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Abstract

A new stochastic fading channel model called cascaded Weibull fading is introduced and the

associated capacity is derived in closed form. This model is generated by the product of independent,

but not necessarily identically distributed, Weibull random variables (RVs). By quantifying the

convergence rate of the central limit theorem as pertaining to the multiplication of Weibull

distributed RVs, the statistical basis of the lognormal distribution is investigated. By performing

Kolmogorov–Smirnov tests, the null hypothesis for this product to be approximated by the

lognormal distribution is studied. Another null hypothesis is also examined for this product to be

approximated by a Weibull distribution with properly adjusted statistical parameters.

r 2006 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Due to the existence of a great variety of fading environments, several distributions have
been proposed for channel modeling of fading envelopes under short, long, as well as
mixed fading conditions [1]. Recently, attention has been given to the so-called
‘‘multiplicative’’ stochastic models. Such models do not separate the fading in several
parts but rather study the phenomenon as a whole. A physical interpretation for these
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models has been given by considering the received signals as being generated by the
product of a large number of rays reflected via N statistically independent scatterers [2].
For example, for N ¼ 2, the so-called double Rayleigh (i.e., Rayleigh�Rayleigh) fading
stochastic model has been found to be suitable when both transmitter and receiver are
moving [3]. It is interesting to note that the double Rayleigh model has been recently used
for keyhole channel modeling of multiple-input multiple-output (MIMO) systems [4,5].
Extending this model by characterizing the fading between each pair of the transmit and
receive antennas in the presence of the keyhole as Nakagami-m, the double Nakagami-m

(i.e., Nakagami-m�Nakagami-m) fading model has been considered [6]. Also, for higher
values of N, Coulson et al. have studied the distribution of the product of N correlated
Rayleigh distributed random variables (RVs) via computer simulations [7]. Interestingly
enough, such products of (not necessarily correlated) RVs have been also found to be
useful in other scientific fields of communications. For example, they have been used for
analyzing the performance of multihop systems [8,9] as well as to derive closed-form upper
bounds for the distribution of the sum of RVs [10].
As far as long term fading conditions are considered, it is known that the probability

density function (PDF) of the fading envelopes can be modeled by the well-known
lognormal distribution [11]. Despite its wide acceptance in wireless communication
theory, this distribution is empirical and it is hard to be justified [2]. Understanding
the origin of the lognormal distribution is important and it can be tackled by investigating
its statistical basis as pertaining to the multiplication of RVs. By applying the central
limit theorem (CLT) to the logarithm of a product of a large number of RVs,
it can be easily shown that it tends toward the normal (Gaussian) distribution.
Consequently, the distribution of this product tends towards the lognormal distribution
[12, pp. 220–221]. In [7], by performing Kolmogorov–Smirnov (K–S) tests, the
convergence of CLT toward the lognormal distribution has been investigated and it
has been deduced that more than 30 RVs (N430) should be multiplied, for this product
to converge. This observation has also been reported in an independent work by
Andersen [2]. In another paper, Fante has investigated the validity of the CLT for the
magnitude of the sum of N K-distributed complex RVs [13] (having uniformly distributed
phase). In that work, it has been demonstrated that an order of 200 RVs must be summed
to obtain amplitudes that can be approximated by the Weibull distribution. The Weibull
distribution has been extensively used for modeling several types of radar clutter as well as
mobile fading channels. However, to the best of the authors’ knowledge, the (multi-
plicative) cascaded Weibull fading stochastic model, generated by the product of
independent but not necessarily identically distributed Weibull RVs, has never been
addressed before.
In this paper, the cascaded Weibull fading channel model is introduced and its capacity

is derived in closed form. Additionally, K–S tests are performed to study the convergence
rate of this novel stochastic model toward the lognormal distribution. The null hypothesis
for our model to be approximated by a Weibull distribution with properly adjusted
statistical parameters (equating both first and second order moments) is also examined.
The remaining of the paper is organized as follows. In Section 2, the statistics of the

cascaded Weibull stochastic model is presented. Section 3 provides the channel capacity of
this new model, while in Section 4, the convergence rates of the cascaded Weibull fading
model toward the lognormal and Weibull distributions are examined. Concluding remarks
are provided in Section 5.



ARTICLE IN PRESS
N.C. Sagias, G.S. Tombras / Journal of the Franklin Institute 344 (2007) 1–11 3
2. Statistics of the cascaded Weibull stochastic model

We consider NX1 independent, not necessarily identical, Weibull RVs, R‘ (‘ ¼ 1;
2; . . . ;N), each with PDF [14, Eq. (3)]

f R‘
ðrÞ ¼

b‘
O‘

rb‘�1 exp �
rb‘

O‘

� �
, (1)

where O‘ ¼ EhR
b‘
‘ i is the average fading power, O2=b‘

‘ ¼ EhR2
‘i=Gð1þ 2=b‘Þ, Gð�Þ is the

Gamma function [15, Eq. (8.310/1)] (Eh�i denoting expectation), and b‘40 is the fading
parameter expressing the fading severity. As b‘ increases, the fading severity decreases,
while for the special case of b‘ ¼ 2, Eq. (1) reduces to the well-known Rayleigh PDF [1,
Eq. (2.6)]. Moreover, for the special case of b‘ ¼ 1, Eq. (1) reduces to the well-known
exponential PDF.

