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Abstract– We consider a Low Earth Orbit (LEO) Mobile 
Satellite System (MSS) with “satellite-fixed” cells that 
accommodates new and handover Poisson arriving calls of 
different service-classes. By modelling the LEO-MSS as a 
multirate loss system, we provide an analytical framework 
for the recursive calculation of call blocking and handover 
failure probabilities under the Fixed Channel Reservation 
(FCR) policy. In the FCR policy, an integer number of 
channels is reserved in order to benefit calls of high channel 
requirements. The loss model under the FCR policy does 
not have a Product Form Solution (PFS) for the steady state 
probabilities. However, we show that the channel occupancy 
distribution can be calculated via an approximate but 
recursive formula. Simulation results verify the accuracy of 
the proposed formulas.  

I. INTRODUCTION 

Low Earth Orbit (LEO) Mobile Satellite Systems 
(MSS) with “satellite-fixed” cells are ideally suited for 
providing multiservice real time applications to a diverse 
population in large geographical areas [1]. Compared to 
geostationary MSS, their requirements in terms of 
transmit power and transmission delays are lower at the 
cost of introducing frequent beam handovers to in-service 
Mobile Users (MUs) during their lifetime in the system. 
To assure Quality of Service (QoS) in the multirate traffic 
environment of contemporary LEO-MSS it is essential to 
develop QoS mechanisms, with efficient and fast QoS 
assessment, that provide access to the necessary 
bandwidth needed by the services of the MUs and ensure 
fairness among different mobile services/applications.  

Considering call-level traffic in a LEO-MSS which 
accommodates different service-classes such a QoS 
mechanism is a channel sharing policy, since it affects 
call-level performance measures, like Call Blocking 
Probabilities (CBP) and handover failure probabilities. 
The QoS assessment of LEO-MSS under a channel 
sharing policy can be accomplished through teletraffic 
loss or queueing models. In the literature, there are 
various teletraffic loss or queueing models that describe 
channel sharing policies in single-rate ([2]-[11]) and 
multirate ([12]-[15]) LEO-MSS.  

Herein, we focus on multirate LEO-MSS. To this end, 
in [12], an analytical framework is proposed for 
evaluating the performance of the Complete Sharing (CS) 
and the Fixed Channel Reservation (FCR) policies that 
are applied in LEO–MSS supporting multirate Poisson 
traffic. Under the CS policy, all calls have access to the 
available channels. A call is accepted in a cell whenever 
the required channels are available. Otherwise the call is 
blocked and lost. The CS policy is unfair to calls of high 

channel requirements since it leads to higher CBP. 
Contrary to the CS policy, the FCR policy can provide 
QoS guarantee to high speed calls. In the FCR policy, an 
integer number of channels is reserved to benefit calls of 
certain service-classes which have higher channel 
requirements. In [13], apart from the CS and the FCR 
policies, the Complete Partitioning (CP) and the 
Threshold Call Admission (TCA) policies are proposed. 
In the CP policy, the capacity C (in channels) of a cell is 
partitioned into K subsets, where K is the number of 
service-classes accommodated in the cell and Ck the 
capacity of each partition. Each class k (k=1,…,K) is 
allocated a certain partition. Thus, each cell can be 
modelled as an M/M/Ck/Ck system. Since the CP policy 
can lead to poor channel utilization we do not consider it 
herein. The interested reader may also resort to [14] for 
an analysis on optimum CP policies. In the TCA policy, 
new service-class k calls are not allowed to enter a cell if 
the number of in-service new and handover calls of 
service-class k plus the new call exceeds a threshold 
(different for each service-class). In [13], only simulation 
results are presented for the TCA policy. Later, in [15] an 
analytical Markovian model is proposed for the TCA 
policy that allows the determination of the various 
performance measures (e.g., CBP and handover failure 
probabilities) by solving the corresponding Global 
Balance (GB) equations of the K-dimensional Markov 
chains. This task is computationally extremely complex 
and time consuming for real systems of large capacity 
and many service-classes. A similar complex procedure 
(based on solving a linear system of GB equations) is 
proposed in the case of the FCR policy in [12], [13]. 

