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Abstract— We study the performance of a dual-branch SC
receivers over correlated Weibull fading channels. Exact closed-
form expressions are derived for the probability / cumulative
density functions and the moments of the output signal-to-noise
ratio (SNR). Important performance criteria, such as average
output SNR, amount of fading (AoF), outage probability and
average bit error probability (ABEP) for several modulation
schemes, are studied and novel closed-form analytical expressions
are derived. The proposed analysis is complemented by various
performance evaluation results, including the effects of input
SNRs unbalancing, fading severity and fading correlation on the
overall system performance. Computer simulations results verify
the validity and the accuracy of the proposed analysis.

I. INTRODUCTION

One of the simplest and yet most efficient techniques to
overcome the destructive effects of fading in wireless com-
munication systems is diversity. For all diversity techniques,
including equal-gain combining (EGC), maximal-ratio com-
bining (MRC), selection combining (SC) and a combination
of MRC and SC, referred as generalized-selection combining
(GSC) [1], the receiver processes the obtained diversity signals
in a fashion that maximizes the systems power efficiency.
Among these diversity techniques, SC is the least compli-
cated since the processing is performed only on one of the
diversity branches. Traditionally, in SC the combiner chooses
the branch with the highest signal-to-noise ratio (SNR), which
corresponds to the strongest signal, if equal noise power is
assumed among the different branches [1].

The performance of diversity receivers has been extensively
studied in the open technical literature for several well-known
fading statistical models, such as Rayleigh, Rice, Nakagami-m
and Nakagami-q, for both independent and correlative fading
[1]. Past work concerning the performance of dual-branch
diversity receivers with correlative fading can be found in
many publications, including [2]–[7]. For example, Malik et
al. in [2], presented an efficient approach in analyzing the
performance of coherent detection for binary signals with
dual-diversity in correlative Rayleigh fading. More recently,
Karagiannidis et al. in [3], derived a convergent infinite sum
expression for the characteristic function of two correlated
Nakagami-m variables and extended the results of [2] to the
Nakagami-m fading case. In [4], useful expressions for the

outage probability and average bit error probability (ABEP)
were presented for a dual selection diversity system with corre-
lated slow Rayleigh and Nakagami-m fading, while in [5], the
average output SNR was evaluated. A study of dual MRC and
SC receivers over correlated Rayleigh channels is presented
in [6]. Finally in [7], the average output SNR, the amount of
fading (AoF) and the outage probability were investigated for
dual receivers operating in correlative lognormal fading.

Another fading channel model, namely the Weibull model,
has not received as much attention as the above mentioned
fading models, despite the fact that it exhibits an excellent fit to
experimental fading channel measurements, for indoor [8], [9]
and outdoor environments [10], [11]. Only very recently, the
topic of communications over Weibull fading channels begun
to receive renewed interest. For example, considering the per-
formance of diversity receivers over Weibull fading channels,
an analysis for the evaluation of the GSC performance over
independent Weibull fading channels was presented in [12].
In this analysis the first two moments and the AoF at the
output of the GSC combiner were derived. More recently,
in [13], a work related to the second order statistics and the
average channel spectral efficiency was presented by Sagias et
al. In this work, novel analytical expressions for the average
level crossing rate, the average fade duration and the average
spectral efficiency, when the Weibull model is considered,
was extracted. Two other contributions, dealing with switched
[14] and selection diversity [15] in Weibull fading, were
also presented. In [14], assuming that the receiver employs
switched diversity, expressions for the average SNR, the AoF
and the switching rate at the output of the combiner, were
derived. Finally, in [15], important performance measures such
as the outage probability and the average output SNR were
studied, for L-branch SC receivers operating in independent
Weibull fading environment.

In this paper, we analytically evaluate the performance of a
dual-branch SC receiver over correlated Weibull fading chan-
nels with arbitrary parameters. Exact closed-form expressions
are derived for the probability density function (pdf), the
cumulative distribution function (cdf) and the moments of the
dual SC output SNR. Capitalizing on these expressions, novel
closed-form analytical expressions are derived for the average
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output SNR, the AoF, the outage probability and the ABEP
for several modulation schemes. The proposed mathematical
analysis is also validated by means of computer simulation.

