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Error Rate Performance of Multilevel Signals with Coherent Detection
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Abstract—In this paper, coherent detection for multilevel
correlated signaling sets in additive white Gaussian noise is
addressed. The contribution is twofold. Firstly, correlation struc-
tures that minimize the symbol error probability (SEP) of 𝑀 -
ary frequency-shift keying as well as of arbitrarily correlated
signaling sets are investigated, while secondly, a general and
analytical expression for the SEP is derived in the form of a
single integral. The structure of the associated correlation matrix
is generic and includes various known signaling sets as special
cases. Specific correlation structures that minimize the SEP are
also studied. Based on eigendecomposition or LU decomposition,
generic methods for constructing a correlated signaling set for
any correlation matrix under consideration are also provided.

Index Terms—Coherent detection, correlated signals, correla-
tion matrix, detection theory, digital modulation, frequency-shift
keying (FSK), multivariate statistics, orthogonal signals.

I. INTRODUCTION

THE rapidly increasing need for high data rates and high
quality of services drives engineers to design systems

that will provide optimum performance under a number
of parameters and constraints existing in all layers. In the
physical layer, there are many options that are available
and must be carefully addressed. Some of them with major
impact to system performance are the detection scheme, the
modulation scheme and order, and the signaling set [1]–
[6]. Among them, the choice of the detection scheme is
critical. As it is well known, depending on whether or not
the receiver is equipped with a phase recovery circuit, the
detection scheme can be classified as coherent or noncoherent,
with the former providing better performance at the expense
of increased implementation complexity [7], [8]. Although
many combinations of the various options are possible, some
are more popular than others. A well-known combination
met in practice is for multilevel frequency-shift keying (FSK)
[9], where noncoherent detection with orthogonal signaling
is commonly used [10]–[12]. However, neither noncoherent
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detection nor orthogonal signaling sets necessarily lead to
optimum performance. For example, it is well known that
in the case of binary FSK (BFSK) modulation, the best
performance occurs for coherent reception with the correlation
between the two available signals being equal to −0.2172 [1,
Section 8.1.1.6]. It is therefore reasonable to seek for and
study correlated signaling sets in conjunction with coherent
receivers that minimize the probability of error.

This paper deals with coherent detection of correlated
signals in additive white Gaussian noise (AWGN). Correlation
structures that minimize the symbol error probability (SEP)
of 𝑀 -ary FSK as well as of arbitrarily correlated signaling
sets are studied. Moreover, a general analytical expression
for the SEP is derived with the associated correlation matrix
being quite generic, including various known signaling sets
as special cases. Based on the derived expression, specific
correlation structures for signaling sets that minimize the
SEP are studied. Moreover, based on eigendecomposition or
LU decomposition, generic methods for constructing specific
signaling sets for any correlation matrix under consideration
are provided.

II. COHERENT DETECTION OF MULTILEVEL SIGNALS IN

AWGN

Let 𝑟(𝑡) ∈ ℝ (ℝ is the set of real numbers) denote the
received signal of modulation order 𝑀 at the time instant 𝑡,
where 0 ≤ 𝑡 ≤ 𝑇𝑠 and 𝑇𝑠 is the symbol duration. We can
express 𝑟(𝑡) as 𝑟(𝑡) = 𝑠(𝑡) + 𝑛(𝑡), where 𝑛(𝑡) ∈ ℝ is the
AWGN with two-sided power spectral density of 𝑁0/2, i.e.,
𝔼⟨𝑛(𝑡)⟩ = 0 and 𝔼⟨𝑛(𝑡1)𝑛(𝑡2)⟩ = (𝑁0/2) 𝛿(𝑡1 − 𝑡2) ∀𝑡1, 𝑡2,
with 𝔼⟨⋅⟩ denoting the expectation operator, 𝛿 (⋅) denoting the
Dirac delta function, and 𝑠(𝑡) = {𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝑀 (𝑡)} ∈
ℝ is one of the 𝑀 available signals each having energy
𝐸𝑖 =

∫ 𝑇𝑠

0
𝑠2𝑖 (𝑡) d𝑡 (𝑖 = 1, 2, . . . ,𝑀 ). All 𝑀 signals are as-

sumed to have equal a priori probability of occurrence and are
not necessarily orthogonal to each other, with the correlation
coefficient between 𝑠𝑖(𝑡) and 𝑠𝑗(𝑡) (𝑖, 𝑗 = 1, 2, . . . ,𝑀 ) being

