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Abstract— Motivated by the suitability of the Weibull distri-
bution to model multipath fading channels, the performance of
L-branch selection combining (SC) receivers, with non-identical
statistic, is presented. Deriving a useful expression for the
probability density function of the SC output signal-to-noise
ratio (SNR), important performance metrics are studied. More
specifically, a closed-form expression is derived for the moments
of the combiner output SNR, which is used to study the average
output SNR and the amount of fading. The average symbol error
probability for several coherent and non-coherent, binary and
multilevel modulations schemes is also obtained in closed-form.

I. INTRODUCTION

Selection combining (SC) receivers are utilized to mi-
tigate the detrimental effects of channel fading and co-
channel interference in wireless digital communications sy-
stems. Their major advantage is the reduced complexity
compared to other well-known diversity techniques, such
as equal-gain combining (EGC), maximal-ratio combining
(MRC) and generalized-selection combing (GSC). In L-branch
selection diversity receivers, the instantaneous signal-to-noise
ratio (SNR) of the L branches are estimated and the one with
the highest value is selected [1].

Experimental fading channel measurements have shown,
that the Weibull model also exhibits an excellent fit for both
indoors [2], as well as outdoors [3] environments. Further-
more, due to the well-known fact that the land-mobile satellite
channel has some similarities with the terrestrial radio propa-
gation environment [4], the Weibull distribution could be also
considered as an alternative channel model for land-mobile
satellite systems. For example, the Weibull distribution is more
general than the Rice, which is the most commonly used for
land mobile satellite systems. Moreover, for rainfall signal
attenuation, extensive experimental measurements for satellite
communications systems operating at frequencies above 10
GHz have shown the existence of multipath received signals.
The survivorship function of this signal attenuation, i.e., the
ratio between the number of crossings lasting longer than
a given duration and the total number of crossings of that
attenuation level, was found to be well represented by the
Weibull distribution [5].

The performance of selection diversity receivers has been
extensively studied in the open technical literature for several
well-known fading statistical models, such as Rayleigh, Rice
and Nakagami-m, for both independent and correlative fading

[1], [6]–[10]. Surprisingly, published works, related to the
diversity receivers performance in Weibull fading, are scarce.
For example, an analysis for the evaluation of the GSC
receivers performance has been presented in [11], while in
[12], the performance analysis of dual-branch SC receivers
over correlative Weibull fading, has been studied. Recently
in [13], the outage probability and the average output SNR
of L-branch SC receivers operating over independent and
identically distributed (i.i.d.) Weibull fading channels have
been obtained in closed-form. However, a performance study
concerning SC receivers with non-identical Weibull fading
statistics, has not been previously published.

In this paper, by deriving a useful formula for the probability
density function (PDF) of the output SNR of an L-branch
SC receiver with SNR branch unbalance, a novel closed-form
expression for the moments is derived. This expression is
used to study important performance criteria, such as average
output SNR, amount of fading (AoF), and average symbol
error probability (ASEP) for several coherent modulations
schemes, such as BFSK, DEBPSK, M -QAM, MSK, and M -
PSK, as well as for non-coherent modulations schemes, such
as DBPSK, NBFSK, π/4-DQPSK with Gray encoding and M -
DPSK. Selected numerical examples are presented, outlining
the mathematical analysis and showing the effects of various
channels and systems parameters, such as the fading severity,
the power delay profile (PDP) and the number of diversity
branches on the combiners performance.

II. SYSTEM AND CHANNEL MODELS

We consider an L-branch SC receiver operating in a non-
identical Weibull fading environment. The PDF and the cumu-
lative distribution function (CDF) of the instantaneous SNR in
the �th, � = 1, 2, . . . , L, input branch is

pγ�
(γ) =

β�

2a� γ�

(
γ

a� γ�

) β�
2 −1

exp

[
−
(

γ

a� γ�

)β�/2
]

(1)

and

Fγ�
(γ) = 1 − exp

[
−
(

γ

a� γ�

)β�/2
]

(2)

respectively. In the above equations, γ� is the corresponding
average input SNR, a� = 1/Γ (d2,�), where Γ (·) is the Gamma
function [14, eq. (8.310/1)], dn,� = 1 + n/β� (n is a positive
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integer) and β� is the Weibull fading parameter (β� ≥ 0) and
describes the severity of fading. As β� increases, the severity
of the fading decreases, while for the special case of β� = 2,
it becomes the well-known Rayleigh model.