II. STATISTICAL PROPERTIES OF THE OUTPUT SNR

A. System and Channel Model

We consider a dual-branch diversity receiver operating in a
Weibull fading environment. The baseband received signal in
the �th (� = 1 and 2) antenna is z� = s r� + n�, where s is
the transmitted symbol, r� is the fading envelope, modelled as
a Weibull random variable (rv) and n� is the additive white
Gaussian noise (AWGN). The usual assumption is made for
the AWGN that it is uncorrelated between the two diversity
branches and has a double-sided power spectral density N0/2.
The Weibull distribution can be regarded as an approximation
to the generalized Nakagami distribution of the same order as
the Nakagami-m distribution [16] and it’s pdf is given by [17]

fr�
(r�) =

β

ω�

(
r�

ω�

)β−1

exp

[
−

(
r�

ω�

)β
]

. (1)

In the above equation, ω� =
√

r2
� /Γ (1 + 2/β), Γ(·) is the

Gamma function [18, eq. (8.310/1)], r2
� is the average signal

power and β is the Weibull fading parameter (β ≥ 0). As
the value of β increases, the severity of the fading decreases.
For the special case of β = 2, (1) reduces to the well-known
Rayleigh pdf. It is convenient to define the function dτ =
1 + τ/β, where, in general, τ is a nonnegative real variable.
The corresponding cdf and the moments are given by [17]

Fr�
(r�) = 1 − exp

[
−

(
r�

ω�

)β
]

(2)

and
E 〈rn

� 〉 = ωn
� Γ (dn) (3)

respectively, where E 〈·〉 denotes expectation and n is a
positive integer. To model the correlation between the two di-
versity paths, the bivariate distribution of r1 and r2 is needed.
Among the various distributions belonging to the family of
the Weibull bivariate distributions [19], [20], the most suitable
distribution to model the correlative fading paths must satisfy
the following criteria: i) it’s marginal pdfs should be two
parameters Weibull distributions, and ii) the range of values
for its correlation coefficient should be [0,1]. Such a bivariate
distribution is derived in [19] as a mixture of its marginals,
which are also two parameters Weibull distributions. The
complementary cdf (or survival function) of this bivariate rv
can be mathematically expressed in the following form [20]

F̃r1,r2 (r1, r2) = exp


−

[(
r1

ω1

) β
δ

+
(

r2

ω2

) β
δ

]δ

 (4)

where the dependence factor δ (0 < δ ≤ 1) is related to the
correlation coefficient ρ = cov(r1, r2)/

√
var(r1)var(r2)) as

Fig. 1. Correlation coefficient, ρ, versus δ, for various values of β.

follows [19]

ρ =
Γ2 (dδ) Γ (d2) − Γ2 (d1) Γ (d2δ)

Γ (d2δ) [Γ (d2) − Γ2 (d1)]
. (5)

Since ρ does not directly appear in (4), Fig. 1 plots ρ as
a function of δ for several values of β. For ρ = 0 (i.e.,
δ = 1), (4) can be expressed as the product of two single
Weibull complementary cdfs. Substituting (2) and (4) in [21,
eq. (6.22)], the cdf of r1 and r2 is derived as

Fr1,r2 (r1, r2) =1 + exp


−

[(
r1

ω1

) β
δ

+
(

r2

ω2

) β
δ

]δ



− exp

[
−

(
r1

ω1

)β
]
− exp

[
−

(
r2

ω2

)β
]

.

(6)

Note, that when the diversity input channels are uncorrelated,
(6) is also expressed as the product of two single Weibull cdfs.

B. CDF and PDF of the Output SNR

The instantaneous SNR per symbol for each diversity chan-
nel can be expressed as ζ� = r2

� Es/N0, where Es = E
〈
s2

〉
is the transmitted symbols energy. The corresponding average
SNR per symbol for each diversity branch is ζ� = r2

� Es/N0 =
Γ (d2) ω2

� Es/N0. Setting a = 1/Γ (d2), the joint cdf of ζ1 and
ζ2 can be obtained directly from (6) as

Fζ1,ζ2 (ζ1, ζ2) = Fr1,r2

(
ω1

√
ζ1

a ζ1

, ω2

√
ζ2

a ζ2

)
. (7)

Defining the instantaneous SNR at the SC output as ζsc
�
=

max(ζ1, ζ2) and setting ζ1 = ζ2 = ζsc in the above equation,
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the cdf of ζsc can be directly obtained as

Fζsc
(ζsc) = exp

(
−D ζ

β
2

sc

)
− exp

[
−

(
ζsc

a ζ1

) β
2
]

+ 1 − exp

[
−

(
ζsc

a ζ2

) β
2
] (8)

where D = a−β/2

[
ζ1

−β/(2 δ)
+ ζ2

−β/(2 δ)
]δ

. Differentiating

(8), the pdf of ζsc can be derived as

fζsc
(ζsc) =

β

2
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1
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(
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) β
2 −1

exp
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(
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) β
2
]

+
1
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(
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) β
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a ζ2

) β
2
]

− D ζ
β
2 −1

sc exp
[
−D ζ

β
2

sc

] }
.

