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Abstract—This paper studies the performance of the quadri-
variate Weibull distribution with arbitrary correlation assuming
non-identical fading parameters and average powers. Novel
infinite series representations for the joint probability density
function (PDF), the cumulative distribution function (CDF) and
the product moments are derived. Using these theoretical results,
a performance analysis study in terms of outage probability, for
receivers employing selection combining (SC) diversity techniques
is presented. The proposed mathematical analysis is accompa-
nied by various numerical results, with parameters of interest
the fading severity and the power decay factor. Furthermore,
equivalent performance evaluation results, obtained by various
computer simulations have verified the accuracy of the proposed
analytical method.

Index Terms—Arbitrary correlation, selection combining (SC),
diversity, outage probability, Weibull fading.

I. INTRODUCTION

One of the most efficient and widely used techniques to
reduce the destructive effects of fading on the system’s per-
formance is diversity reception. When space and polarization
diversity is applied in practical systems (e.g. mobile terminal,
indoor base-station etc.), the antennas placed at the receiver
are not sufficiently separated and consequently the combined
signals are correlated with each other. In order to analyze and
model such realistic wireless channels with correlated fading,
multivariate statistics are commonly used [1].

In the open technical literature there exist many papers that
concern multivariate statistics for fading channel modeling.
Most of them deal with the constant and exponential correla-
tion model. For the first one, the correlation depends on the
distance among the combining antennas and as a consequence
it is more suitable for equidistant antennas [1]. For the
exponential correlation model, widely used for performance
analysis of space diversity techniques [2]–[4] or multiple-input
multiple-output (MIMO) systems [5], the correlation between
the pairs of combined signals decays as the spacing between
the antennas increases [1]. In [6], the authors presented useful
closed-form expressions for the multivariate, exponentially
correlated Nakagami-m probability density function (PDF)
and the cumulative distribution function (CDF).

A more general approach would be to consider that the
correlation between the pairs of combined signal can take
a more general form. Thus, an arbitrary correlation model

will include the two previously mentioned models as special
cases. Past works concerning arbitrarily correlated multivariate
distributions can be found in [7]–[10]. In [7] infinite series
representations for the joint PDF and the CDF of three and
four arbitrarily correlated Rayleigh random variables were
presented. In [8] useful closed-form expressions for the joint
Nakagami-m multivariate PDF and CDF with arbitrary cor-
relation were derived and the correlation matrix was approx-
imated by a Green’s matrix so that the inverse matrix would
be tridiagonal. Similarly, in [9], the Green’s matrix was used
to approximate the correlation matrix of L - branch selection
combining (SC) receivers and the outage probability for log-
normal fading channels has been obtained. In [10] expressions
for multivariate Rayleigh and exponential PDFs generated
from correlated Gaussian random variables were presented,
while a general expression for the multivariate exponential
characteristic function (CF), in terms of determinants, was also
derived.

The Weibull distribution although it was originally used
in reliability and failure data analysis, has recently received
renewed interest because it exhibits a very good fit to ex-
perimental fading channel measurements for both indoor and
outdoor terrestrial radio propagation environments [11], [12].
Moreover, in [13], it was argued that the Weibull distribution
could also been considered as a more generic channel model
for land-mobile satellite systems.

For this distribution, in a recent paper [14], the joint PDF,
CDF and the moment-generating function (MGF) for the
bivariate Weibull distribution have been analytically presented.
The multivariate Weibull distribution has also been studied for
the exponential and the constant correlation case with equal
average fading powers. Finally in [15] the trivariate Weibull
distribution with arbitrary correlation is studied, the joint PDF,
CDF and the product moments are obtained and the outage
probability of SC receivers is derived. It should be mentioned,
however, that to the best of our knowledge, analyzing the
performance of an arbitrary Weibull fading channel with four
diversity branches has not been presented in the open technical
literature.

Motivated by this observation, in this paper we present novel
infinite series representations for the joint PDF, CDF and the
moments for the quadrivariate Weibull distribution, assuming
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an arbitrary covariance matrix and non-identical fading param-
eters and average powers. Furthermore, the outage probability
of SC receivers is derived and various performance evaluation
results are presented.

The organization of this paper is as follows: After this in-
troduction, in Section II the system model is presented and the
quadrivariate Weibull distribution is analyzed. Additionally, in
Section III the SNR statistics are derived while in Section IV
the performance of SC receivers in terms of outage probability
is studied. Various numerical results are presented in Section
V showing the impact of correlation, the fading severity and
the power decay factor on the system’s performance. Finally,
in Section VI several useful concluding remarks are given.