𝜌𝑖,𝑗 =
1√
𝐸𝑖𝐸𝑗

𝑇𝑠∫
0

𝑠𝑖(𝑡) 𝑠𝑗(𝑡) d𝑡 , (1)

with −1 ≤ 𝜌𝑖,𝑗 ≤ 1. Moreover, 𝑠𝑖(𝑡) can be expanded
as a weighted sum of a set of orthonormal basis func-
tions 𝜑1(𝑡), 𝜑2(𝑡), . . . , 𝜑𝑁 (𝑡) of dimension 𝑁 ≤ 𝑀 as
𝑠𝑖(𝑡) =

∑𝑁
𝑗=1 𝑠𝑖,𝑗 𝜑𝑗(𝑡), with

∫ 𝑇𝑠

0
𝜑𝑗(𝑡)𝜑𝑘(𝑡) d𝑡 = 𝛿[𝑗 − 𝑘],

where 𝛿[⋅] denotes the Kronecker delta function, and 𝑠𝑖,𝑗 =∫ 𝑇𝑠

0
𝑠𝑖(𝑡)𝜑𝑗(𝑡) d𝑡. When the 𝑖th signal 𝑠𝑖(𝑡) is transmitted,

we can rewrite 𝑟(𝑡) in vector form as 𝑟 = 𝑠𝑖 + 𝑛, where
𝑠𝑖 = [𝑠𝑖,1, 𝑠𝑖,2, ⋅ ⋅ ⋅ , 𝑠𝑖,𝑁 ]𝑇 , (⋅)𝑇 denoting transpose, and 𝑛
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is an 𝑁 -dimensional zero-mean real Gaussian vector with
covariance matrix (𝑁0/2) 𝐼𝑁 , 𝐼𝑁 denoting the 𝑁×𝑁 identity
matrix. Thus 𝑛 ∼ 𝒩 (0𝑁 , (𝑁0/2) 𝐼𝑁 ), with 0𝑁 denoting the
𝑁 × 1 vector of zeros.

A. Coherent Detection

The coherently detected signal is given by the decision rule
𝑠̂𝑖 = argmin𝑠𝑗∈{𝑠1,𝑠2,...,𝑠𝑀} ∣∣𝑟 − 𝑠𝑗 ∣∣2 or

𝑠𝑖(𝑡) = argmax
𝑠𝑗(𝑡)∈{𝑠1(𝑡),𝑠2(𝑡),...,𝑠𝑀 (𝑡)}

⎡
⎣ 𝑇𝑠∫

0

𝑟(𝑡) 𝑠𝑗(𝑡)d𝑡− 1

2
𝐸𝑗

⎤
⎦ .
(2)

When the 𝑖th signal is transmitted, a correct decision occurs
under the condition 𝑠̂𝑖 = 𝑠𝑖. Based on (2) we define the
random variable (RV) 𝐿𝑗 ≜

∫ 𝑇𝑠

0
𝑟(𝑡) 𝑠𝑗(𝑡) d𝑡−𝐸𝑗/2 and under

the hypothesis that the 𝑖th signal is transmitted among the 𝑀
available, 𝐿𝑗 can be expressed as

𝐿𝑗(𝑖) =

⎧⎨
⎩
𝜌𝑖,𝑗

√
𝐸𝑖𝐸𝑗 − 1

2 𝐸𝑗 +
𝑇𝑠∫
0

𝑛(𝑡) 𝑠𝑗(𝑡) d𝑡 , 𝑖 ∕= 𝑗,

1
2 𝐸𝑖 +

𝑇𝑠∫
0

𝑛(𝑡) 𝑠𝑖(𝑡) d𝑡 , 𝑖 = 𝑗.

(3)
It can be easily verified that 𝐿𝑗(𝑖) ∼ 𝒩 (𝜌𝑖,𝑗

√
𝐸𝑖 𝐸𝑗 −

𝐸𝑗/2, 𝐸𝑗 𝑁0/2). Let us define another vector 𝐿(𝑖) ≜
[𝐿1(𝑖), 𝐿2(𝑖), . . . , 𝐿𝑀 (𝑖)]𝑇 , with mean of the 𝑗th element
𝔼 ⟨𝐿𝑗(𝑖)⟩ = 𝜌𝑖,𝑗

√
𝐸𝑖𝐸𝑗 − 𝐸𝑗/2, for 𝑖 ∕= 𝑗, and 𝔼 ⟨𝐿𝑗(𝑖)⟩ =

𝐸𝑖/2, for 𝑖 = 𝑗. Also, the corresponding covariance be-
tween the 𝑗th and the 𝑘th elements is cov[𝐿𝑗(𝑖), 𝐿𝑘(𝑖)] =
𝜌𝑗,𝑘