The CDF of the instantaneous SC output SNR γsc is the
probability that the signal levels of all branches fall below a
certain level, i.e., Fγsc

(γ) =
∏L

k=1 Fγk
(γ), which using (2),

is expressed as [13, eq. (3)]

Fγsc
(γ) =

L∏
k=1

{
1 − exp

[
−
(

γ

akγk

)β�/2
]}

. (3)

The PDF of γsc can be obtained by differentiating (3) with
respect to γsc, yielding

pγsc
(γ) =

1
2

L∑
k=1

βk γβk/2−1

(akγk)βk/2
exp

[
−
(

γ

ak γk

)βk/2
]

×
L∏

i=1
i�=k

{
1 − exp

[
−
(

γ

ai γi

)βi/2
]}

.

(4)

The above expression for the PDF of γsc can not be easily
mathematically manipulated in the current form. Therefore,
we rearrange (4), performing all the multiplications within the
product and thus, for β� = β, ∀� (a� = a and dn,� = dn),
valid for practical applications, after manipulations (4), can
be written as

pγsc
(γ) =

1
2

γ
β
2 −1

L∑
k=1

(−1)k+1

L−k+1∑
λ1=1

L−k+2∑
λ2=λ1+1

· · ·
L∑

λk=λk−1+1

k∏
j=1

tλj

k∑
i=1

uλi

(5)

where u� = β/ (a γ�)
β/2 and t� = exp

(
u� γβ/2/β

)
. Equation

(5) includes only sums of simple products of power and
exponential functions, which are mathematically trackable.
Note, that for i.i.d. input paths (i.e., γ� = γ and Ω� = Ω,∀�),
using the binomial identity [14, eq. (1.111)], (4) reduces to
[13, eq. (5)].

III. MOMENTS OF THE SC OUTPUT SNR

The first and the second order moments of the SC output
SNR are statistical parameters used to evaluate important
performance measures of the combiner, such as average output
SNR, variance and AoF. The higher order moments can be
also useful in signal processing algorithms for signal detection,
classification, and estimation and they play a fundamental role
in understanding the performance of wideband communica-
tions systems in the presence of fading [15].

The nth moment of the output SNR is given by

E 〈γn
sc〉 =

∫ ∞

0

γn pγsc
(γ) dγ (6)

where E 〈·〉 denotes expectation and n is a positive integer.
Substituting (5) in (6), interchanging the order of summation
and integration and using [14, eq. (3.326/2)], after some

Fig. 1. First branch normalized average output SNR vs. diversity order with
an exponentially decaying PDP.

manipulations, the nth moment of the output SNR can be
obtained in closed-form as

E 〈γn
sc〉 = G2n/β (y) Γ (d2n) /Γn (d2) (7)

where G· (·) is a symmetric function, defined in Appendix I

and y =
[
γ
−β/2
1 γ

−β/2
2 . . . γ

−β/2
L

]
. For i.i.d. input paths, (7)

simplifies to

E 〈γn
sc〉 = L (aγ)n Γ (d2n)

L−1∑
k=0

(
L − 1

k

)
(−1)k

(k + 1)
2n
β +1

. (8)

A. Average Output SNR

Setting n = 1 in (7), the SC average output SNR with non-
identical input branches can be obtained in closed-form as

γsc = G2/β (y) (9)

where for i.i.d. input paths reduces to [13, eq. (8)].
In Fig. 1, using (9), the first branch normalized average

output SNR, γsc/γ1 is plotted as a function of L, for non-
identically distributed input branches, with an exponentially
decaying PDP, i.e., γ� = γ1 exp[−δ (�−1)], for several values
of β and the power decaying factor δ ≥ 0. As expected, the
diversity gain increases as L increases, while for a fixed β and
L, γsc/γ1 degrades rapidly as δ increases. Additionally, for a
fixed δ, γsc/γ1 increases as the severity of fading increases
(i.e., as β decreases).