II. SYSTEM MODEL

Let G = {G1, G2, ..., GL} be the joint complex Gaus-
sian random variables (RVs) with zero mean E 〈G�〉 = 0,
� = 1, 2, ..., L and positive definite covariance matrix Ψ, with
elements ψiκ = E 〈GiG

∗
κ〉, where E 〈·〉 denotes expectation.

Let R = {R1, R2, ..., RL} be a set of Rayleigh RVs with
R� = |G�| where | · | denotes absolute value. The Weibull
fading channel h� can be expressed in terms of the Gaussian
in-phase X� and quadrature Y� elements [14] as follows:

h� = (X� + jY�)
2/β� = G

2/β�

�
(1)

where β� > 0 represents the Weibull fading parameter and j
the imaginary operator. Since Z� = |h�|, Z� can be expressed
as a power transformation of a Rayleigh distributed RV R� =
|X� + jY�| as [16]

Z� = R
2/β�

� . (2)

Quadrivariate Weibull distribution

For the quadrivariate Weibull distribution (L = 4) we
consider the inverse covariance matrix, Φ, given by

Φ = Ψ−1 =

⎡
⎢⎢⎣
φ11, φ12, φ13, 0
φ∗12, φ22, φ23, φ24

φ∗13, φ∗23, φ33, φ34

0, φ∗24, φ
∗
34, φ44

⎤
⎥⎥⎦ (3)

with φiκ = |φiκ| exp(jχiκ) where i, κ ∈ {1, 2, 3, 4}.
Note here for the quadrivariate case, the obtained results

are more general than those presented by Blumenson and
Miller in [17] for the multivariate Rayleigh distribution. More
specifically, the statistical properties derived in [17] hold only
under the assumption that Ψ is tridiagonal so that φiκ = 0 for
|i− κ| > 1.

The joint PDF of Z = {Z1, Z2, Z3, Z4} can be derived
using [7, eq. (16)] and applying the power transformation
described in (2) as a product of the modified Bessel function

of the first kind as follows

fZ(z1, z2, z3, z4) = β1β2β3β4 det(Φ)

× exp
[
−

(
zβ1
1 φ11 + zβ2

2 φ22 + zβ3
3 φ33 + zβ4

4 φ44

)]

× zβ1−1
1 zβ2−1

2 zβ3−1
3 zβ4−1

4

∞∑
j=0

∞∑
k=−∞

εj(−1)j+k cos(A)

× Ij(2z
β1/2
1 z

β2/2
2 |φ12|)Ij(2zβ1/2

1 z
β3/2
3 |φ13|)

× Ik(2zβ2/2
2 z

β4/2
4 |φ24|)Ik(2zβ3/2

3 z
β4/2
4 |φ34|)

× Ij+k(2zβ2/2
2 z

β3/2
3 |φ23|).

(4)

Using the infinite series expansion of the Bessel function
[18, eq. (8.447/1)]

Iν(u) =
∞∑

k=0

1
(k + ν)!k!

(
u

2
)2k+ν (5)

and after some cumbersome but straightforward mathematical
steps, (4) can be expressed as

fZ(z1, z2, z3, z4) = β1β2β3β4 det(Φ)

× exp
[
−

(
zβ1
1 φ11 + zβ2

2 φ22 + zβ3
3 φ33 + zβ4

4 φ44

)]

× zβ1−1
1 zβ2−1

2 zβ3−1
3 zβ4−1

4

∞∑
j=0

∞∑
k=−∞

εj(−1)j+k cos(A)

×
∞∑

�,m,n,p,q=0

C |φ12|2�+j |φ13|2m+j |φ24|2n+|k|

× |φ34|2p+|k| |φ23|2q+|j+k|
z

β1(�+n+j)
1

× z
β2(�+n+q+ j+|k|+|j+k|

2 )
2 z

β3(m+p+q+ j+|k|+|j+k|
2 )

3

× z
β4(n+p+ |k|

2 )
4

(6)

where εj is the Neumann factor (ε0 = 1, εj = 2 for k =
1, 2, · · · ), A = j(χ12 +χ23 +χ31) + k(χ23 +χ34 +χ42) and

C =
1

�!(�+ j)!m!(m+ j)!n!(n+ |k|)!p!(p+ |k|)!q!(q + |k+j|
2 )!

.