(9)

C. Moments of the Output SNR

By definition, the moments of the output SNR are [21]

E 〈ζn
sc〉

∆=
∫ ∞

0

ζn
sc fζsc

(ζsc) dζsc. (10)

By substituting (9) into (10) and using [18, eq. (3.326/2)],
after some straightforward simplifications the nth moment of
ζsc can be derived in a closed-form expression as

E 〈ζn
sc〉 =


ζ

n

1 + ζ
n

2 −
(

ζ
− β

2 δ

1 + ζ
− β

2 δ

2

)− 2 δ
β n


 Γ (d2 n)

Γn (d2)
.

(11)

III. PERFORMANCE ANALYSIS

A. Average Output SNR

The average output SNR ζsc is obtained by setting n = 1
in (11) as

ζsc = ζ1 + ζ2 −
(

ζ
− β

2 δ

1 + ζ
− β

2 δ

2

)− 2 δ
β

. (12)

It should be also noted that for independent and identically
distributed (i.i.d.) input paths

(
e.g. δ = 1 and ζ1 = ζ2

)
, (12)

is identical with that in [12, eq. (8)] for the GSC(2,1) (selecting
one out of two input paths).

B. Amount of Fading (AoF)

Using (11), the AoF of the SC output, defined as the ratio
of the variance to the square mean SC output SNR, can be
easily expressed in a simple closed-form expression as

AoF
�
=

var(ζsc)

ζ
2

sc

=
E

〈
ζ2
sc

〉
ζ

2

sc

− 1. (13)

It is noted that, for i.i.d. input paths, the expression obtained
using (13) for the AoF is the same with [12, eq. (10)] for
GSC(2,1).

C. Outage Probability

The outage probability Pout is defined as the probability
that the SC output SNR falls below a given threshold ζth.
Since this probability is simply the probability that neither ζ1

nor ζ2 exceeds ζsc, the Pout is obtained by replacing ζsc with
ζth in (8) as

Pout = Fζsc
(ζth) . (14)

D. Average Bit Error Probability (ABEP)

The most straightforward approach to obtain the ABEP P be

is to average the conditional bit error probability Pbe over the
pdf of the output SNR [1] as

P be =
∫ ∞

0

Pbe(ζ) fsc(ζ) dζ. (15)

Using well-known expressions for the Pbe found in [4], it
is easy to realize that for DBPSK and NBFSK (15) requires
evaluation of infinite integrals of the form

Υ(ξ) =
∫ ∞

0

x
β
2 −1 exp (−x) exp

(
−ξ x

β
2

)
dx. (16)

Similarly, for M -AM, M -PSK, M -QAM, BFSK and M -
DPSK, it is required to evaluate finite integrals of the form∫ λ2

λ1

Υ[ξ(ϕ)] dϕ (17)

where the particular values of λ1 and λ2 depend upon the
modulation scheme. The integral in (16) can be evaluated
in closed-form as follows. By expressing the exponential
function as a Meijer’s G-function [18, eq. (9.301)], i.e.,
exp [−g(x)] = G1,0

0,1 [g(x) |−0 ] [22, eq. (11)], where g(·) is an
arbitrary function, the integral in (16) can be written as

Υ(ξ) =
∫ ∞

0

x
β
2 −1 G1,0

0,1

[
x

∣∣∣−
0

]
G1,0

0,1

[
ξx

β
2

∣∣∣−
0

]
dx. (18)

Using [22, eq. (21)], the above equation can be expressed in
closed-form as

Υ(ξ) =

(
k
l

) 1
2 l

β
2

(2π)
k+l
2 −1

Gk,l
l,k

[
ξk ll

kk

∣∣∣∣ { 2n−β
2l }

n=1,2...,l

{m
k }m=0,1,...,k−1

]
(19)

with
l

k
=

β

2
(20)

and k and l positive integers. Depending upon the value of β,
a set with minimum values of k and l can be properly chosen
in order (20) to be valid (e.g. for β = 4.3 we have to choose
k = 20 and l = 43). For the special case where β is an integer,
setting k = 2 and l = β (19) reduces to

Υ(ξ) =
√

2
β

(
β

2π

) β
2

G2,β
β,2

[
ξ2

4
ββ

∣∣∣∣{ 2n−β
2β }

n=1,2,...,β

0 , 1
2

]
. (21)

As an indicative example, the ABEP for DBPSK with integer
values of β and equal SNRs (ζ� = ζ0, ∀�) is expressed as

P be =
β

2(a ζ0)
β
2


Υ


 1(

aζ0

) β
2


 − 2δ−1 Υ


 2δ(

aζ0

) β
2





 .