√
𝐸𝑗 𝐸𝑘𝑁0/2, for 𝑗 ∕= 𝑘, and cov [𝐿𝑗(𝑖), 𝐿𝑘(𝑖)] =

𝐸𝑗 𝑁0/2, for 𝑗 = 𝑘. We can now express the covariance
matrix of 𝐿(𝑖) as cov[𝐿(𝑖)] =

√
𝐸 𝑅𝑠

√
𝐸 (𝑁0/2), where

√
𝐸

is an 𝑀 ×𝑀 diagonal matrix, the elements of which are the
square roots of the symbol energies 𝐸1, 𝐸2, . . . , 𝐸𝑀 , and 𝑅𝑠

is the symmetric correlation matrix of the signaling set, with
elements [𝑅𝑠]𝑖,𝑗 = 𝜌𝑖,𝑗 ∀𝑖 ∕= 𝑗 and [𝑅𝑠]𝑖,𝑖 = 1 ∀𝑖.

B. Symbol Error Probability

Under the hypothesis that the 𝑖th signal is transmitted, we
find from (2) that the correct decision occurs when 𝐿𝑖(𝑖) is
the largest among 𝐿1(𝑖), 𝐿2(𝑖), . . . , 𝐿𝑀 (𝑖). The probability of
correct decision is therefore [1, eq. (5-2-17)], [3, eq. (60)]

𝑃𝑐𝑖 = Pr [𝐿𝑗(𝑖)− 𝐿𝑖(𝑖) < 0, 𝑗 ∕= 𝑖, 𝑗 = 1, 2, . . . ,𝑀 ] . (4)

The analytical expression for 𝑃𝑐𝑖 is given by [2, eq. (4.80)],
while the SEP of coherently detected, equienergy, and arbi-
trarily correlated signals can be further obtained as

𝑃𝑒𝑠 = 1− 1

𝑀

𝑀∑
𝑖=1

𝑃𝑐𝑖 . (5)

C. Minimum Symbol Error Probability Analysis

Our intention is to find specific forms for 𝑅𝑠 that minimize,
or in general, lower 𝑃𝑒𝑠. A standard way to do this is by using
an appropriate multidimensional minimization method, such
as the steepest descent. However, the known form of 𝑃𝑒𝑠 is
complicated and it seems that none of the known methods

can be helpful. Therefore, we have developed a computer
simulation software and we focus on arbitrarily correlated
𝑀 -ary sets as well as 𝑀 -ary FSK. We consider equienergy
signals, i.e., 𝐸𝑖 = 𝐸𝑠 ∀𝑖, and we choose a typical value
𝛾𝑠 = 10 dB, with 𝛾𝑠 = 𝐸𝑠/𝑁0 being the signal-to-noise ratio
(SNR) per symbol. Also, we consider𝑀 = 4 and 8. Note that
even for 𝑀 = 4, searching for optimum correlation structures
is a complicated and time consuming task.

1) Minimum SEP of 𝑀 -ary FSK: One important property
of 𝑅𝑠 of FSK is that each element is given by 𝜌𝑖,𝑗 =
sinc(2Δ𝑓𝑖,𝑗 𝑇𝑠), with Δ𝑓𝑖,𝑗 being the frequency spacing be-
tween the 𝑖th and 𝑗th tones [5, Section 3.1.6]. Although 𝑅𝑠

involves 𝑀 (𝑀 − 1)/2 elements, we have a problem with
only 𝑀 − 1 adjacent varying correlation coefficients, 𝜌𝑖,𝑖+1,
since the rest (𝑀 −1) (𝑀 −2)/2 can be easily obtained from
𝜌𝑖,𝑖+1’s.

We start from the minimum value -0.21723 for all 𝜌𝑖,𝑖+1’s
and each one consecutively increases by a step of 0.0246 till a
maximum value 0.25. We begin with 𝜌1,2 = 𝜌2,3 = −0.21723
and first vary 𝜌3,4 from -0.21723 to 0.25. In each step, we
mark the correlation matrix with an index value, e.g., the index
1 is set for 𝜌1,2 = 𝜌2,3 = 𝜌3,4 = −0.21723. Then, we increase
𝜌2,3 according to the predefined step value and vary 𝜌3,4 from
-0.21723 to 0.25. After 𝜌2,3 reaches 0.25, we increase 𝜌1,2 and
repeat the previous procedure for 𝜌2,3 and 𝜌3,4 till all three
correlation coefficients take the maximum value 0.25. Each
correlation coefficient gets 20 values. Every group of 20× 20
values for 𝑃𝑒𝑠 is shown in Fig. 1 as a half ellipsoid. As we can
see, the smallest value for the SEP is at the eighth ellipsoid
and specifically at the index 2989 of the correlation matrix