The corresponding CDF is obtained by integrating (6), as
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follows

FZ(z1, z2, z3, z4) = det(Φ)
∞∑
j=0

∞∑
k=−∞

εj(−1)j+kcos(A)

×
∞∑

�,m,n,p=0

|φ12|2�+j |φ13|2m+j |φ24|2n+|k| |φ34|2p+|k|

�!(�+ j)!m!(m+ j)!n!(n+ |k|)!p!(p+ |k|)!

×
γ

(
�+m+ j + 1, zβ1

1 φ11

)

φ�+m+j+1
11

×
γ

(
n+ p+ |k| + 1, zβ4

4 φ44

)

φ
n+p+|k|+1
44

∞∑
q=0

|φ23|2q+|j+k|

q!(q + |k+j|
2 )!

×
γ

(
�+ n+ q + j+|k|+|j+k|

2 + 1, zβ2
2 φ22

)

φ
�+n+q+

j+|k|+|j+k|
2 +1

22

×
γ

(
m+ p+ q + j+|k|+|j+k|

2 + 1, zβ3
3 φ33

)

φ
m+p+q+ j+|k|+|j+k|

2 +1
33

(7)

with γ(·, ·) denoting the incomplete lower Gamma function
[18, eq. (3.381/1)].

Moreover, the joint moments are defined as

E〈zα
1 , z

η
2 , z

ϑ
3 , z

ζ
4〉 Δ=

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

zα
1 z

η
2z

ϑ
3 z

ζ
4

× fZ(z1, z2, z3, z4)dz1dz2, dz3dz4
(8)

and hence substituting (6) in (8) can be derived as follows

E〈zα
1 , z

η
2 , z

ϑ
3 , z

ζ
4〉 = det(Φ) ×

∞∑
j=0

∞∑
k=−∞

εj(−1)j+k cos(A)

×
∞∑

�,m,n,p=0

C |φ12|2�+j |φ13|2m+j |φ24|2n+|k| |φ34|2p+|k|

× Γ (�+m+ j + α/β1 + 1)

φ
(�+m+j+1)+α/β1
11

Γ (n+ p+ |k| + ζ/β4 + 1)

φ
(n+p+|k|+1)+ζ/β4
44

×
∞∑

q=0

|φ23|2q+|j+k| 1

φ
(�+n+q+ j+|k|+|j+k|

2 + η
β2

+1)

22

× 1

φ
(m+p+q+

j+|k|+|j+k|
2 + ϑ

β3
+1)

33

× Γ
(
�+ n+ q +

j + |k| + |j + k|
2

+
η

β2
+ 1

)

× Γ
(
m+ p+ q +

j + |k| + |j + k|
2

+
ϑ

β3
+ 1

)
.

(9)

III. SNR STATISTICS

In order to obtain and study performance measures for
diversity receivers, the statistics of SNR are needed. Assuming
a diversity receiver with L branches, the received at the �th

Fig. 1. Outage probability of a 4-branch SC receiver as a function of the
normalized outage threshold, γth/γ for different values of β.

branch baseband signal can be mathematically expressed as
follows

ζ� = wh� + n� (10)

where w is the complex transmitted symbol, with Es =
E〈|w|2〉 being the transmitted average symbol’s energy and
n� is the additive white Gaussian noise (AWGN) with single-
sided power spectral densityN0. The instantaneous per symbol
SNR of the �th diversity channel can be expressed as

γ� = Z2
�Es/N0. (11)

Moreover, since the corresponding average SNR is expressed
as

γ� = E〈Z2
� 〉
Es

N0
= Γ(d2,�)Ω

2/β�

�

Es

N0
(12)

where dτ,� = 1 + τ/β� with τ taking non-negative values,
expressions for the statistics of γ� can be easily derived
by replacing β� with β�/2 and Ω� with (α�γ�)β�/2, in the
corresponding expressions for the fading envelope Z�.

Thus using (7), the CDF of the SNR for the quadri-
variate Weibull distribution with arbitrary correlation,
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Fγ (γ1, γ2, γ3, γ4), can be obtained as

Fγ(γ1, γ2, γ3, γ4) = det(Φ′)
∞∑
j=0

∞∑
k=−∞

εj(−1)j+kcos(A)

×
∞∑

�,m,n,p=0

|φ′12|2�+j |φ′13|2m+j |φ′24|2n+|k| |φ′34|2p+|k|

�!(�+ j)!m!(m+ j)!n!(n+ |k|)!p!(p+ |k|)!

×
γ

(
�+m+ j + 1, γβ1/2

1 φ′11
)

φ′�+m+j+1
11

×
γ

(
n+ p+ |k| + 1, γβ4/2

4 φ′44
)

φ′44
n+p+|k|+1

∞∑
q=0

|φ′23|2q+|j+k|

q!(q + |k+j|
2 )!

