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Abstract: M-ary quadrature amplitude modulation (M-QAM) is a spectrally efficient modulation
scheme, used for video transmission applications in third and forthcoming generations of wireless
networks. In the paper, the authors present a unified framework for the error performance of M-
QAM, employing L-branch equal-gain combining over generalised fading channels, such as
Nakagami-m, Rice, Hoyt or Weibull. For each channel model an exact closed-form expression is
derived for the moments of the EGC output signal-to-noise ratio (SNR). Using these expressions,
the symbol error performance of M-QAM is studied, with the aid of the moment-generating
function approach and the Pad!e approximants theory. The proposed mathematical analysis is
illustrated by selected numerical results, pointing out the effect of the input SNRs unbalancing, as
well as the fading severity on the system’s performance. Simulations are also performed to check
the validity and the accuracy of the proposed analysis.

1 Introduction

Wireless multimedia services and products became a reality
due to the advent of modern communication and informa-
tion technologies and the rapid growth of the consumer
market. Standards for third generation (3G) wireless
communications under the umbrella of UMTS and IMT-
2000 will be able to provide an information rate in the range
384kbit/s to 2Mbit/s, depending on the user’s speed, with
seamless roaming. This implies the possibility of transmit-
ting bandwidth-greedy video and other multimedia in a
wireless environment in the near future. To provide a
tangible solution for foreseeable wireless video applications,
wireless video transmission has been studied intensively.
The M-ary quadrature amplitude modulation (M-QAM)
scheme is used for transmission of video signals, as well as
for digital modulated radio frequency carriers [1]. M-QAM
is also applicable to satellite systems and to point-to-point
fixed wireless networks. These signals have a higher spectral
efficiency and are more robust than the conventional
amplitude modulated signals with respect to noise and
nonlinear distortion. However, the negative effects of
fading, related to the location of the receiving antenna,
are also present in the transmission of QAM modulated
signals.

Diversity combining is applied in wireless communica-
tions systems to reduce the effects of fading and to improve
the received signal’s strength. Diversity techniques are based

on the fact that errors occur in reception when the signal
attenuation is large (deep fade). If the receiver is supplied
with several replicas of the same signal transmitted over
independent fading channels, the probability that all the
received signal components be in fade simultaneously is
significantly low. Various techniques are known to combine
the signals from multiple diversity branches. The most
popular of them are selection combining (SC), equal-gain
combining (EGC) and maximal-ratio combining (MRC)
[2]. EGC provides an intermediate solution as far as the
performance and the implementation complexity are
concerned. In EGC receivers, each signal branch is weighted
with the same factor, irrespective of the signal amplitude.
However, co-phasing of all signals is needed to avoid signal
cancellation.

Previous related work concerning the error performance
of M-QAM in conjunction with diversity combining
schemes, include the following [2–11]. However, previously
published results concerning the EGC receiver performance
of M-QAM are scarce compared to those for other diversity
methods, such as MRC, due to the difficulty of finding a
useful expression for the probability density function (PDF)
of the receiver’s output signal-to-noise ratio (SNR). More
specifically, in [7], an approach to evaluate error rates of M-
QAM for EGC receivers operating in Nakagami-m fading
environments was presented, transforming the average error
integral into the frequency domain. The same method was
used in [8], to evaluate error rates for several modulation
schemes with EGC receivers operating in several fading
environments (Rayleigh, Nakagami-m, Rice or Hoyt).
However, the error rate expressions given for the Rice
and Hoyt fading cases, include infinite range integrals and
integrands composed of infinite sums of complex functions
(confluent hypergeometric), due to the complex form of
their characteristic functions (CHF). In [9], the error
performance for several modulation schemes with EGC
receivers operating over Nakagami-m fading channels was
studied, approximating the PDF of the sum of independent
Nakagami-m random variables (RV) by another Nakaga-
mi-m PDF. Recently, in [10], the authors derived an
expression for the PDF of the sum of two correlated
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Nakagami-m fading envelopes and presented a converging
infinite series for the average symbol error probability
(ASEP) of M-QAM with dual EGC in correlated
Nakagami-m fading. Finally, in [11], the authors studied
the error performance of several modulation schemes,
including M-QAM, for the dual EGC operating over
correlated Nakagami-m fading channels, capitalising on a
Parseval’s theorem-based approach [8] and deriving an
expression for the CHF of the sum of two correlated
Nakagami-m variables.

