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Abstract— This paper deals with a trivariate Nakagami-m
distribution derived from the diagonal elements of a Wishart
matrix having an arbitrary covariance matrix and integer-order
fading parameters. Based on that distribution, the error rate
performance of triple-branch generalized selection combining
(GSC) receivers is analyzed, for which, the average bit error
probability for a variety of modulation schemes is analytically
obtained. The performance of GSC receivers is compared to that
of conventional selection and maximal-ratio diversity ones. In
order to check the accuracy of the derived formulas, various
performance evaluation results are presented and compared to
equivalent simulation ones.

I. INTRODUCTION

The Nakagami-m distribution is used in modeling various
propagation channels which are characterized by multipath
scattering with relatively large delay-time spreads with dif-
ferent clusters of reflected waves [1]. Of particular interest
is the multivariate Nakagami-m distribution, which plays an
important role in channel modeling of wireless communication
systems and to the performance analysis of digital receivers
over correlated fading channels. In the research literature,
there are several papers dealing with multivariate Nakagami-m
distributions [1]–[4]. Various works studying the performance
of generalized selection combining (GSC) receivers over cor-
related Nakagami-m fading channels have been presented.
In two recent works for example, by assuming correlated
Nakagami-m fading with positive integer-order values for
fading parameters, the performance of selection combining
(SC), hybrid-selection/maximal-ratio combining (H-S/MRC),
and threshold-based H-S/MRC has been analyzed in [5], [6].
More specifically in [5], Green’s matrix approximations have
been used for studying arbitrary correlation structures, while
in [6], a more general model than the equal correlation one
has been considered.

Besides, various research findings have been reported in
the statistics research literature, but have not been utilized
by researchers working on wireless communications theory
yet. Some of them concern joint chi-square distributions
derived from the diagonal elements of the Wishart matrix.
In [7], expansions for the probability density function (PDF)
of a trivariate chi-square distribution have been presented in
terms of rapidly converge infinite sums, which are simple
for numerical evaluation. In the analysis follows, the average
bit error probability (ABEP) of triple-branch GSC receivers
over correlated Nakagami-m fading channels with integer-
order fading parameters and an arbitrary covariance matrix are

assessed. Performance comparisons with triple-branch MRC
and SC receivers are also performed, while computer simula-
tions validate the correctness of our findings.

Next, the following notations are used: (·)† for the trans-
pose, (·)−1 for the inverse, (·)H for the Hermitian transpose,
det (·) for the determinant, (·)∗ for the complex conjugate,
diag (·) for the diagonal elements, E〈·〉 for the expectation
operator, and � (·) and � (·) the real and imaginary parts
operators, respectively.

II. THE TRIVARIATE NAKAGAMI-m DISTRIBUTION

A. Preliminaries

Let Qp = [X1,p, X2,p, X3,p]† be the pth sample of a three-
dimensional zero-mean complex Gaussian random process
(p = 1, 2, . . . ,m). These processes are considered to be
mutually independent and identically distributed (id) having
a covariance matrix

Σ = 2

⎡⎣ σ2
1 c12 c13

c12 σ2
2 c23

c13 c23 σ2
3

⎤⎦ (1)

with σ2
� = E〈|X�,p|2〉/2 and c�,�′ = E〈X�,pX

∗
�′,p〉/2, ∀ � �= �′

(�, �′ = 1, 2, and 3). By defining a six-dimensional sample vec-
tor as Wp = [�(X1,p),�(X1,p),�(X2,p),�(X2,p),�(X3,p),
�(X3,p)]† and setting the crosscorrelation terms between real
and imaginary parts equal to zero, i.e., E〈�{X�,p}�{X�′,p}〉
= 0 ∀�, �′ = 1, 2, 3, the joint PDF of Wp is

fWp
(Wp) =

1√
(2π)6 det (C)

exp
(
−1
2

W†
p C−1 Wp

)
(2)

where C = E〈Wp W†
p〉 having the following structure

C =

⎡⎢⎢⎢⎢⎢⎢⎣
σ2

1 0 c12 0 c13 0
0 σ2

1 0 c12 0 c13
c12 0 σ2

2 0 c23 0
0 c12 0 σ2

2 0 c23
c13 0 c23 0 σ2

3 0
0 c13 0 c23 0 σ2

3

⎤⎥⎥⎥⎥⎥⎥⎦ . (3)

