
Products and Ratios of Two Gaussian Class

Correlated Weibull Random Variables

Petros S. Bithas1, Nikos C. Sagias2, Theodoros A. Tsiftsis3, and
George K. Karagiannidis3

1 Electrical and Computer Engineering Department,
University of Patras, Rion, 26500 Patras, Greece,
(email: pbithas@space.noa.gr)

2 Laboratory of Mobile Communications,
Institute of Informatics and Telecommunications,
National Centre for Scientific Research–“Demokritos,”
Agia Paraskevi, 15310 Athens, Greece,
(e-mail: nsagias@ieee.org)

3 Electrical and Computer Engineering Department,
Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece
(e-mail: thtsif@auth.gr, geokarag@auth.gr)

Abstract. Starting from on a recently introduced Gaussian class bivariate Weibull
stochastic model, the probability density and the cumulative distribution functions
of the product (Z1 Z2)

c and the ratio (Z1/Z2)
c, when Z1 and Z2 are correlated

Weibull random variables belonging to this class (c > 0), are derived in closed
form. Moreover, using the inequality between arithmetic and geometric mean,
a union upper bound for the distribution of the sum of two correlated Weibull
variates Zc

1 + Zc

2 is also presented. Special cases of our results are in agreement
with previously published ones. The proposed analysis is useful in several scientific
fields of engineering.
Keywords: Correlated statistics, distribution of product, distribution of ratio,
stochastic models, Weibull.

1 Introduction

The Weibull distribution was first introduced by Waloddi Weibull back in
1937 for estimating machinery lifetime and became widely known in 1951
[Weibull, 1951]. Nowadays, the Weibull distribution is used in several fields
of science. For example, it is a very popular statistical model in reliability
engineering and failure data analysis. It is also used in many other fields of
science, such as weather forecasting and data fitting of all kinds, while it is
widely applied in radar systems to model the dispersion of the received signals
level produced by some types of clutters [Sekine and Mao, 1990]. Interest-
ingly enough, the Weibull distribution has become popular in the scientific
field of communications engineering, since it seems to exhibit good fit to ex-
perimental channel measurements (see [Sagias and Karagiannidis, 2005] and
references therein).
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Over the past, there have been published many papers in the open tech-
nical literature, where the distributions of products and ratios are studied for
independent [Nadarajah and Kotz, 2006], [Steece, 1976], [Nadarajah, 2005],
[Glena et al., 2004], [Nadarajah and Kotz, 2005], [Nadarajah and Ali, 2005],
[Nadarajah and Gupta, 2005], [Mathai, 1972] and correlated [Simon, 2002],
[Nakagami and Ōta, 1957], [Malik and Trudel, 1986], [Nakagami, 1960] ran-
dom variables (RV)s. Such products and ratios are very useful to biological
and physical sciences, econometrics, classification, ranking, and selection.
Also, research efforts have been made to derive several classes of bivari-
ate Weibull distributions (see [Kotz et al., 2000, Chapter 47/4] and refer-
ences therein). For example, two very popular bivariate Weibull models are
the Gumbel’s [Gumbel, 1960] and Freund’s [Freund, 1961] bivariate expo-
nentials. Recently, a new class of Weibull distributions has been introduced
[Sagias and Karagiannidis, 2005], where the RVs of that class are originated
from correlated Gaussian processes. To the best of the authors’ knowledge,
an analysis for the distributions of products or ratios considering that novel
model has not been published yet.

In this paper, based on the bivariate Weibull distribution of the Gaussian
class presented in [Sagias and Karagiannidis, 2005], we obtain the distribu-
tions of the product and the ratio of two correlated Weibull RVs. More
specifically, their probability density functions (PDF)s and cumulative dis-
tribution functions (CDF)s are extracted in closed form. Furthermore, a
useful union upper bound for the distribution of the sum of two correlated
Weibull variates is also presented.

The remainder of this paper is organized as following: In Sections 2 and
3, the distributions of the products and ratios of two correlated RVs are
presented, respectively. In Section 4, a useful bound for the distribution of
the sum of two correlated Weibull RVs is obtained, while concluding remarks
are provided in Section 5.