Ascertaining the lack of a simple and unified framework
to the error performance of M-QAM, when the receiver
employs EGC diversity, this paper is an attempt to face this
problem using a moments-based approach as an alternative
method. Deriving closed-form expressions for the moments
and approximating the moment-generating function
(MGF) of the output SNR using Pad!e approximants [12],
the error performance of M-QAM is accurately evaluated
for the EGC receiver operating in Nakagami-m, Rice
(Nakagami-n), Hoyt (Nakagami-q) or Weibull fading
environments. Various numerical and computer simulations
results are presented to show the simplicity and the accuracy
of the proposed approach and to point out the effect of the
input SNRs unbalancing, as well as the fading severity on
the error performance of M-QAM.

2 Statistic of the EGC output SNR

We consider an L-branch pre-detection EGC receiver,
where L antennae receive signals with statistically indepen-
dent random amplitudes Rc (c¼ 1, 2,y, L) and random
phases. Additive white Gaussian noise (AWGN) with
identical single-sided power spectral density N0 is added
to each signal, in all branches. Moreover, the AWGN is
assumed to be uncorrelated between different branches and
also uncorrelated of the fading amplitudes. The EGC
receiver equally weights and cophases all input signals, then
sums them to produce the output signal. For equally likely
transmitted symbols, the instantaneous output SNR per
symbol is given by [2]

g ¼ Es

LN0

XL

j¼1
Rj

 !2

ð1Þ

where Es is the transmitted symbols’ energy. The instanta-
neous SNR per symbol in the cth input branch is

g‘ ¼ R2
‘

Es

N0
ð2Þ

and thus, (1) can be written as

g ¼ 1

L

XL

j¼1

ffiffiffiffi
gj

p !2

ð3Þ

Using (3), the kth-order moment of the EGC output SNR
per symbol is by definition [13]

E gk
� �

¼ 1

Lk
E

XL
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ffiffiffiffi
gj

p !2k* +
ð4Þ

where E / �S denotes statistical averaging. Expanding the

term ð ffiffiffiffiffig1p þ . . .þ ffiffiffiffiffi
gL
p Þ2k, utilising the multinomial identity

([14], equation (24.1.2)), results in
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and thus, (5) can be written as

E gk
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Equation (7) is a simple expression for the kth-order
moment of the EGC output SNR per symbol, which
depends only on the SNR moments of the statistical input
paths. Next, the EGC moments are derived for Nakagami-
m, Rice, Hoyt and Weibull statistical models.

2.1 Nakagami-m fading
The Nakagami-m fading channel model [15] provides good
fits to collected data in indoor and outdoor mobile radio
environments and it is used in many wireless communica-
tions applications [16, 17]. When the receiver operates in a
Nakagami-m environment, the instantaneous SNR per
symbol in the ‘th input path, g‘, is a gamma distributed RV.
In this case, the kth moment of g‘ is given by ([2], equation
(2.23)),

E gk
‘

� �
¼ Gðm‘ þ kÞ

Gðm‘Þ þ mk
‘

�ggk
‘ ð8Þ

where G( � ) is the Gamma function ([14], equation (6.1.1)),
�gg‘ represents the average input SNR and m‘ is the fading
severity parameter, which ranges from 0.5 to N. Substitut-
ing (8) in (7), the moments of the receiver’s output SNR are
obtained in closed form as