The inverse of C is

C−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
a1 0 b1 0 b3 0
0 a1 0 b1 0 b3
b1 0 a2 0 b2 0
0 b1 0 a2 0 b2
b3 0 b2 0 a3 0
0 b3 0 b2 0 a3

⎤⎥⎥⎥⎥⎥⎥⎦ (4)
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where

a1 =
σ2

2 σ
2
3 − c223√
det(C)

, b1 =
σ2

3 c12 − c13 c23√
det(C)

(5a)

a2 =
σ2

1 σ
2
3 − c213√
det(C)

, b2 =
σ2

1 c23 − c12 c13√
det(C)

(5b)

a3 =
σ2

1 σ
2
2 − c212√
det(C)

, b3 =
σ2

2 c13 − c12 c23√
det(C)

(5c)

while the determinant of C is det(C) = 2−6 [det(Σ)]2.
If we define vector X� = [�(X�,1),�(X�,1),�(X�,2),

�(X�,2), . . . ,�(X�,m),�(X�,m)], then its norm is given by
R2

� = ||X�||2 =
∑m

p=1[�2(X�,p) + �2(X�,p)], which essen-
tially denotes the diagonal elements of the complex Wishart

matrix, S =
∑m

p=1 W̃p W̃
H

p . It is obvious that R� is a
Nakagami-m random variable (RV), with an integer-order
fading parameter m and average power Ω� = E〈R2

� 〉 =
2mσ2

� , having PDF

fR�
(r) =

2mm

Ωm
� (m− 1)!

r2m−1 exp
(
−m

Ω�
r2

)
. (6)

Also, the nth-order moment of R� [1, eq. (17)] is given by
E〈Rn

� 〉 = (Ω�/m)n/2 Γ(m+ n/2)/(m− 1)!, with Γ (·) being
the gamma function [8, eq. (8.310/1)].

B. Joint PDF

According to [7], there are two cases which should be taken
into consideration for the trivariate Nakagami-m PDF. The first
one is for m = 1 and the second one for m = 2, 3, . . . Since
the first case (Rayleigh fading) has been already studied in [9],
next we are exclusively interested in the second one. Using (2),
the joint PDF of R� can be extracted as [7, eq. (11)]

fR1,R2,R3 (r1, r2, r3)

=
∫

|X1|=r1

∫
|X2|=r2

∫
|X3|=r3

fWp
(Wp) dX1 dX2 dX3

(7)

where
∫
|X�|=r�

denotes integration over the surface of a 2m-
dimensional sphere of radius r�. The triple integral in (7)
has been solved in [7], and thus, the trivariate Nakagami-
m PDF with integer-order fading parameters and an arbitrary
covariance matrix (with elements R�,�′ = mΣ2

�,�′) can be
expressed as1

fR1,R2,R3 (r1, r2, r3) =
exp

[− (
a1 r

2
1 + a2 r

2
2 + a3 r

2
3

)
/2

]
(m− 1) [det (Σ/2)]m (b1 b2 b3)

m−1

× r1 r2 r3

∞∑
k=m−1

k (−1)k−m+1

(
m+ k − 2
2m− 3

)
× Ik (b1 r1 r2) Ik (b2 r2 r3) Ik (b3 r1 r3)

(8)

1Note that (8) agrees with a recent result [10, eq. (11)].

where Ik (·) denotes the kth-order modified Bessel function
of the first kind [8, Section 8.406]. The power correla-
tion coefficient between �th and �′th channels, defined as2

ρ��′ = cov(R2
� , R

2
�′)/ [

√
var(R2

� )
√
var(R2

�′)], can be easily
expressed as a function of c��′ as c��′ =

√
Ω� Ω�′/(4m2 ρ��′).