Definition 1. The RV Y is defined as the product of N Weibull distributed RVs R‘, i.e.,

Y9
YN
i¼1

Ri (2)

with corresponding b‘’s belonging to rationals.

Theorem 1. The PDF of Y is given by
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where G½�� is the Meijer’s G-function1 [15, Eq. (9.301)],
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with Dðp; xÞ defined as Dðp; xÞ ¼n x=p; ðxþ 1Þ=p; . . . ; ðxþ p� 1Þ=p, x being an arbitrary real

value and p a positive integer,
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ffiffiffi
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ffiffiffiffiffiffi
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and

W ¼
1

nn

YN
i¼1

nOi

bi

� �n=bi

. (5)

Moreover, n and m are two positive integers given by

n ¼
YN
i¼1

ki (6)
1G½�� can be expressed in terms of more familiar generalized hypergeometric functions pF qð�; �; �Þ [15, Eq. (9.14/
1)] using the transformation presented in [15, Eq. (9.303)], with p and q being positive integers. Note that both G½��

and pFqð�; �; �Þ are included as built-in functions in most of the popular mathematical software packages such as

Maple or Mathematica.
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and

m ¼ n
XN

i¼1

1

bi

(7)

under the constraints that k‘ and

l‘ ¼
1

b‘

Y‘
i¼1

ki (8)

are minimum positive integers.

Proof. See [16].

Based on Eq. (8), the N pairs ðk‘; l‘Þ can be found as follows: Depending upon the value
of b1, k1 and l1 are two minimum positive integers such that l1 ¼ k1=b1 holds (e.g., for
b1 ¼ 2:5, k1 ¼ 5 and l1 ¼ 2). Next, depending upon the value of b2, ðk2; l2Þ is another pair
of minimum positive integers such that l2 ¼ k1 k2=b2 holds, and finally, a similar procedure
is performed till finding the Nth pair of minimum positive integers ðkN ; lNÞ such that
Eq. (8) holds.
Some special cases of Eq. (3) are as follows: For N ¼ 1, and using [15, Eq. (9.31/2)]

and [17, Eq. (07.34.03.0046.01)], Eq. (3) simplifies to Eq. (1). For identical and
integer order fading parameters, i.e., b‘ ¼ b 8‘, with b 2 N (N denotes the set of natural
numbers), n ¼ b, m ¼ N (l1 ¼ 1, k1 ¼ b, and k‘ ¼ l‘ ¼ 18‘X2), and hence, Eq. (3) can be
expressed as

f Y ðyÞ ¼
b
y

G0;N
N ;0

QN
i¼1Oi

yb

0; 0; . . . ; 0

�

����
" #

. (9)

The above PDF for N ¼ 2 reduces to

f Y ðyÞ ¼
2b

O1O2
yb�1K0 2

ffiffiffiffiffiffiffiffiffiffiffi
yb

O1O2

s0
@

1
A (10)

with K0ð�Þ being the zeroth order modified Bessel function of the second kind, while for
N ¼ 3 and 4, two useful formulae composed by familiar functions such as Bessel or
hypergeometric can be obtained, using [17, Eqs. (07.34.03.0197.01) and (07.34.03.0222.01)],
respectively, but they are not given here due to their not so compact form. Note also that
for b ¼ 2 and O1 ¼ O2 ¼ O, Eq. (10) reduces to a known result [10, Eq. (18)], which is the
PDF of the double Rayleigh stochastic model.
3. Channel capacity

In this section, first the statistics of the second power of the cascaded Weibull fading
envelope is analyzed and then used to derive the Shannon capacity of our new cascaded
channel model.
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3.1. Statistics of the signal-to-noise ratio

Let us consider a digital communication system operating over the previously described
cascaded Weibull fading channel model. The instantaneous signal-to-noise ratio (SNR) at
the input of the receiver is given by

L ¼
Es

N0
Y 2, (11)

where Es is the transmitted symbol’s average energy and N0 is the single-sided additive
white Gaussian noise (AWGN) power spectral density, while the corresponding average
SNR is

L ¼ EhY 2i
Es

N0
¼

Es

N0

YN
i¼1

O2=bi

i G 1þ
2

bi

� �
. (12)