E gk
� �

¼ ð2kÞ!
Lk

X2k

h1;h2;...;hL¼0
h1þh2þ...þhL¼2k

YL

j¼1
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j
Gðmj þ kÞ

hj!GðmjÞmhj=2
j

ð9Þ

2.2 Rice fading
The Rice (Nakagami-n) model [18, 19] is often used to
model propagation paths between the transmitter and the
receiver that consist of one strong direct or line-of-sight
(LOS) component and multipath components as in
Rayleigh fading. When the receiver operates over Rice
fading channels, the SNR of each diversity path is
distributed according to a noncentral chi-square distribu-
tion. Thus, the kth moment of the SNR per symbol of the
cth input channel is ([2], equation (2.18))

E gk
‘

� �
¼ Gð1þ kÞ
ðK‘ þ 1Þk 1F1ð�k; 1; K‘Þ�ggk

‘ ð10Þ

where 1F1( � ; � ; � ) is the confluent hypergeometric function
of the first kind [14, Chap. 13] and Kc is the Rician factor
defined as the ratio of the power in specular components to
the power in random components. For K‘ !�1 (dB) the
Rayleigh fading is described, while K‘ !1 (dB) represents
the no-fading situation. Values of the Rice factor in land
mobile terrestrial (indoor and outdoor) and satellite
applications usually range from 0 to 12dB [20]. Replacing
(10) in (7), the kth moment of the EGC output SNR per
symbol in the Rician fading environment can be extracted
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in closed form as

E gk
� �

¼ ð2kÞ!
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2.3 Hoyt fading
The Hoyt (Nakagami-q) distribution [15] is normally
observed on satellite links subject to strong ionospheric
scintillations. When the fading amplitudes are Hoyt
distributed, the kth moment of the output SNR per symbol
of the cth input path is given by ([2], equation (2.13))

E gk
‘

� �
¼ Gð1þ kÞ2F1 �

k � 1

2
; � k

2
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‘
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" #

�ggk
‘

ð12Þ
where 2F1 ( � , � ; � ; � ) is the Gauss hypergeometric function
([14], equation (15.1.1)) and qc is the Hoyt fading parameter,
which ranges from 0 (one-sided Gaussian fading) to 1
(Rayleigh fading). Using (7) and (12), the moments of the
EGC output SNR per symbol can be expressed as
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2.4 Weibull fading
The Weibull distribution is a flexible model which exhibits
an excellent fit to experimental fading channel measure-
ments, for indoor [21, 22] and outdoor environments [23,
24]. The kth moment of the output SNR per symbol of the
cth input path is given by [25]

E gk
‘

� �
¼ ða‘�gg‘ÞkG 1þ 2k

b‘

� �
ð14Þ

where ac¼ 1/G(1+2/bc) and bc is the Weibull fading
severity parameter (bcZ1). Using (7) and (14) the moments
of the EGC output SNR per symbol can be expressed as
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Lk

X2k

h1;h2;...;hL¼0
h1þh2þ...þhL¼2k

YL

j¼1
ðaj�ggjÞhj=2

Gð1þ hj=bjÞ
hj!
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3 M-QAM error analysis

The error performance of M-QAM, in conjunction with
EGC diversity, can be obtained by averaging the M-QAM
conditional error probability Pse, over the PDF of the EGC
output SNR [3]. Unfortunately, to the best of the authors’
knowledge, a closed-form expression for this PDF is not
available in the open technical literature, due to the
difficulty of finding a useful form for the PDF of the sum
of fading RVs, and thus the ASEP of M-QAM �PPse cannot
be directly evaluated. An alternative method to calculate the
M-QAM’s average error rates with EGC receivers is the
MGF-based approach to the performance analysis of

digital modulations over fading channels ([2], Chap. 1).
Useful expressions for the MGF can be obtained using the
analysis for the moments presented in Section 2 and the
Pad!e approximants theory. The latter has been proposed by
Amindavar and Ritchey to approximate unknown PDFs
and cumulative distribution functions [26]. This technique
has also been used in [27] by the same authors to analyse the
detection performance of single and multiple pulse radar
systems operating in K-distributed clutter and thermal
noise.