Hence, all parameters given by (5) can be reexpressed in terms
of parameters of interest in wireless communications, such as
ρ��′’s, m, and Ω�’s, as follows

a1 =
2m
T Ω1

(1− ρ23) , b1 =
−2m/T√
Ω1 Ω2

(
√
ρ12 −√

ρ23 ρ13)

(9a)

a2 =
2m
T Ω2

(1− ρ13) , b2 =
2m/T√
Ω2 Ω3

(
√
ρ23 −√

ρ12 ρ13)

(9b)

a3 =
2m
T Ω3

(1− ρ12) , b3 =
2m/T√
Ω1 Ω3

(
√
ρ13 −√

ρ12 ρ23)

(9c)
and det(Σ) = T

∏3
�=1Ω�/m with T = 1 − (ρ12 + ρ23 +

ρ13) + 2
√
ρ12 ρ23 ρ13.

1) Uncorrelated: In case where the three channels are
uncorrelated, i.e., ρ�,�′ = 0 ∀� �= �′ (T = 1), a� = 2m/Ω�

and b� = 0 ∀�. Based on the following power series expansion
for Ik (·)’s

lim
b�→0

Ik (b� r� r�′)
bm−1
�

=

{
1

(m−1)!

( r� r�′
2

)m−1
, k = m− 1;

0, k > m− 1,
(10)

all terms except for k = m − 1 vanish in the sum in (8), re-
ducing fR1,R2,R3 (r1, r2, r3) to a product of three independent
marginal PDFs, i.e., fR1,R2,R3(r1, r2, r3) =

∏3
�=1 fR�

(r�).
2) Constant correlation: In case of constant correlation

among the three channels, i.e., ρ�,�′ = ρ ∀� �= �′ (T =
1− 3 ρ+ 2 ρ3/2), a� = 2m (1− ρ)/Ω� and

b1 =
2m√
Ω1 Ω2

√
ρ

2 ρ−√
ρ− 1

(11a)

b2 =
2m√
Ω2 Ω3

√
ρ

2 ρ−√
ρ− 1

(11b)

b3 =
2m√
Ω1 Ω3

√
ρ

2 ρ−√
ρ− 1

(11c)

3) Exponential correlation: In case of exponential cor-
relation among the three channels, i.e., ρ�,�′ = ρ|�−�′|

∀�, �′ (T = (1 − ρ)2), ai = 2m/[Ωi (1 − ρ)] (i =
1 and 3), a2 = (2m/Ω2) (1 − ρ)/(1 + ρ) and bj =
−(2m/√Ωj Ωj+1)

√
ρ/(1 − ρ) (j = 1 and 2), b3 = 0. Note

that using (10), (8) reduces to [3, eq. (3)]

C. Joint CDF

The joint CDF of R� can be calculated as

FR1,R2,R3 (r1, r2, r3) =

r1∫
0

r2∫
0

r3∫
0

fR1,R2,R3(x, y, z) dxdy dz

(12)

2As it is well known, ρ��′ is related to the correlation coefficient of the
underlying real Gaussian processes, ���′ , as ρ��′ = �2

��′ .
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but (8) can not be used in the current form. Using an infinite
series representation for Bessel functions [8, eq. (8.445)] and
after performing some straightforward algebraic manipula-
tions, yields

FR1,R2,R3 (r1, r2, r3) =
T 2 m

m− 1

×
∞∑

k=m−1

∞∑
l1,l2,l3=0

k (−1)k−m+1

(
m+ k − 2
2m− 3

)

×
3∏

�=1

ω2 l�+k+1−m
�

ψn�+1
� l�! (l� + k)!