2 Distribution of the product of two Weibull rvs

Let Zℓ ≥ 0 (ℓ = 1 and 2) be two, not necessarily identically distributed,
Weibull RVs having joint PDF

fZ1,Z2
(y1, y2) =

β2 (y1 y2)
β−1

Ω1 Ω2 (1 − ρ)

× exp

[

− 1

1 − ρ

(

yβ
1

Ω1
+

yβ
2

Ω2

)]

I0

[

2
√

ρ (y1 y2)
β/2

(1 − ρ)
√

Ω1 Ω2

] (1)

with β > 0 and Ωℓ = E〈Zβ
ℓ 〉 > 0 (E〈·〉 denoting expectation) being the

shaping and scaling parameters, respectively, and In (·) being the nth (n ∈ N)
order modified Bessel of the first kind [Gradshteyn and Ryzhik, 2000, eq.
(8.406)]. For β = 2 and β = 1, (1) includes the well-known Rayleigh and
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negative exponential PDFs, respectively, as special cases. Also, the Weibull
power correlation coefficient, i.e., between Z2

1 and Z2
2 , is related with the

Rayleigh power correlation coefficient (0 ≤ ρ < 1) as

̺ =
2F1(−1/β,−1/β; 1; ρ)− 1

−1 + Γ (1 + 2/β)/Γ 2(1 + 1/β)
(2)

with 0 ≤ ̺ < 1 and pFq (·) representing the generalized hypergeometric
function with p, q integers [Gradshteyn and Ryzhik, 2000, eq. (9.14/1)]. The
bivariate model described by (1) assumes that Z1 and Z2 have two parameters
Weibull marginal PDFs given by1

fZℓ
(y) =

β

Ωℓ
yβ−1 exp

(

− yβ

Ωℓ

)

. (3)

We define a RV P △
= (Z1 Z2)

c
with c > 0 being a positive constant value.

Theorem 1 (Probability density function). The PDF of P is given by

fP(y) =
2 β yβ/c−1

c λ1 (1 − ρ)
I0

[

2
√

ρ yβ/(2c)

√
λ1 (1 − ρ)

]

K0

[

2 yβ/(2c)

√
λ1 (1 − ρ)

]

(4)

with λ1 = Ω1 Ω2 and Kn (·) be the nth order modified Bessel of the second
kind [Gradshteyn and Ryzhik, 2000, eq. (8.407)].

Proof. By using [Papoulis, 2001, eq. (6-74)] and (1), and after simple alge-
braic manipulations yields (4).

By letting c = 1, for ρ = 0, the first Bessel function equals to one (I0(0) =
1), and hence, (4) reduces to fP(y) = 2 λ−1

1 β yβ−1 K0

(

2 yβ/2/
√

λ1

)

, which
agrees with a known result [Nakagami, 1960, eq. (90)], while for Ω1 = Ω2 = 1
(λ1 = 1), also agrees2 with [Mathai, 1972, eq. (3.2)] concerning the product of
independent and identical Weibull RVs. Furthermore for β = 2, (4) simplifies
to [Nakagami, 1960, eq. (145)], [Simon, 2002, eq. (6.55)]

fP(y) =
4 y

λ1 (1 − ρ)
I0

[

2
√

ρ y√
λ1 (1 − ρ)

]

K0

[

2 y√
λ1 (1 − ρ)

]

. (5)

Lemma 1 (Cumulative distribution function). The CDF of P is given
by

FP(y) = 1− 2 yβ/(2c)

√
λ1 (1 − ρ)

{

I0

[

2
√

ρ yβ/(2c)

√
λ1 (1 − ρ)

]

K1

[

2 yβ/(2c)

√
λ1 (1 − ρ)

]

+
√

ρ I1

[

2
√

ρ yβ/(2c)

√
λ1 (1 − ρ)

]

K0

[

2 yβ/(2c)

√
λ1 (1 − ρ)

]

}

.