×
γ

(
�+ n+ q + j+|k|+|j+k|

2 + 1, γβ2/2
2 φ′22

)

φ′22
�+n+q+ j+|k|+|j+k|

2 +1

×
γ

(
m+ p+ q + j+|k|+|j+k|

2 + 1, γβ3/2
3 φ′33

)

φ′33
m+p+q+

j+|k|+|j+k|
2 +1

(13)

where Φ′ with elements φ′iκ is the inverse covariance matrix
obtained from (3) after the substitutions mentioned in (11) and
(12).

IV. OUTAGE PROBABILITY OF SC RECEIVERS

Consider a SC receiver with four branches operating over
an arbitrarily correlated Weibull fading environment and in the
presence of an AWGN channel. The instantaneous per symbol
SNR at the output of a receiver of this type, will be the one
with the highest instantaneous value between the branches [19]

γsc = max{γ1, γ2, γ3, γ4}. (14)

The outage probability, Pout, is defined as the probability
that the instantaneous error probability exceeds a specified
value or equivalently the probability that the receiver out-
put SNR, γsc, falls below a certain specified threshold, γth

[1]. As a consequence and since the CDF of γsc equals
Fγ (γsc, γsc, ..., γsc), Pout can be derived as follows

Pout(γth) = Fγsc(γth). (15)

Thus, with the aid of (13), Pout can be directly obtained.

V. NUMERICAL RESULTS

In this section, we use the previous mathematical analysis
in order to present numerical results for the performance of
SC receivers, where without loss of generality, it is assumed
that β� = β ∀ �.

Consider an antenna array with normalized covariance ma-
trix

Ψ =

⎡
⎢⎢⎣

1, 0.4975, 0.2998, 0.1121
0.4975, 1, 0.1912, 0.1585
0.2998, 0.1912, 1, 0.1868
0.1121, 0.1585, 0.7868, 1

⎤
⎥⎥⎦ (16)

Fig. 2. Outage probability of a 4-branch SC receiver as a function of the first
branch normalized outage threshold, γth/γ1 for different values of ρ and δ.

The inverse covariance matrix now satisfies (3) and thus, using
(15) the outage probability can be evaluated as shown in Fig.
1. More specifically, assuming γ1 = γ2 = γ3 = γ4 = γ , the
outage probability is plotted as a function of the normalized
outage threshold, γth/γ , for different values of β. It is evident
that the system’s performance degrades with a decrease of β
and/or an increase on γth/γ.

Moreover, Fig. 2 and Fig. 3 show the impact of an expo-
nentially decaying power factor δ on the outage probability
of SC receiver with exponentially correlated branches, as-
suming non-identical distributed Weibull channels, i.e., γ� =
γ1 exp[−(�− 1)δ] . In Fig. 2 the outage probability is plotted
as a function of the first branch normalized outage threshold
γth/γ1 assuming β = 2.5 and for different values of δ and ρ
while in Fig. 3 the outage probability is plotted for ρ = 0.3 and
for different values of δ and β. In order to verify the proposed
mathematical analysis some computer simulation results are
also included for comparison purposes. The obtained results
show clearly that the systems performance degrades with an
increase of δ and ρ.

In case the normalized covariance matrix is given as [8]

Ψ =

⎡
⎢⎢⎣

1, 0.7, 0.538, 0.3777
0.7, 1, 0.769, 0.538
0.538, 0.769, 1, 0.7
0.3777, 0.538, 0.7, 1

⎤
⎥⎥⎦ (17)

following a similar procedure, the outage probability can be
derived as shown in Fig. 4, for different values of β. Once
again the obtained results show that the system’s performance
improves with an increase of β. The theoretical results are
again in excellent agreement with the computer simulation
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Fig. 3. Outage probability of a 4-branch SC receiver as a function of the
first branch normalized outage threshold, γth/γ1 for different values of β
and δ.

results.

VI. CONCLUSIONS

A performance analysis study for the quadrivariate Weibull
distribution with arbitrary correlation was presented. Initially,
infinite series representations for the joint PDF, CDF and
the product moments were derived. These theoretical results
were applied to analyze the performance of SC receivers with
four branches, operating in an arbitrarily correlated fading
environment. The outage probability, one of the most useful
performance criteria, was studied. Various performance evalu-
ation results were presented showing the effects of correlation,
fading severity and the power decay factor on the system’s
performance.
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