γ

(
n� + 1,

mψ�

T Ω�
r2�

) (13)

where n1 = l1 + l3 + k, n2 = l1 + l2 + k, n3 = l2 + l3 + k,
and γ (·, ·) is the lower incomplete gamma function [8, eq.
(8.350/1)]. Also, ψ�’s and ω�’s are defined as ψ1 = 1 − ρ23,
ψ2 = 1 − ρ13, ψ3 = 1 − ρ12 and ω1 = −√

ρ12 +
√
ρ23 ρ13,

ω2 = −√
ρ23 +

√
ρ12 ρ13, ω3 = −√

ρ13 +
√
ρ12 ρ23. Note

that since the first argument of the gamma function in (13)
is a positive integer, γ (·, ·) can be expressed in terms of
elementary functions [8, eq. (8.352/1)].

D. Truncation Error

In order to find a simple bound for the truncation error of
the CDF series in (13), we follow the method presented in [9,
Section II.B]. Assume that the series in (13) are limited to L0,
L1, L2, and L3 terms in indexes k, l1, l2, and l3, respectively.
The remaining terms constitute the truncation error. Based on
the fact that γ(n� + 1, x) ≤ n�!, the truncation error of (13)
can therefore be upper bounded by

|ET (L0, L1, L2, L3)| ≤
∞∑

k=L0

∞∑
l1=0

∞∑
l2=0

∞∑
l3=0

H (k, l1, l2, l3)

+
L0−1∑

k=m−1

∞∑
l1=L1

∞∑
l2=0

∞∑
l3=0

H (k, l1, l2, l3)

+
L0−1∑

k=m−1

L1−1∑
l1=0

∞∑
l2=L2

∞∑
l3=0

H (k, l1, l2, l3)

+
L0−1∑

k=m−1

L1−1∑
l1=0

L2−1∑
l2=0

∞∑
l3=L3

H (k, l1, l2, l3)

(14)

with

H (k, l1, l2, l3) =
T 2 m

m− 1

(
m+ k − 2
2m− 3

)(
n1

l3

) (
n2

l1

)
×

(
n3

l2

) 3∏
�=1

|ω�|2 l�+k+1−m

ψn�+1
�

.

(15)

As an example, we consider the constant correlation model,
i.e., ρ��′ = ρ ∀� �= �′ (ψ� = 1 − ρ and ω� = −√

ρ + ρ),
with m = 2, 4 and ρ = 0.1, 0.5, 0.7. Setting r2�/Ω� = r2/Ω
∀� and assuming L0 = L1 = L2 = L3, Table I summarizes
the number of the terms required in (13) to achieve a ratio
|ET |/FR1,R2,R3(r, r, r) < 10−3. As shown, the convergence
rate depends strongly on m and ρ. Specifically, the higher the

TABLE I

NUMBER OF REQUIRED TERMS FOR CONVERGENCE OF (13) FOR THE

CONSTANT CORRELATION MODEL TO ACHIEVE A TARGET RATIO

|ET |/FR1,R2,R3 (r, r, r) < 10−3

r2/Ω = 0.3 r2/Ω = 1 r2/Ω = 3

m = 2 m = 4 m = 2 m = 4 m = 2 m = 4

ρ = 0.1 6 9 5 7 4 6

ρ = 0.5 15 21 12 15 10 13

ρ = 0.7 23 38 20 29 10 13

m and/or ρ are, the more terms are needed. Moreover, for
fixed m and ρ, as r2/Ω increases, less terms are needed in
the CDF series to achieve the target ratio.

III. TRIPLE-BRANCH GSC RECEIVERS

A. System Model

We consider a triple-branch GSC(K,3) (K = 1, 2, 3)
receiver operating over an arbitrary correlated Nakagami-m
multipath fading environment with not necessarily id channel
statistics. According to GSC(K,3) scheme, the K strongest
branches having the highest instantaneous SNRs are selected
among the three available and appropriately combined. The
GSC(K,3) reception is equivalent to MRC reception if all three
branches are combined (i.e., K = 3), while it is equivalent to
SC reception if only one out of the three branches is selected
(i.e., K = 1).