(6)

1 A Weibull RV Zℓ with PDF given by (3), is denoted as WZℓ
(β, Ωℓ).

2 A term is missing in [Mathai, 1972, eq. (4.6)].
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Fig. 1. PDF of the product of two cor-
related RVs for β = 1.5, 2, and 3.2.
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Fig. 2. CDF of the product of two cor-
related RVs for β = 1.5, 2, and 3.2.

Proof. By integrating fP(y) given by (4) from zero to y, applying the trans-
formation w = yβ/c, and using [Gradshteyn and Ryzhik, 2000, eq. (5.54/1)],
yields (6).

Corresponding special cases such as those for the PDF are the following

(c = 1): For ρ = 0, (6) reduces to FP(y) = 1−2 λ
−1/2
1 yβ/2 K1

(

2 λ
−1/2
1 yβ/2

)

,

while for β = 2 simplifies to

FP(y) = 1− 2 y√
λ1 (1 − ρ)

{

I0

[

2
√

ρ y√
λ1 (1 − ρ)

]

K1

[

2 y√
λ1 (1 − ρ)

]

+
√

ρ I1

[

2
√

ρ y√
λ1 (1 − ρ)

]

K0

[

2 y√
λ1 (1 − ρ)

]}

.

(7)

Without loss of the generality let c = 1. By numerically evaluating (4) and
(6), the PDF and the CDF of P are presented in Figs. 1 and 2, respectively,
as a function of y for Ω1 = 1.2, Ω2 = 0.7 (λ1 = 0.84), ρ = 0.25, and several
values of β.

3 Distribution of the ratio of two Weibull rvs

We define another RV as R △
= (Z1/Z2)

c
.

Theorem 2 (Probability density function). The PDF of R is given by

fR(y) =
β λ2 (1 − ρ)

(

1 + λ2 yβ/c
)

yβ/c−1

c
[

1 − 2 λ2 (2 ρ − 1) yβ/c + λ2
2 y2β/c

]3/2
(8)

with λ2 = Ω2/Ω1 > 0.
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Proof. By using [Papoulis, 2001, eq. (6-43)] and (1), applying a transforma-
tion w = yβ/c, and after simple algebraic manipulations yields (8).

Letting c = 1, for ρ = 0, the above PDF reduces to the formula below

[Mathai, 1972, eq. (4.10)] fR(y) = β λ2 yβ−1/
(

1 + λ2 yβ
)2

concerning the ra-
tio of two independent Weibull RVs, which also agrees with [Nakagami, 1960,
eq. (92)]. Also for β = 2, (4) simplifies to [Nakagami, 1960, eq. (145)]

fR(y) =
2 λ2 (1 − ρ)

(

1 + λ2 y2
)

y

[1 − 2 λ2 (2 ρ − 1) y2 + λ2
2 y4]

3/2
(9)

for the ratio of two correlated Rayleigh distributed RVs.

Lemma 2 (Cumulative distribution function). The CDF of R is given
by

FR(y) =
1

2

[

1 − 1 − λ2 yβ/c

√

1 − 2 λ2 (2 ρ − 1) yβ/c + λ2
2 y2β/c

]

. (10)

Proof. By integrating fR(y) in (8) from zero to y, applying the transforma-
tion w = yβ/c, and using [Gradshteyn and Ryzhik, 2000, eqs. (2.264/5) and
(2.264/5)], yields (10).

Corresponding special cases such as those for the PDF are the following
(c = 1): For ρ = 0, (10) reduces to FR(y) = λ2 yβ/

(

1 + λ2 yβ
)

, while for
β = 2 simplifies to

FR(y) =
1

2

[

1 − 1 − λ2 y2

√

1 − 2 λ2 (2 ρ− 1) y2 + λ2
2 y4

]

. (11)

Having numerically evaluated (8) and (10) (c = 1), a few curves for the
PDF and the CDF of R are presented in Figs. 3 and 4, respectively, as a
function of y considering the same set of parameters as in Figs. 1 and 2
(λ2 = 0.583).

4 An upper bound for the distribution of the sum of

correlated Weibull rvs

Let us define a RV as S
△
= Zc

1 + Zc
2 .