B. Amount of Fading (AoF)

The first two moments of γsc can be used to evaluate the
AoF at the output of the combiner, which is considered as
a unified measure for the severity of fading [1]. The AoF is
defined as the ratio of the variance to the square mean of γsc

and using (7), it can be expressed as

AoF =
G4/β (y) Γ (d4)
Γ2 (d2) G2

2/β (y)
. (10)
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TABLE I

A, B AND Λ FOR SEVERAL SIGNALING CONSTELLATIONS

Signaling A B Λ

BPSK 1/2 1 –

BFSK 1/2 1/2 –

DEBPSK 1 1 –

QPSK and MSK 1 1/2 –

Square M -QAM 2 − 2/
√

M 1.5/(M − 1) –

NBFSK 1/2 1/2 –

DBPSK 1/2 1 –

π/4-DQPSK 1/(2π) 2
2−√

2 cos(θ)
π

M -PSK 1/π
sin2(π/M)

sin2(θ)
π − π/M

M -DPSK 1/π
sin2(π/M)

1+cos(π/M) cos(θ)
π − π/M

IV. ERROR RATE PERFORMANCE

The most straightforward approach to obtain the ASEP P se,
is to average the conditional symbol error probability Pse(γ)
over the PDF of the combiner’s output SNR [1], i.e.,

P se =
∫ ∞

0

Pse(γ) pγsc
(γ) dγ. (11)

It is well-known, that Pse(γ) can be written [1]:

i) For coherent binary and M -ary modulation schemes,
such as BPSK and BFSK and for higher values of ave-
rage input SNR for DEBPSK, QPSK, MSK and square
M -QAM in the form of Pse(γ) = A erfc

(√
B γ
)
, where

erfc(·) is the complementary error function [14, eq.
(8.250/4)],

ii) For non-coherent modulation schemes, such as NBFSK
and DBPSK in the form of Pse(γ) = A exp(−B γ),

iii) Furthermore, for multilevel modulation schemes, such
as π/4-DQPSK with Gray encoding, M -PSK and M -
DPSK in the form of Pse(γ) = A

∫ Λ

0
exp[−B(θ) γ] dθ.

The particular values of A, B and Λ depend on the considered
modulation scheme and are summarized in Table I.

A. ASEP for Coherent BPSK, BFSK, DEBPSK, QPSK, MSK
and Square M -QAM

Using (5), it is easily recognized that (11) requires evalua-
tion of integrals of the form

Υ1 =
∫ ∞

0

xβ/2−1 erf
(√

B x
)

exp
(
−ξ xβ/2

)
dx (12)

where ξ is a positive real value. Since the above integral is not
a tabulated one, a solution is given in Appendix II in terms
of the Meijer’s G-function, helping us to express the ASEP
in a closed-form as in (13) (top of this page), where G [·]
is the Meijer’s G-function [14, eq. (9.301)], with I(h, µ) =
h/µ, (h + 1)/µ, . . . , (h + µ − 1)/µ, µ being positive integer
and h real constant. The variables κ and µ are positive integers
so that µ/κ = β/2 holds. Depending upon the value of β, a
set with minimum values for κ and µ must be properly chosen
(e.g. for β = 2.6 we have to choose κ = 10 and µ = 13),

while for the special case where β is an integer we must be
chose κ = 2 and µ = β.

For i.d.d. input paths, (13) reduces to

P se =A

{
1 − βL

2 (aγ)
β
2

√
κµ

β
2 −1B− β

2

√
π (2π)

κ+µ−2
2

L−1∑
n=0

(
L − 1

n

)
(−1)n

×G κ+µ , µ
2µ , κ+µ

[
(n + 1)κ

κκ (a γ)
κβ
2

( µ

B

)µ
∣∣∣∣∣ I(µ, 1−β

2 ) , I(µ,1− β
2 )

I(κ,0) , I(µ,− β
2 )

]}

(14)

where setting L = 1, the ASEP for the single channel receivers
can be obtained as

P se =A

{
1 − β

2 (aγ)
β
2

√
κµ

β
2 −1B− β

2

√
π (2π)

κ+µ−2
2

×G κ+µ , µ
2µ , κ+µ

[
κ−κ

(a γ)
β κ
2

( µ

B

)µ
∣∣∣∣∣ I(µ, 1−β

2 ) , I(µ,1− β
2 )

I(κ,0) , I(µ,− β
2 )

]}
.