The baseband received signal at the �th diversity branch
is ζ� = z R� + w� where z is the transmitted symbol with
energy Es = E〈|z|2〉, R� is the Nakagami-m distributed
fading envelope, and w� is the additive white Gaussian noise
with a single-sided power spectral density N0. The noise
components are assumed to be statistically independent of
the signal and uncorrelated to each other. Moreover, all three
channels are considered as slowly time varying, and thus, their
characteristics are perfectly known to the receiver.

B. Order Statistics

The instantaneous SNR per symbol γ� = R2
� Es/N0 in the

�th input branch is an Erlang RV with γ� = Ω�Es/N0 being
the corresponding average input SNR per symbol. By applying
the RVs transformation R� =

√
Ω� γ�/γ� in (8), the joint PDF

of γ1, γ2, γ3 becomes

fγ1,γ2,γ3 (γ1, γ2, γ3) =
23 (m−1) exp

(
− 1

2

∑3
�=1 ã� γ�

)
(m− 1)

[
det

(
Σ̃

)]m (
b̃1 b̃2 b̃3

)m−1

×
∞∑

k=m−1

k (−1)k−m+1

(
m+ k − 2
2m− 3

)
Ik

(
b̃1

√
γ1 γ2

)
× Ik

(
b̃2

√
γ2 γ3

)
Ik

(
b̃3

√
γ1 γ3

)
.

(16)

The parameters ã� and b̃� as well as the determinant det(Σ̃)
can be easily derived from corresponding a� and b�, and
det(Σ), just replacing Ω� with γ� ∀� in (9).
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The instantaneous SNR per symbol at the output of a
GSC(K,3) receiver can be expressed as γgsc =

∑3
k=1 ξk γ(k),

where ξk = 1, if k = 1, 2, K, and ξk = 0, if k = K + 1,
3, while γ(�)’s are the descending ordered γ�’s, i.e., γ(1) ≥
γ(2) ≥ γ(3) (by default, ξ1 = 1). Based on [11, Appendix],
the joint PDF of γ(�)’s can be expressed as

fγ(1),γ(2),γ(3) (γ1, γ2, γ3) =
∑

ei∈S3

fγ1,γ2,γ3

(
γei[1], γei[2], γei[3]

)
(17)

with ei ∈ S3 denoting e� = {ei[1], ei[2], ei[3]}, one specific
permutation of the integers {1, 2, 3}. The MGF of the GSC
output SNR per symbol can be obtained from the above
equation as Mγgsc(s) = E〈exp(−s γgsc)〉. Using an infinite
series representation for Bessel functions [8, eq. (8.445)], this
MGF yields

Mγgsc(s) =
23 (m−1)

(m− 1)
[
det

(
Σ̃

)]m

×
∞∑

k=m−1

∞∑
l1,l2,l3=0

k (−1)k−m+1

(
m+ k − 2
2m− 3

)

×
[

3∏
�=1

2−k−2l� b̃2 l�+k+1−m
�

l�! (l� + k)!

]
×

∑
ei∈S3

G
[
s; nei[1], ãei[1]; nei[2], ãei[2]; nei[3], ãei[3]

]
(18)

with G(s; n1, a1; n2, a2; n3, a3) =
∫ ∞
0

∫ ∞
γ3

∫ ∞
γ2

{∏3
i=1 γ

ni
i

exp[−(ai/2 + s ξi) γi]}dγ1 dγ2 dγ3. Using [8, eqs. (8.350/2)
and (8.352/2)], this triple integral can be solved in closed form
as

G (s; n1, a1; n2, a2; n3, a3)

= n1!
n1∑

p1=0

n2+p1∑
p2=0

(p1)n2
(p2)n3

3∏
�=1

[
(B� + s)

�∑
i=1

ξi

]−u�

(19)

with B� = 0.5
∑�

i=1 ai/
∑�

i=1 ξi, u1 = 1 + n1 − p1, u2 =
1 + p1 + n2 − p2, and u3 = n3 + p2 + 1.