Based on an interesting property of the Weibull distribution, that the nth power of a
Weibull distributed RV with parameters ðb‘;O‘Þ is another Weibull distributed RV with
parameters ðb‘=n;O‘Þ [18, Theorem 1], it can be easily concluded that L is also a Weibull

RV with parameters ðb‘=2; ðX‘ L‘Þ
b‘=2Þ, where L‘ ¼ EhR2

‘iEs=N0 (L‘ ¼ R2
‘ Es=N0) and

X‘ ¼ 1=Gð1þ 2=b‘Þ. Using the above mentioned property, the PDF of L can be easily

derived, replacing b‘ with b‘=2 and O‘ with ðX‘ L‘Þ
b‘=2 helping us to study the capacity of

the cascaded Weibull fading channel. Hence from Eq. (3), the PDF of L can be easily
derived as
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Also, hereafter in this paper, V and W are modified as
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with m ¼ 2n
PN

i¼1ð1=biÞ and l‘ ¼ 2 ð
Q‘

i¼1kiÞ=b‘.

3.2. Average channel capacity

We consider an adaptive transmission scheme where optimal rate adaptation with
constant transmit power is applied. This scheme entails variable-rate transmission relative
to the channel, but is rather practical since the transmit power remains constant.

For a transmitted signal of bandwidth Bw over the AWGN channel, the channel
capacity is given by [19, Eq. (1), 20]

C ¼ Bw log2 1þ
Es

N0

� �
. (16)
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When the same signal is transmitted over the cascaded Weibull fading channel, the
(normalized to Bw) instantaneous channel capacity, Se ¼ C=Bw, can be considered as a RV
and it can be obtained by averaging log2ð1þ LÞ over the PDF of L, i.e.,

Se ¼

Z 1
0

log2ð1þ lÞ f LðlÞdl. (17)

By substituting Eq. (13) in the above equation, and after some mathematical
transformations, an integral of the formZ 1

0

l�1 lnð1þ lÞG0;m
m;0

W nn

ln

Inðb‘=2; 0Þ

�

����
� 	

dl

appears. Similarly to [21, Appendix] and using [22, Eqs. (11) and (21)], Se can be expressed
in closed form as

Se ¼
V

lnð2Þ
ffiffiffi
n
p Gmþ2n; n

2n; mþ2n

1

W nn

Dðn; 0Þ;Dðn; 1Þ

Inðb‘=2; 1Þ;Dðn; 0Þ;Dðn; 0Þ

�����
" #

. (18)

Note that for N ¼ 1, the above equation reduces to an already known expression [20, Eq. (17)].

3.3. Numerically evaluated results

Without loss of generality, in the results that follow, L0 ¼ L‘ and b ¼ b‘ 8‘. Having
numerically evaluated Eq. (18), in Fig. 1, Se is plotted as a function of L0, for the cascaded
Weibull fading channel with N ¼ 1, 2, 3, 4, and b ¼ 2:5. These results clearly show that for
Fig. 1. Average spectral efficiency as a function of the average SNR for b ¼ 2:5 and several values of N.
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Fig. 2. Average spectral efficiency as a function of the average SNR for several values of b.

N.C. Sagias, G.S. Tombras / Journal of the Franklin Institute 344 (2007) 1–11 7
a fixed value of N, Se improves as L0 increases. Moreover, the higher the value of N, the
higher Se is obtained. The results further indicate that for a given value of L0 ’ 1:5 dB, a
threshold for Se exists above (below) which Se improves (degrades) with increasing N.
Although not shown in Fig. 1, similar thresholds have been found for other values of b.
Similar findings can be also extracted from Fig. 2 where Se is plotted as a function of L0,
for the cascaded Weibull fading channel with N ¼ 2, 4, and b ¼ 2, 2.4, 3, 4.2. As b
increases, higher Se is obtained. This occurs because by increasing b, the fading severity of
the cascaded channels decreases, and hence, deep fades generated by the product of
Weibull fading envelopes occur less frequently.

4. Approximations for the cascaded Weibull fading model

Next, we investigate the necessary conditions for the distribution of the cascaded
Weibull fading model to become equivalent (denoted next with the symbol �) to the
lognormal or the Weibull distributions.

