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Abstract- In this paper an anlytical framework for
analyzing the arbitrarily correlated trivariate Weibull
distribution is introduced. For this distribution infinite
series representations for the joint probability density
function, the cumulative distribution function (CDF) and
the moments are derived. Two special correlation cases
of the distribution are studied: the exponential and the
constant. These series representations are readily appli-
cable to the performance analysis of a 3-branch selection
combining (SC) receiver operating in a Weibull correlation
fading environment and the outage probability is derived.
The proposed mathematical analysis is complemented by
various numerical results, showing the effects of fading
severity, correlation and the power decay factor.

I. INTRODUCTION

During the last years there has been a continuing
interest in multivariate statistics for modelling and ana-
lyzing realistic wireless channels with correlated fading
[1]. In diversity reception which as well-known reduces
the effect of fading on the system's performance, is
frequently assumed that the antennas are sufficiently
separated so that the combined signals are independent of
each other. However, this assumption is not always valid,
e.g. for applications employing wireless terminals with
insufficient antenna spacing for space and polarization
diversity (mobile terminal, indoor base-station, etc.). It is
also well-known that the correlation among the receiving
channels results in a degradation of the diversity gain [2].

There are several fading correlation models, which
correspond to certain correlation environments and com-
munication scenaria. The most widely used are the
constant and the exponential correlation models [1]. For
the first one the correlation depends on the distance
among the combining antennas and as a consequence it is

more suitable for equidistant antennas. The second one,
corresponds to the scenario of multichannel reception
from equispaced diversity antennas. This model has been
widely used for performance analysis of space diversity
techniques [3], [4], [5] or multiple-input multiple-output
(MIMO) systems [6]. The arbitrary correlation model
[7], used in this paper, is more generic as it includes the
two previously mentioned models as special cases.

Past works concerning multivariate distributions with
arbitrary correlation can be found in [2], [7]-[9]. In [7]
new infinite series representations for the joint proba-
bility density function (PDF) and the joint cumulative
distribution function (CDF) of three and four arbitrarily
correlated Rayleigh random variables were presented.
In [2] useful closed-form expressions for the joint
Nakagami-m multivariate PDF and CDF with arbitrary
correlation were derived and the correlation matrix was
approximated by a Green's matrix. Similarly in [8], the
Green's matrix was used to approximate the correlation
matrix of L branch selection combining (SC) receivers
with arbitrary correlation and the outage probability for
lognormal fading channels has been obtained. In [9]
expressions for multivariate Rayleigh and exponential
PDFs generated from correlated Gaussian random vari-
ables were presented, while a general expression for the
multivariate exponential characteristic function (CF), in
terms of determinants, was also derived.
The Weibull distribution, although it was originally

used in reliability and failure data analysis, it has been
recently considered for wireless digital communication
systems. The main motivation for this is the fact that it
exhibits a very good fit to experimental fading channel
measurements for both indoor and outdoor terrestrial
radio propagation environments [10], [11]. Additionally,
in [12], it was argued that the Weibull distribution could
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also been considered as a more generic channel model
for land-mobile satellite systems. In a recent paper [13],
the joint PDF, CDF and the moment-generating func-
tion (MGF) for the bivariate Weibull distribution have
been analytically presented. The multivariate Weibull
distribution has also been studied for the exponential
and the constant correlation case with equal average
fading powers. However, to the best of the authors'
knowledge, an analytical framework for the trivariate
Weibull distribution with arbitrary correlation, has not
yet been presented in the open technical literature. Thus,
this is the subject of our paper, whereby we apply
the developed analytical framework to the performance
evaluation of a 3-branch SC receiver.

II. STATISTICAL CHARACTERISTICS

Let hf , l = 1, 2, 3 be the complex envelope of the
Weibull fading model, written as

hf = (Xf +jYe)2/et = G2/13£ (1)

where Xe and Ye are the Gaussian in-phase and quadra-
ture elements of the multipath components [13] and j
is the imaginary operator. By representing Ze as the
magnitude of he, i.e., Ze = Ihe , where denotes
absolute value, Ze can be expressed as a power transfor-
mation of a Rayleigh distributed random variable (RV)
R=£ X + jY£ as [14]

Zf = Rt2s. (2)