In this paper we consider a LEO-MSS with “satellite-
fixed” cells and focus on the FCR policy. Contrary to the 
CS, the CP or the TCA policy, the FCR policy destroys 
reversibility of the K-dimensional Markov chains and 
therefore no Product Form Solution (PFS) exists for the 
steady state probabilities. However, we provide efficient 
formulas for the calculation of the various performance 
measures under the FCR policy. More precisely, we 
extend the analysis of [12]-[13] by proposing a recursive 
formula for the calculation of the channel occupancy 
distribution. This formula is the springboard for the 
calculation of CBP and handover failure probabilities. In 
addition, the proposed formula: a) reduces the 
computational complexity introduced by the analysis 
provided in [12]-[13] and b) leads to highly satisfactory 
results compared to simulation.  

The remainder of this paper is as follows: In Section II, 
we review the LEO MSS model of [13]. In Section III, 



we prove a recursive formula for the calculation of the 
channel occupancy distribution in the case of the FCR 
policy. In Section IV, we present analytical and 
simulation results for various performance measures, for 
evaluation.  We conclude in Section V.   

 

II. THE LEO-MSS MODEL 

A. Description 

Following the analysis of [13], we consider a LEO-
MSS of N contiguous “satellite-fixed” cells, each 
modelled as a rectangle of length L (425 km in the case of 
the Iridium LEO-MSS), that form a strip of contiguous 
coverage on the region of the Earth. Each cell has a 
capacity of C channels. The system of these N cells 
accommodates MUs who generate calls of K different 
service-classes with different QoS requirements. Each 
service-class k (k=1,…,K) call requires a fixed number of 
bk channels for its whole duration in the system. New and 
handover calls of service-class k follow a Poisson process 
with arrival rates λk and λhk, respectively. New calls may 
arrive in any cell with equal probability. The cell that a 
new call originates is the source cell. The arrival of 
handover calls in a cell is as follows: handover calls cross 
the source cell’s boundaries to the adjacent right cell 
having a constant velocity of -Vtr, where Vtr (approx. 
26600 km/h in the Iridium constellation) is the 
subsatellite point speed. An in-service call that departs 
from cell N will request a handover in cell 1, thus having 
a continuous cellular network (Fig. 1). 
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Fig. 1. A rectangular cell model for the LEO-MSS network. 

 
Based on the above, let tc be the dwell (or sojourn) 

time of a call in a cell (i.e., the time that a call remains in 
the cell). Then, tc is: (i) uniformly distributed between [0, 
L/Vtr] for new calls in their source cell and (ii) 
deterministically equal to Tc=L/Vtr for handover calls that 
traverse any adjacent cell from border to border. Based 
on (ii), Tc expresses the interarrival time for all handovers 
subsequent to the first one. As far as the duration of a 
service-class k call in the system and the channel holding 
time in a cell are concerned, they are exponentially 
distributed with mean Tdk and 1

k
 , respectively. 

 
B. Determination of handover arrival rate and channel 

holding time 
To determine formulas for the handover arrival rate λhk 

and the channel holding time with mean 1
k
 of service-

class k calls, some necessary definitions are required: 

1) The (dimensionless) parameter γk, is the ratio between 
the mean duration of a service-class k call in the system 
and the dwell time of a call in a cell [2]: 

k dk cT T                                                                        (1) 

Note that this parameter expresses the average number 
of handover requests per service-class k call assuming 
that there is no blocking. 
2) The time Th1,k, expresses the interval from the arrival 
of a new service-class k call in the source cell to the 
instant of the first handover. Th1,k is uniformly distributed 
between [0, Tc] with probability density function (pdf) 
[16]:  
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3) The probabilities Ph1,k and Ph2,k, express the handover 
probability for a service-class k call in the source cell and 
in a transit cell, respectively. Due to the different 
distances covered by a MU in the source cell and in the 
transit cells, these probabilities are different. More 
precisely, Ph1,k is defined as [16]: 
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where tdk is the service-class k call duration time 
(exponentially distributed with mean Tdk). 