3.1 Pad !e approximants to MGF of EGC
output SNR
The MGF of the EGC output SNR is by definition [13]

MgðsÞ ¼ E expðsgÞh i ð16Þ
and can be represented as a formal power series (e.g.
Taylor) as

MgðsÞ ¼
X1
k¼0

sk

k!
gk ð17Þ

where gk¼E /gkS. Although the moments gk of all orders
are finite and can be evaluated in closed forms, using the
analysis of Section 2, in practice only a finite number N can
be used, truncating the series as

MgðsÞ ¼
XN

k¼0

sk

k!
gk þOðsN�1Þ ð18Þ

where O (sN+1) is the remainder after the truncation, with
terms of order greater than N. In many cases, we cannot
conclude that the power series in (18) has a positive radius
of convergence and where or whether it is convergent.
Hence, we have to obtain the best approximation to the
unknown underlying function MgðsÞ, using only a finite
number of moments. This can be efficiently achieved using
the Pad!e approximation method, which has already been
used in several scientific fields to approximate series, such as
that in (18), where practically only a few coefficients are
known and the series converges too slowly or diverges [12].
A Pad!e approximant is that rational function approxima-
tion toMgðsÞ of a specified order B for the denominator
and A for the nominator, whose power series expansion
agrees with the N¼A+B order power expansion ofMgðsÞ,
where A and B are positive integers. If the rational function
is

R½A=B�ðsÞ ¼

PA
i¼0

cisi

1þ
PB
i¼1

bisi

ð19Þ

then R[A/B](s) is said to be a Pad!e approximant to the series
in (18), if

R½A=B�ð0Þ ¼ Mgð0Þ ð20Þ
and

@i

@si
R½A=B�ðsÞjs¼0 ¼

@i

@si
MgðsÞjs¼0;

i ¼ 1:2; . . . ; Aþ B ð21Þ

The A+1 coefficients {ci} and the B coefficients {bi} are real
numbers which can be obtained solving the set of A+B+1
equations using (20) and (21). Hence, the first A+B
moments are needed to be evaluated to construct the
approximant R[A/B](s). Pad!e approximants are available in
most of the well known mathematical software packages, as
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MATHEMATICA, MATLAB andMAPLE. Next,MgðsÞ
will be approximated using sub-diagonals (B¼A+1) Pad!e
approximants, since only in this case the convergence rate
and the uniqueness can be assured [12, 26]. Moreover, the
degrees of the numerator and denominator will be varied to
achieve the desired accuracy for the evaluation ofMgðsÞ.

3.2 MGF-based approach to ASEP
According to the MGF-based approach the ASEP of M-
QAM modulation scheme is given by

�PPse ¼
4

p
1� 1ffiffiffiffiffi

M
p

� � Zp2
0

Mg �
g

sin2 j

� �2
64 dj

� 1� 1ffiffiffiffiffi
M
p

� �Zp4
0

Mg �
g

sin2 j

� �
dj

3
75 ð22Þ

Using the above equation and the Pad!e approximants to
the MGF, the error performance of M-QAM in conjunc-
tion with EGC diversity can be easily evaluated via
numerical integration, since (22) consists of single integrals
with finite limits and integrands composed of elementary
functions (exponential and trigonometric), which behave
quite well in the range of the integrals’ limits.

As an indicative example, in Table 1, the degree of Pad!e
approximants is presented that is needed to be evaluated for
the convergence of the ASEP at the 5th significant digit for
M-QAM signalling, several values of M and input branch
SNRs, L¼ 3 and identical Nakagami-m fading with m¼ 2.

4 Numerical and computer simulation results

Several representative Figures are provided, illustrating the
error performance of M-QAM in conjunction with EGC
diversity over Nakagami/Rayleigh, Rice, Hoyt or Weibull
fading channels. In each Figure, numerical and computer
simulations results are presented. The computer simulation
results (star signs) are compared to the corresponding
mathematical analysis (lines) to check the accuracy of the
proposed approach. Over 106 samples are used for the
generation of the fading envelopes.