Let G {G1, G2, G3} be joint complex Gaussian
RVs with zero means and positive definite covariance
matrix L, with elements i, £(G=iG*), where E (.)
denotes expectation. By applying (2) in the infinite series
representation of the Rayleigh trivariate distribution [7,
eq. (5)], the trivariate Weibull distribution can be ex-
pressed as

0102/33det(ID)fzl,z,z(ZI ,z2,~Z3)= (2-/31) /2 (2-/32) /2 (2-/33) /2z1 2 3

x exp [- (z/31qll + Z32qX22 + Z33 q33)]
00

x E 'Ek (_-1)kcos(kx))
k=O

X 10q12 12+k 1q23 12m+k 1031 12n+k

f,m,n= 1!( + k)! m!(m + k)! n!(n + k)!
/31i(f+nr/+k)+31/2 /32(£+m+k)+/32 /2 /33(m+n+k)+/33 /2Xz1 Z2 Z3

where Ek is the Neumann factor (CO = 1, Ek= 2 for
k = 1, 2, ), X = X12 + X23 +X31 and b is the inverse
covariance matrix in the case of the trivariate Weibull
distribution, given by

11, X12, X13
'( = xp-1 = *q123, q22, q23

LX13, X2*3, X33 I (4)

for Oi, = i, exp(jXi,<) and i, , C {1, 2, 3}.
By integrating (3) an infinite series representation for

the CDF of Z1, Z2, Z3 is derived as

Fz1,Z2,Z3 (ZI, Z2, Z3) det(ID) 00
0112203S Elk(k=0

_1) cos(kX)
00

xE Cf, f£+k/2 m+k/2 nt+k/2
X E Ct,m,k: V12 V23 V3 1
£,m,n=O

X ?(51,Z'3s11 ) (2,Z 32 $22)a (3,Z 33$33)

(5)
where

1
C£'mk = 1 !(f + k)!m!(m + k)!n!(n + k)!'

lXN2

and 61 = +rn+k+l,5 2 = mr+ +k+l,1 3
n + m+ k + 1 with y(., -) denoting the incomplete lower
Gamma function [15, eq. (3.381/1)].
Moments are a useful statistical tool to characterize

a distribution. Using (3), the product moments of the
(oa + r1 + d)th order of Z1, Z2 and Z3 can been derived
as

det(I)
1+ /X1 Q21+r7/2 01+t/33~11 Y22 ~33

00 00

>5Q (_l)k cos(kX) S Cf flQjk/2rr+k2 nr+k/2X 'Ek(-)o( ) E C7m7 V12 V23 V31
k=O ,m,rn=O

x F 1+ aF (62+ T ) F (63 + d

xr(al+ )r(02 2'/33(03+g(6
(6)

with F (.) denoting the gamma function [15, eq.
(8.310/1)].

Using the theoretical analysis above, two previously
used spatial correlation models can be studied as special
cases.
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A. Constant Correlation Model

The constant correlation model was first proposed by
Aalo in [16] and is valid for a set of closely placed
antennas. Its normalized correlation matrix consists of
the elements /i,> = p(i z ,) and /ij = 1, where
-1/2 < p < 1. Moreover, it can been also shown
that in this case X = X12 + X23 + X31 = 38 [7].
As a consequence, (5) for the constant correlation case
reduces to

Fz1,z2,z3( Zi2, Z3) = (

00 00

X EZEk E Cf,m,k
k=O ,m,n=0

(1 - p)(1 +2p)2
(1 + p)3

(1
p 61 +62+63-3

+p

III. OUTAGE PROBABILITY OF SC RECEIVERS

Let us now consider a SC diversity receiver with
three branches operating over correlated Weibull fading
channels. Let (e = whf + nf be the received in the
£th branch baseband signal, where w is the complex
transmitted symbol, with Es = E(lw12) being the trans-
mitted average symbol's energy and nf is the additive
white Gaussian noise (AWGN) with single-sided power
spectral density No.
The instantaneous SNR per symbol of the 1th diversity

channel can be written as

2Es
7e = Ze No

A1A2A3
(9)

Moreover, the corresponding average SNR is ex-
(7) pressed as

where At =(= , (1+p-2p2)Q )

Note here that for Q1 = Q2 = Q3 = , (7) agrees
with the analysis presented in [13] for the multivariate
Weibull distribution with constant correlation and for
identical average powers.