(15)

B. ASEP for Non-coherent BFSK and DBPSK

For non-coherent modulation schemes, such as NBFSK and
DBPSK, (11) requires evaluation of integrals of the form

Υ2 =
∫ ∞

0

xβ/2−1 exp (−B x) exp
(
−ξ xβ/2

)
dx. (16)

This type of integral, is analytically solved in terms of the
Meijer’s G-function (see Appendix III) and the ASEP can
be obtained in closed-form expression as in (17) (top of this
page), where the integers κ and µ must be chosen so that
µ/κ = β/2 holds.

For i.d.d. input paths (17) reduces to

P se =
βLA

2 (a γ)
β
2

(
κ
µ

) 1
2

µ
β
2 B− β

2

(2π)
κ+µ−2

2

L−1∑
n=0

(
L − 1

n

)
(−1)n

× Gκ,µ
µ,κ

[
(n + 1)κ

κκ (a γ)
κβ
2

( µ

B

)µ
∣∣∣∣∣ I(µ,1− β

2 )
I(κ,0)

] (18)

and setting L = 1 in (18), the ASEP for the single channel
receivers can be obtained as

P se =
βA

2 (a γ)
β
2

(
κ
µ

) 1
2

µ
β
2 B− β

2

(2π)
κ+µ−2

2

× Gκ,µ
µ,κ

[
κ−κ

(a γ)
β κ
2

( µ

B

)µ
∣∣∣∣∣ I(µ,1− β

2 )
I(κ,0)

]
.

(19)

C. ASEP of Gray Encoded π/4-DQPSK, M -PSK and M -
DPSK

For multilevel modulation schemes such as π/4-DQPSK
with Gray encoding, M -PSK and M -DPSK, (11) requires
evaluation of integrals with finite limits of the form

P se =
∫ Λ

0

P se[B(θ)] dθ (20)
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P se =A


1 − β

√
κµ

β
2 −1 B− β

2

2
√

π (2π)
κ+µ

2 −1

L∑
n=1

(−1)n+1
L−n+1∑
λ1=1

L−n+2∑
λ2=λ1+1

· · ·
L∑

λn=λn−1+1

n∑
i=1

(
a γλi

)− β
2

×G κ+µ , µ
2µ , κ+µ




 1

κ

n∑
j=1

(
a γλj

)− β
2




κ ( µ

B

)µ

∣∣∣∣∣∣
I(µ, 1−β

2 ) , I(µ,1− β
2 )

I(κ,0) , I(µ,− β
2 )






(13)

P se =
√

κ

µ

Aβ µ
β
2 B− β

2

2 (2π)
κ+µ

2 −1

L∑
n=1

(−1)n+1
L−n+1∑
λ1=1

L−n+2∑
λ2=λ1+1

· · ·
L∑

λn=λn−1+1

n∑
i=1

(
a γλi

)− β
2

× Gκ , µ
µ , κ




 1

κ

n∑
j=1

(
a γλj

)− β
2




κ ( µ

B

)µ

∣∣∣∣∣∣
I(µ,1− β

2 )
I(κ,0)




(17)

Fig. 2. ASEP of SC as a function of input SNR for BPSK signaling.

where P se[B(θ)] is similar to (17), but now B is a function
of θ, i.e., B(θ), where its corresponding expressions are listed
in Table I. The integral in (20) can be numerically evaluated,
using any of the well-known mathematical software packages,
such as Maple and Mathematica.

As indicative examples of the above three cases, using
(14), (18), and (20), ASEPs of BPSK, DBPSK, and 8-PSK,
are plotted in Figs. 2, 3, and 4, respectively, for i.i.d. input
branches and for several values of β and L. The applicability
of the satellite channel model is expressed in these figures,
comparing β with the corresponding Rician factor and using
proper values for β. The obtained performance evaluation
results show that P se improves with an increase of γ. Fur-
thermore, for a fixed value of γ, as β and L increases better
performance is provided.