Figure 1 depicts the error performance of 4-QAM, 16-
QAM and 64-QAM in conjunction with EGC diversity
operating over independent and identically distributed
(i.i.d.) (�ggi ¼ �gg0, mi¼m, i¼ 1, 2, 3, 4) Nakagami-m fading
channels with m¼ 2. From this Figure, it is apparent that
the diversity reception is an effective technique for
combatting the detrimental effects of deep fades experienced
in wireless channels. It is also obvious that increasing the
diversity order improves the error performance of the

receiver, but this improvement does not increase propor-
tionally with L. Figure 2 depicts the error performance of
32-QAM for dual branch EGC with equal branch SNRs in
Nakagami-m fading as a function of the fading parameter,
for several values of �gg0. It is observed that the sensitivity of
�PPse to variations of m increases as �gg0 increases.
Figure 3 plots the ASEP for 4-QAM, 16-QAM and 64-

QAM with dual and triple EGC diversity over i.i.d. Rice
fading channels with Kc¼K¼ 4, while Fig. 4 depicts the
ASEP for 4-QAM with dual and triple EGC diversity over
i.i.d. Rice fading with K¼ 0, 4 and 10. As expected, the
ASEP performance is always better in channels where a
strong line-of-sight exists (e.g. higher values of K). Notice
that the relative diversity advantage is more pronounced in
a poorer channel condition.

Figure 5 plots the ASEP for 4-QAM, 16-QAM and 64-
QAM with dual and triple EGC diversity over identical
Hoyt fading channels with qc¼ q¼ 0.5, and Fig. 6 plots the

Table 1: Degree of Pad!e approximants [A/(A+1)] for a
convergence at 5th significant digit of ASEP with equal
branch SNRs, Nakagami-2 fading and L¼ 3

SNR/sym-
bol, dB

M¼ 4 M¼ 16 M¼64 M¼128

�5 [3/4] [3/4] [3/4] [3/4]

0 [3/4] [3/4] [3/4] [3/4]

5 [4/5] [3/4] [3/4] [3/4]

10 [8/9] [5/6] [4/5] [3/4]

15 [11/12] [7/8] [6/7] [4/5]

20 – [10/11] [8/9] [6/7]
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Fig. 1 ASEP for M-QAM in EGC over Nakagami-m fading
channels (m¼ 2)
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Fig. 2 ASEP for 32-QAM against fading parameter m for dual
EGC over Nakagami-m fading channels
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ASEP for 64-QAM in EGC against the order of diversity
for several values of q and �gg0. As also observed in Figs. 1–4,
the ASEP for M-QAM in EGC for Hoyt fading improves
with an increase of L, q, and/or �gg0.

Figure 7 depicts the ASEP for 4-QAM, 16-QAM, 64-
QAM and 128-QAMwith EGC diversity over i.i.d. Weibull
fading channels for L¼ 2 and 3 and bc¼ b¼ 2.7. Finally,
Fig. 8 examines the sensitivity of the ASEP of M-QAM in
the presence of unequal branch SNRs for the dual EGC
receiver operating over Weibull fading channels with
b¼ 2.7. It is observed that a system with equal branch
SNRs performs better than that with unequal branch
SNRs, which is to be expected since in EGC all the diversity
branches are treated equally. It is clear from the presented
Figures that an excellent match between analytical and
computer simulations results is observed.

5 Conclusions

An alternative unified approach to the error performance of
M-QAM, in conjunction with EGC diversity receivers
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Fig. 3 ASEP for M-QAM in EGC over Rice fading channels
(K¼ 4)
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Fig. 4 ASEP for 4-QAM in EGC over Rice fading channels
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operating over generalised fading channels, was presented.
The moments of the EGC output SNR were extracted in
closed form for several channel models and the correspond-
ing MGFs were approximated with the use of Pad!e
approximants theory. The proposed analysis is sufficiently
general to handle arbitrary fading parameters as well as
dissimilar signal strengths across the diversity branches.
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