4.1. Lognormal approximation

Let mYP
and s2YP

be the mean and the variance, respectively, of a lognormal RV X, with
cumulative distribution function (CDF) given by

FX ðxÞ ¼ 1�
1

2
erfc

lnðxÞ � mUPffiffiffi
2
p

sUP

" #
, (19)
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where erfcð�Þ is the complementary error function [15, Eq. (8.250/4)]. After taking the
natural logarithm in both parts of Eq. (2), YP ¼ lnðY Þ can be written as

YP ¼
XN

i¼1

lnðRiÞ. (20)

For a large value of N and by applying the CLT, the second part of the above equation
tends to the normal (Gaussian) distribution, and consequently, Y tends to be lognormal
[12, pp. 220–221]. A necessary condition in order to Y � X is that both Y and X should
have the same mean

mYP
¼ EhlnðY Þi (21)

and variance

s2YP
¼ Ehln2ðY Þi � E2hlnðY Þi. (22)

The pth order moment of lnðR‘Þ is

Ehlnp
ðR‘Þi ¼

Z 1
0

lnp
ðrÞ f R‘

ðrÞdr. (23)

By substituting Eq. (1) in the above equation, applying the transformation z ¼ rb‘ , using
[15, Eq. (4.358/1)], and after some straightforward mathematical manipulations, Ehlnp

ðR‘Þi

can be obtained as

Ehlnp
ðR‘Þi ¼

p

b‘O‘

qp

qsp
Os
‘ GðsÞ


 �����
s¼1

. (24)

Hence, with the aid of Eq. (2) and setting p ¼ 1 and 2 in Eq. (24), the mean and variance of
YP can be determined as

mYP
¼
XN

i¼1

1

bi

½lnðOiÞ � C� (25)

and

s2YP
¼

p2

6

XN

i¼1

1

b2i
, (26)

respectively, where C is Euler’s constant [15, Section 9.73].

Definition 2. We define H11 as the null hypothesis that generated samples of Y belong to
the CDF of the lognormal distribution.
4.2. Weibull approximation

Let Z be a Weibull distributed RV with fading and shaping parameters b and C,
respectively. Like as in the previous subsection, a necessary condition in order Y � Z is
that both should have the same mean and variance. By equating the first two moments
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of Y and Z, i.e., EhY pi ¼ EhZpi, with p ¼ 1 and 2, the non-linear set of equations

YN
i¼1

O1=bi

i G 1þ
1

bi

� �
¼ C1=bG 1þ

1

b

� �
, (27)

YN
i¼1

O2=bi

i G 1þ
2

bi

� �
¼ C2=b G 1þ

2

b

� �
(28)

should be numerically solved.

Definition 3. We define H12 as the null hypothesis that generated samples of Y belong to
the CDF of the Weibull distribution.

4.3. K– S goodness-of-fit test

In order to measure the overall difference between two CDFs, a number of statistics, such
as the absolute value of the area between them or their integrated mean square difference,
can be applied. The K–S statistic T is a particularly simple measure which is defined as the
maximum value of the absolute difference between the two CDFs of X (or Z) and Y. Thus,
for comparing one data set with CDF FY to the known CDF F X (or FZ), the K–S statistic is

T ¼ max jF X ðxÞ � F Y ðxÞj. (29)

To test the null hypotheses H11 (or H12) that observed data of Y belong to analytical CDF
FX (or FZ), respectively, the K–S goodness-of-fit test comparesT to a critical levelTmax, as
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Fig. 3. Hypothesis testing distribution of the product of Weibull distributed RVs. Comparison of K–S tests (for

H11: Y be lognormal) referred to 5% significance level.
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a function of N and a significance level a. Any hypothesis for which T4Tmax is rejected
with significance 1� a, while any hypothesis for which ToTmax is accepted with the same
level of significance.

4.4. Simulation results

We compare values of T, as calculated using Eq. (29), for a sample vector length 10000
and significance level a ¼ 5%. Note that similarly to [7], our results have been obtained by
averaging the results of 30 simulation runs, each for 10 000 samples. Without loss of
generality, RVs R‘ are independent and identically distributed Weibull RVs (O‘ ¼ O and
b‘ ¼ b 8‘). This choice is arbitrary, since there is not any empirical justification for a
probably more accurate assumption [7]. Fig. 3 tests hypothesis H11. Our simulations show
that, independently of the value of b, when 1oNp30, hypothesis H11 is rejected with 95%
significance (T40:09) [7, Table I], although the distribution of Y is clearly seen to converge
toward the lognormal distribution with increasing N430. This observation agrees with [2,7].
Fig. 4 tests hypothesis H12 for several values of b, where values ofT are plotted for the data
tested against the number of RVs N. For N41, H12 is rejected with 95% significance,
despite that the higher the value of b, the more it resembles the two distributions.

5. Conclusions

A cascaded Weibull fading stochastic model was introduced and its channel capacity
was derived in closed form. Additionally, the empirical justification for the lognormal PDF
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in multipath fading channels was examined by quantifying the rates of convergence of the
CLT for the multiplication of Weibull distributed RVs. It was shown that more than 30
multipliers are required for the product of Weibull RVs to be accurately approximated as
being lognormally distributed. The hypothesis for this product to be Weibull distributed
was also rejected for all N41. Experimental channel measurements would be interesting to
be conducted, which may verify the suitability of the proposed cascaded stochastic model
to be used in realistic wireless fading channels.
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