APPENDIX I
DEFINITION OF Gq (·)

Let u be an L dimensional vector, u = [u1 u2 · · · uL], with
elements {ul} real constant values (l = 1, 2, . . . , L). We define

Fig. 3. ASEP of SC as a function of input SNR for DBPSK signaling.

the symmetric function Gq (u) as

Gq (u) =
L∑

n=1

(−1)n+1

L−n+1∑
λ1=1

L−n+2∑
λ2=λ1+1

· · ·
L∑

λn=λn−1+1

(
n∑

i=1

uλi

)−q (I.1)

where q is a real value and n is a positive integer (n ≤ L).

APPENDIX II
EVALUATION OF INTEGRAL IN (12)

The complicated integrals (12) and (16) can be efficiently
solved using (II.1) (top of the next page) [16, eq. (21)], where
G [·] is the Meijer’s G-function [14, eq. (9.301)], c∗ = m +
n − (p + q)/2, µ =

∑q
j=1 bj −∑p

j=1 aj + (p + q)/2 + 1,
b∗ = s + t − (u + v)/2, 	 =

∑ν
j=1 dj −∑u

j=1 cj + (u −
v)/2 + 1 and I(k, h) = h/k, (h + 1)/k, . . . , (h + k − 1)/k,
with k, l, s, t, u, v,m, n, p and q being positive integers and
η, ap, bq, cu, dv, h, σ and ω being real constant values.
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∫ ∞

0

xη−1 Gs,t
u,v

[
σx
∣∣∣ {cu}
{dv}
]
Gm,n

p,q

[
ωx

l
k

∣∣∣ {ap}
{bq}
]
dx =

kµ l�+a(v−u)−1 σ−a

(2π)b∗(l−1)+c∗(k−1)

× Gkm+lt,kn+ls
kp+lv,kq+lu

[
ωk kk(p−q)

σl ll(u−v)

∣∣∣ I(k,a1),...,I(k,an),I(l,1−η−d1),...,I(l,1−η−dν),I(k,an+1),...,I(k,ap)
I(k,b1),...,I(k,bm),I(l,1−η−c1),...,I(l,1−η−cu),I(k,bm+1),...,I(k,bq)

] (II.1)

Fig. 4. ASEP of SC as a function of input SNR for 8-PSK signaling.

The integral in (12) can be solved by expressing
the error and the exponential functions as Meijer’s G-
functions, i.e., erf

(√
Bx
)

= G1,1
1,2

[
B x| 1

0.5 , 0

]
/
√

π [16,

eq. (12)] and exp
(−ξxβ/2

)
= G1,0

0,1

[
ξxβ/2

∣∣−
0

]
[16, eq.

(11)]. Thus, the integral in Section IV-A can be written
as π−1/2

∫∞
0

xβ/2−1 G1,1
1,2

[
B x| 1

0.5 , 0

]
G1,0

0,1

[
ξxβ/2

∣∣−
0

]
dx and

using (II.1), yields

Υ1 =

√
k lβ/2−1B−β/2

√
π (2π)(k+l−2)/2

× G k+l , l
2l , k+l

[
ξk

kk

ll

Bl

∣∣∣∣ I(l,(1−β)/2) , I(l,1−β/2)

I(k,0) , I(l,−β/2)

] (II.2)

where k and l are positive integers so that l/k = β/2 holds.
Depending upon the value of β, a set with minimum values
of k and l must be properly chosen.

APPENDIX III
EVALUATION OF INTEGRAL IN (16)

Similarly, and as previously discussed in Appendix II,
by expressing the integral in (16) using [16, eq. (11)]
as
∫∞
0

xβ/2−1 G1,0
0,1 [B x|−0 ] G1,0

0,1

[
ξxβ/2

∣∣−
0

]
dx and employing

(II.1), (16) can be expressed in closed-form as

Υ2 =

√
k/l lβ/2 B−β/2

(2π)(k+l−2)/2
Gk,l

l,k

[(
ξ

k

)k (
l

B

)l
∣∣∣∣∣ I(l,1− β

2 )
I(k,0)

]
(III.1)

where k and l are chosen using so that l/k = β/2 holds.
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