(22)
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Fig. 2. First branch normalized average output SNR, ζsc/ζ1, versus the
correlation coefficient, ρ, for equal (ζ1 = ζ2) and unequal (ζ1 = 2 ζ2)
input SNRs and for several values of β.

Fig. 3. Outage probability, Pout, versus the normalized outage threshold,
ζth/ζ1, for unequal (ζ1 = 5 ζ2) average SNRs for ρ = 0, 0.5 and 0.7 and
for β = 2 and 3.3.

IV. NUMERICAL RESULTS

In this section, using the previous mathematical analysis,
theoretical results are presented for the performance of dual
SC receivers over correlated Weibull fading channels. In Fig.
2, using (12), the first branch normalized average output SNR,
ζsc/ζ1, is plotted as a function of ρ, for equal (ζ1 = ζ2) and
unequal (ζ1 = 2 ζ2) input branches SNRs and for several
values of β. As expected, the diversity gain decreases as ρ
increases. It is interesting to note that, the normalized average
output SNR degrades more rapidly as ρ increases, especially
for the equal input SNR case and for lower values of β. For
the limiting case of ρ = 0 the SNR gain of the combiner takes
its maximum value, while as ρ → 1 the corresponding gain

Fig. 4. ABEP of BPSK and DBPSK versus SNR per bit of the first branch,
for ρ = 0 and 0.5 and for β = 2 and 4.3.

approaches to unity. Additionally, for a fixed ρ the normalized
output SNR increases as the severity of fading increases (i.e.,
as β decreases). Similar behavior was observed in [5] where
the average SNR of dual SC over correlated Nakagami-m
fading channels was studied.

Having numerically evaluated (14), in Fig. 3 the outage
probability, Pout, performance of the dual SC receiver is
presented as a function of the normalized threshold with
unequal

(
ζ1 = 5 ζ2

)
input SNRs and for different values of

β and ρ. For comparison purposes, the curve for ρ = 0 is also
included as a special case for best performance. The obtained
results clearly show that the outage performance degrades with
an increase of the fading correlation and/or fading severity.

Using (15)–(21), the ABEP of various coherent and nonco-
herent, binary and multilevel modulation schemes can be ob-
tained. As a typical example, the error performance of BPSK,
as a function of the average SNR per bit of the first branch,
for ζ� = ζ0 and for several values of β and ρ is illustrated
in Fig. 4. The obtained performance evaluation results show
that the error performance improves with an increase of β,
while as expected the diversity gain decreases with increasing
values of ρ. In order to verify these analytical results computer
simulations were also performed. For comparison purposes,
these results are included in the same figure, verifying the
validity of our theoretical approach.

V. CONCLUSIONS

Closed-form expressions for the pdf, the cdf and the mo-
ments of the combined SNR at the output of a dual receiver
employing SC over both correlated and uncorrelated Weibull
fading channels have been derived. Capitalizing on these
expressions, important performance criteria, such as average
output SNR, AoF, outage probability and ABEP, have been
extracted in closed-forms. As an illustration of the mathe-
matical formalism, numerical results of these performance
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criteria were presented, describing their dependence on β
and ρ. Extensive computer simulations have validated the
mathematical analysis.

APPENDIX

GENERATION OF CORRELATED WEIBULL FADING

ENVELOPES

Following the analysis presented in [19], below an efficient
algorithm for the generation of two correlated groups of
Weibull distributed fading envelopes r1 and r2, with a joint
cdf defined in (6) is given in three steps:

1) Generate five uniform distributed rvs {Un ∈ [0, 1)},
n = 1, 2, 3, 4 and 5,

2) Set U = U1 and V =
{ −ln (U2 U3) , if U5 ≤ δ

−ln (U4) , if U5 > δ
,

3) Set (r1, r2) =
(
ω1 U

δ
β V

1
β , ω2 (1 − U)

δ
β V

1
β

)
.
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