B. Exponential Correlation Model

= EKZ2)Es F(d2,f f No (10)

where dT,e =1 +r//3 with r taking non-negative values.
Expressions for the statistics of 7e can be easily de-

rived by replacing e3f with e/32 and Qe with (a<y-)'y/2,
in the corresponding expressions for the fading envelope
Ze. Thus using (7), the CDF of the SNR for the constant
correlation case can be expressed as

The exponential correlation model is valid for a set
of equally spaced linear antenna arrays, in which the
correlation among the pairs of combined signals de-
creases as the spacing between the antenna increases
[1]. The normalized correlation matrix of this model is
given by Oi, = pli- l, where 0 < p < 1. Moreover,
p531 =513 = 0 [7]. Thus the joint CDF of (5) simplifies
to

Fz
~ ~ ~ 1 p2)

Fz1,z2,z3 (ZI, Z2, Z3) (1 + p2)

1 t p2 f+m

x E (!(m) +p2

x ey + l, l)z31 ) + m (1+ p2)Z232p2)Ql (1 p2)Q2)

(1 -p)(1 + 2p)2Fz(?l, ?2: ?3) = (1 + p)3
00 00

X E mk,E C0,m,k
k:=O f,m,n=0

( p ) 61+62+63 -3

1 + p

(1 1)

where ptu =(=e, (X+p 2'+pP) e 2)

Furthermore, using (8) the corresponding CDF for the
exponential correlation case can be derived as

FZ(1, 72, 73) (1+p2)(1 p2)

Fm=0 (/2 (21 + p2

x (m+1, (1

/33
Z3 )

_ p2)Q3J-
(8)

Note again that for the simple case where Q1 = Q2 =

Q3 = Q , (8) leads to the same results as [13, eq. (28)]
for L = 3.

x I + 1, (1

x(r | +m,1

x7 lm+1, (i

21/22) (- - ),31/2Jp )(71)~3
(1 + P212/2

(1 -p2)(- 22)/32 2)

2)./33 /2
2)(- - ),33/2J

(12)
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Fig. 1. Outage probability versus the normalized average input SNR
for several values of d and p.
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Fig. 2. Outage probability versus the normalized average input SNR
for several values of d and p.

For the SC receiver, the instantaneous per symbol SNR
at the output of a triple-branch receiver of this type, will
be the one with the highest instantaneous value between
the three branches [17]

1o-l

?sc = maxijl1,72,73- (13 10

P0Ut is defined as the probability that the instantaneous
error probability exceeds a specified value or equiva- n
lently the probability that the receiver output SNR, 7, v 10-
falls below a certain specified threshold, ?th [111 Pout t

can be derived by replacing 71, 72 and 73 with ?th in
(11) and (12), i.e., 10-4

Pout (7th) = Fz (7th) - (14)

-10

IV. PERFORMANCE EVALUATION RESULTS

In this section we use the previous mathematical anal-
ysis to present various performance evaluation results
for the Pout of SC diversity receivers operating over
correlated Weibull fading channels. For the convenience
of the presentation, but without any loss of generality,
it is assumed that /3f = 3V . Furthermore, we assume
non-identical distributed Weibull channels, i.e., ae =

7' exp ((-1) 6) where d is the power decay factor.
Our performance evaluation results have been obtained
by numerically evaluating (14).

-5 0
Normalized Outage Threshold (dB)

5

Fig. 3. Outage probability versus the normalized average input SNR
for several values of d and p.

In Fig. 1, Pout is plotted for the case of the constant
correlation model, as a function of the first branch
normalized outage threshold ?th/7i for a triple-branch
SC, assuming a = 3.3 and for different values of d and
the correlation coefficient p. In Fig. 2, Pout is plotted for
the exponential case and for the same parameters as in

I
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Fig. 4. Outage probability versus the normalized average input SNR
for several values of and p.

Fig. 1 but considering = 4.
The obtained results in both cases show clearly that

P0Ut degrades with an increase of p, ?th/?i1 and &.

In Fig. 3, Pout is also plotted for the case of the con-

stant correlation model, as a function of the first branch
normalized threshold, assuming d = 0.2, for different
values of p and 3. Again an increase of p, ?th/?i1 and/or
the fading severity, leads to the degradation of Pout.

Finally in Fig. 4, assuming that 6 = 0.5 and for the
same parameters as in Fig. 3, the same findings are also
valid for the case of exponential correlation.
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