Note that for ξ1 = ξ2 = ξ3 = 1 (K = 3: MRC scheme),
(18) numerically agrees with [12, eq. (11)] Mγmrc(s) =
[det(I3 + s Σ̃)]−m, with I3 being the 3× 3 identity matrix.

C. Error Probability

Using the MGF of triple-branch GSC output SNR per
symbol, given by (18), the ABEP for non-coherent binary
frequency shift keying (NBFSK) and binary differential phase
shift keying (BDPSK) modulation signalling can be directly
calculated ( e.g. for BDPSK, P be = 0.5Mγgsc(1)). For other
types of modulation formats, including binary phase shift
keying (BPSK), M -ary-phase shift keying (M -PSK), quadra-
ture amplitude modulation (M -QAM), amplitude modulation
(M -AM), and differential phase shift keying (M -DPSK),
single integrals with finite limits and integrands composed of

TABLE II

NUMBER OF REQUIRED TERMS FOR CONVERGENCE OF (18) FOR THE

CONSTANT CORRELATION MODEL

ρ = 0.1 ρ = 0.5 ρ = 0.7

γ (dB) m = 2 m = 4 m = 2 m = 4 m = 2 m = 4

-5 4 6 7 10 10 19

0 3 6 6 8 7 13

5 2 4 4 6 5 8

10 1 3 3 4 4 7

Fig. 1. ABEP of Gray-encoded M -QAM with GSC(2,3) receivers for a
linearly arbitrary correlation model as a function of the first branch average
input SNR per bit.

elementary (exponential and trigonometric) functions, have to
be readily evaluated via numerical integration [2].

IV. NUMERICAL AND COMPUTER SIMULATION RESULTS

Setting equal summation limits for the truncation of (18) to
all sums, Table II summarizes the number of terms needed so
as the ABEP of BDPSK to converge with relative error er ≤
5% comparing to accurate computer simulations. The constant
correlation model is considered with id channels (γ� = γ)
various values of ρ and m = 2, 4. Interestingly enough, only
a few terms are required in order the series in (18) to converge.
An increase on γ, results to a decrease of the required number
of terms, while for a fixed γ, the required number of terms
for convergence increases with increasing m and/or ρ.

Next, an exponential power delay profile γ� = exp[−δ (�−
1)] γ1, with power decaying factor δ = 0.1 is considered.
In Fig. 1, the ABEP for Gray-encoded M -ary square-QAM
schemes is plotted as a function of the first branch average
input SNR per bit γb = γ1/ log2(M). The linearly arbitrary
correlation model has been adopted with ρ12 = ρ23 = 0.795
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Fig. 2. ABEP of BDPSK with GSC(2,3), MRC, and SC for a constant
correlation model as a function of the first branch average input SNR per bit.

and ρ13 = 0.605. As expected, the ABEP improves as M
decreases and/or m and γb increase. In Fig. 2, the constant
correlation model [2] with ρ��′ = 0.1 ∀� �= �′ has been
considered. More specifically, a few curves are illustrated for
the ABEP of BDPSK modulation for GSC(K,3) receivers as
a function of γb, several values of m, and K = 1, 2, 3. For
comparison purposes, corresponding curves for SC and MRC
are also included. As expected, it is clear that the MRC scheme
outperforms both GSC(2,3) and SC ones. In both figures,
the numerically evaluated results are compared to equivalent
simulation ones. This comparisons clearly show that the curves
for the ABEP coincide with square pattern signs obtained via
simulations, verifying the correctness of the proposed analysis.

V. CONCLUSIONS

A rapidly convergent infinite series of a trivariate Nakagami-
m PDF with arbitrary covariance matrix was derived from
the diagonal elements of the Wishart matrix. Following the
MGF-based approach and extracting the MGF of the GSC
output SNR, the error rate performance of GSC receivers was
analyzed and compared to conventional ones such as MRC
and SC. Finally, extensive numerical and computer simulation
results were presented and compared, and a perfect match was
observed.
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