The residual service time of a service-class k call after 
a successful handover request has the same pdf as tdk (due 
to the memoryless property of the exponential 
distribution [17]). It follows then that Ph2,k can be 
expressed by: 
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The handover arrival rate λhk can be related to λk by 
assuming that in each cell there exists a flow equilibrium 
between MUs entering and MUs leaving the cell. In that 
case, we may write the following flow equilibrium 
equation (MUs entering the cell = MUs leaving the cell): 
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where: 
kbP is the CBP of new service-class k calls in the 

source cell and 
kf

P is the handover failure probability of 

service-class k calls in transit cells. 

The values of 
kbP and 

kf
P will be determined in the 

next subsection. 
The left hand side of (5) refers to new and handover 

service-class k calls that are accepted in the cell with 
probability (1 )

kk bP  and (1 )
khk fP  , respectively. The 



right hand side of (5) refers to: 1) service-class k calls 
that are handed over to the transit cell (depicted by λhk), 
2) new calls that complete their service in the source cell 
without requesting a handover (depicted by 

1,(1 )(1 )k bk h kP P   ) and 3) handover calls that do not 

handover to the transit cell (depicted 
by 2,(1 )(1 )hk fk h kP P   ). 

Equation (5), can be rewritten as: 
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To derive a formula for the channel holding time of 
service-class k calls, we remind that channels are 
occupied in a cell either by new or handover calls. 
Furthermore, channels are occupied either until the end of 
service of a call or until a call is handed over to a transit 
cell. Since the channel holding time can be expressed as 

 1, min ,h k dk ct t t in the case of the source cell and 

 2, min ,h k dk ct t T in the case of a transit cell, then the 

mean value of ,hi kt ,  Ek(thi,k) for i=1,2 is given by [13]: 

, ,( ) (1 )k hi k dk hi kE t T P                                                     (7) 

We define now by Pk and h
kP   the probabilities that a 

channel is occupied by a new and a handover service-
class k call, respectively. Then: 
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Based on (7)-(9), the channel holding time of service-
class k calls (either new or handover) is approximated by 
an exponential distribution whose mean 1

k
 is the 

weighted sum of (7) (for i=1, 2) multiplied by the 
corresponding probabilities Pk (for i=1) and h

kP (for i=2): 
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III. A PROPOSED RECURSIVE FORMULA FOR THE LEO-
MSS MODEL BASED ON THE FCR POLICY 

To facilitate the description of the analytical model 
under the FCR policy, we distinguish new from handover 
calls and assume that each cell accommodates calls of 2K 
service-classes. A service-class k call is new if 
1 k K  and handover if 1 2K k K   .  

The FCR policy is described as follows: A call of 
service class k (k =1,…,2K) requests bk channels and has 
a FCR parameter CRk that expresses the integer number 
of channels reserved to benefit calls of all other service-
classes except from k. The analysis presented herein is 
more general compared to [13] since it allows the 
application of the FCR policy to all calls (new or 
handover) of a service-class k. In that sense, the FCR 

policy can be applied to favor handover calls of a service-
class against new or handover calls from other service-
classes. In [13], the FCR policy can be applied only in 
order to benefit handover calls of a service-class against 
new calls from other service-classes. 

The GB equation for state 1 2( ,..., ,..., )k Kn n nn , expressed 
as rate into state n = rate out of state n, in the FCR 
model is given by: 
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where: 
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1 2( ,..., 1,..., )k Kn n n -
kn , 1 2( ,..., 1,..., )k Kn n n  kn and

( ), ( ), ( )k kP P P n n n are the probability distributions of 

states , ,k k
 n n n , respectively. 

 The FCR model does not have a PFS for the 
determination of the steady state probabilities ( )P n since 

LB can be destroyed between adjacent states ,k
n n or 

, k
n n due to the existence of the FCR parameters. This 

means that ( )P n ’s (and consequently all performance 
measures) can be determined by solving the set of linear 
GBs, a realistic task only for cells of very small capacity 
and two or three service-classes.  