Theorem 3 (A CDF bound). An upper bound for the CDF of S is

FS(y) ≤ 1− 2 (y/2)β/c

√
λ1 (1 − ρ)

{

I0

[

2
√

ρ (y/2)β/c

√
λ1 (1 − ρ)

]

K1

[

2 (y/2)β/c

√
λ1 (1 − ρ)

]

+
√

ρ I1

[

2
√

ρ (y/2)β/c

√
λ1 (1 − ρ)

]

K0

[

2 (y/2)β/c

√
λ1 (1 − ρ)

]

}

.

(12)
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Fig. 3. PDF of the ratio of two corre-
lated RVs for β = 1.5, 2, and 3.2.
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Fig. 4. CDF of the ratio of two corre-
lated RVs for β = 1.5, 2, and 3.2.

Proof. Using the well-known inequality between the arithmetic, A2 = (Zc
1 +

Zc
2)/2, and geometric, G2 = (Z1 Z2)

c/2
, mean [Gradshteyn and Ryzhik, 2000,

Section 11.116], A2 ≥ G2, S can be lower bounded as S ≥ 2
√
P . Using (6),

it can be easily seen that the CDF of S can be upper bounded as FS(y) ≤
FP [(y/2)2], resulting in (12).

Letting c = 1 and for ρ = 0, (12) reduces to FS(y) ≤ 1 − 2 λ
−1/2
1 (y/2)β

×K1

[

2 λ
−1/2
1 (y/2)β

]

, while for β = 2 simplifies to

FS(y) ≤ 1− y2/2√
λ1 (1 − ρ)

{

I0

[ √
ρ y2/2√

λ1 (1 − ρ)

]

K1

[

y2/2√
λ1 (1 − ρ)

]

+
√

ρ I1

[ √
ρ y2/2√

λ1 (1 − ρ)

]

K0

[

y2/2√
λ1 (1 − ρ)

]}

.

(13)

Note that when ρ = 0 and β = 2 (c = 1), (12) agrees with a result obtained
in [Karagiannidis et al., 2005, eq. (20)]. Also it is worth mentioning that
the problem of obtaining an upper bound for the CDF of S with nonidenti-
cally distributed RVs, e.g., WZ1

(β, Ω1) and WZ2
(β, Ω1), may be equivalently

stated as finding an upper bound for the CDF of a weighted sum of two iden-
tical RVs, e.g. both WZℓ

(β, Ω), with weights wℓ =
√

Ωℓ/Ω.
Having numerically evaluated (12) for c = 1, FP [(y/2)2] is plotted in

Figs. 5 and 6 as a function of y for Ω1 = 1.2 and Ω2 = 0.7 (λ1 = 0.84).
In Fig. 5, FP [(y/2)2] is plotted for ρ = 0.25 and several values of β, while
in Fig. 6, FP [(y/2)2] is plotted for β = 2.7 and two values of ρ. In both
figures simulation results for the CDF of S are also included for comparison
purposes. By comparing the numerically evaluated results with the computer
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Fig. 5. CDF of an upper bound of the
sum of two correlated RVs compared to
exact results by simulation (ρ = 0.25).
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Fig. 6. CDF of an upper bound of the
sum of two correlated RVs compared to
exact results by simulation (β = 2.7).

simulated ones, we deduce a close match between them. Specifically, the
results clearly show that the higher ρ the tighter the bounds are, while the
difference between simulations and bounds slightly decrease as β increases.
The trend of the results can be explained as follows. As it is clear, the lower
the difference between the left and right hand sides of A2 ≥ G2, the tighter
the bounds are. In fact, equality holds if and only if Z1 = Z2. This is the
case as β and/or ρ increase (for ρ → 1 and/or β → +∞, Z1 → Z2).

5 Conclusions

We derived the distributions of the product and the ratio of two correlated
Weibull RVs belonging to a Gaussian class of distributions. A tight upper
bound for the distribution of the sum of two correlated Weibull RVs was
also presented and it was shown that the higher correlation and/or shaping
parameters, the tighter the bounds are.
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