS 
corrections. For this reason, a MADM module is employed to 

rank the alternative vehicles in the vicinity via a number of 
position-related criteria. The emulation framework employs 
real data from experimental sessions in various operating 
conditions (i.e., suburbs, urban canyons, and open sky). The 
emulated criteria values fed to the MADM module are in the 
form of NMEA data. Then, the derived emulations’ ranking 
tables, criteria-epochs diagrams, MADM algorithms’ 
performance results are presented and discussed. An 
evaluation of the TOPSIS and SAW methods in terms of 
ranking performance and optimal selection is realized.  
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