Contrary to [13], where it is suggested to apply a linear 
equation procedure (such as the Gauss-Siedel iteration) 
for solving the GBs, we prove an approximate but 
recursive formula for the calculation of the occupancy 
distribution, q (j), of the FCR model. By definition: 
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where jΩ is the set of states whereby exactly j channels 

are occupied by all in-service calls, i.e. 
 :j j  Ω n Ω nb . 
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in (15), we assume that 

Local Balance (LB) exists between states ,k
n n and has 

the following form:  
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Summing both sides of (16) over jΩ we have:  
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The left hand side of (17) can be written as: 
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Based on (17)-(19), we write (15) as follows: 
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Based on (20), the values of 
kbP  (k=1,…,K) can be 

determined via the formula: 
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  is the normalization constant. 

Similarly, the values of 
kf

P  (k=K+1,…,2K) can be 

determined via the formula: 
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where k is a correction factor introduced in order to 
model the dependency between successful handovers of a 
service-class k call prior to a handover failure. More 
precisely, a handover failure may occur during the 

( )k hkE n th handover if an accepted call has already 
performed ( )k hkE n -1 successful handovers, i.e.: 
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Having calculated q(j)’s,
kbP and 

kf
P the following 

performance measures can be determined: 
a) The call dropping probability of service-class k calls, 

kdP , which refers to new calls that are not blocked but 

they are forced to terminate due to handover failure [13]:  
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b) The unsuccessful call probability of service-class k 
calls, 

kusP , which refers to calls that they are either 

blocked in the source cell or dropped due to a handover 
failure [13]: 

(1 )
k k k kus b d bP P P P                                                   (26) 

 

IV.  EVALUATION 

In this section, we present an application example and 
provide analytical results of the CBP, the handover 
failure probability, the call dropping probability and the 
unsuccessful call probability for the proposed formulas. 
Analytical results are compared to simulation results. The 
latter are derived via the Simscript III simulation 
language [18] and are mean values of 7 runs. In each run, 
twenty million calls are generated. Due to stabilization 
time, we exclude the blocking events of the first 3% of 
the generated calls. Confidence intervals of the results are 
found to be very small and are not presented in Fig. 2 
below. For the simulation of the LEO-MSS we adopt the 
Iridium parameters. The simulated network consists of N 
= 7 contiguous cells. The subsatellite point speed is Vtr = 
26600 km/h and the length of each cell is L = 425 km 
resulting in a maximum dwell time of a call in a cell 
equal to 57.5 s. MUs are uniformly distributed in the 
network of cells and new calls may arrive anywhere 
within the network. In addition, no distortion in the 
propagation links is considered. 

 In the application example, each cell has a capacity of 
C = 40 channels and accommodates Poisson arriving 
calls of two service-classes which require b1 = 1 and b2 = 
5 channels, respectively. We further assume that Td1 = 
180 s, Td2 = 540 s, while the offered traffic per cell is α1 = 
16 erl and α2 = 0.4 erl. In the case of the FCR policy, the 
FCR parameters for the new calls of each service-class 
are: CR1 = 4 and CR2 = 0 channels, respectively. This 
selection achieves CBP equalization among new calls of 
both service-classes, since b1 + CR1 = b2.  

In the x-axis of Fig. 2, the traffic loads α1 and α2 

increase in steps of 1 and 0.1 erl, respectively. So, point 1 
represents the offered traffic-load vector (α1, α2) = (16.0, 
0.4), while point 7 refers to the vector (α1, α2) = (22.0, 
1.0). The term Pb,eq in Fig. 2 refers to the equalized CBP 
of both service-classes (achieved due to the selected FCR 
parameters).  According to Fig. 2, we deduce that: i) the 
accuracy obtained by the proposed formulas compared to 
simulation is highly satisfactory and ii) increasing the 
offered traffic-load results in the increase of all 
performance measures.   

 

V.  CONCLUSION 

 In this paper, we consider the fixed channel 
reservation policy and provide an analytical framework 
for the efficient calculation of various performance 
measures in a LEO mobile satellite system with 
“satellite-fixed” cells. The proposed analytical formula 
for the channel occupancy distribution is recursive and 
has low computational complexity compared to the 
methodologies already proposed in the literature which 
are based on solving extremely large systems of linear 
global balance equations.  
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