𝑅𝑠 =

⎡
⎢⎢⎣

1 −0.0451 0.0211 −0.0208
−0.0451 1 0.0041 0.0083
0.0211 0.0041 1 −0.0205
−0.0208 0.0083 −0.0205 1

⎤
⎥⎥⎦

having the value 𝑃𝑒𝑠 = 2.17 ⋅ 10−3. Note that the SEP for
orthogonal 4FSK is 𝑃𝑒𝑠 = 2.24 ⋅ 10−3.

A figure similar to Fig. 1 is Fig. 2 for equienergy 8-FSK,
in which the correlation coefficients range from -0.144 to
0.0 with a predefined step value of 0.024. Each 𝜌𝑖,𝑖+1 gets
6 values, and therefore, there are 67 = 279936 points for
the correlation matrix index. The lowest value for the SEP
𝑃𝑒𝑠 = 4.42 ⋅ 10−3 can be found at the index 231940 for

𝑅𝑠 =
⎡
⎢⎢⎣

1 −0.0286 0.0145 −0.0191 0.0144 −0.0171 0.0188 −0.0236
−0.0286 1 0.0 0.0145 −0.0097 0.0144 −0.0171 0.0234
0.0145 0.0 1 −0.0286 0.0145 −0.0191 0.0284 −0.0483
−0.0191 0.0145 −0.0286 1 0.0 0.0145 −0.0191 0.0284
0.0144 −0.0097 0.0145 0.0 1 −0.0286 0.0284 −0.0375
−0.0171 0.0144 −0.0191 0.0145 −0.0286 1 −0.0286 0.0427
0.0188 −0.0171 0.0284 −0.0191 0.0284 −0.0286 1 −0.0571
−0.0236 0.0234 −0.0483 0.0284 −0.0375 0.0427 −0.0571 1

⎤
⎥⎥⎦

whereas the SEP for orthogonal 8-FSK signaling is 𝑃𝑒𝑠 =
4.84 ⋅ 10−3.

From both Figs. 1 and 2, we conclude that the SNR gain
achieved using correlated FSK signaling offers a very slight
advantage compared to orthogonal FSK signaling.

2) Minimum SEP of Arbitrary Correlated Signals: For
arbitrarily correlated signaling, conclusions seem to be more
obvious than for FSK, although 𝑀 (𝑀 − 1)/2 independently
varying correlation coefficients are involved. From all simu-
lation runs it became clear that the optimum set of 𝜌𝑖,𝑗’s is
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Fig. 1. SEP of equienergy 4-FSK as a function of correlation matrix index
for 𝛾𝑠 = 10 dB and with correlation coefficients ranging from -0.2172 to
0.25.
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Fig. 2. SEP of equienergy 8-FSK as a function of correlation matrix index
for 𝛾𝑠 = 10 dB and with correlation coefficients ranging from -0.144 to 0.0.

obtained for simplex signals, i.e., equicorrelated with 𝜌𝑖,𝑗 =
−1/(𝑀 − 1) ∀𝑖 ∕= 𝑗.

III. SYMBOL ERROR PROBABILITY ANALYSIS FOR

SPECIFIC CORRELATION STRUCTURES

Starting with (4) and letting 𝑥𝑗(𝑖) ≜ 𝐿𝑗(𝑖) − 𝐿𝑖(𝑖),
we define the vector 𝑥(𝑖) as 𝑥(𝑖) ≜ [𝑥1(𝑖), . . . , 𝑥𝑖−1(𝑖),
𝑥𝑖+1(𝑖), . . . , 𝑥𝑀 (𝑖)]𝑇 in order to study the joint statistics
of its Gaussian elements. Using (3), the mean of 𝑥𝑗(𝑖) is
𝔼⟨𝑥𝑗(𝑖)⟩ = 𝜌𝑖,𝑗

√
𝐸𝑖𝐸𝑗 − (𝐸𝑖 + 𝐸𝑗)/2, and denoting 𝑛𝑗 as

𝑛𝑗 =
∫ 𝑇𝑠

0
𝑛(𝑡) 𝑠𝑗(𝑡) d𝑡, 𝐿𝑗(𝑖) can be rewritten as 𝐿𝑗(𝑖) =

𝜌𝑖,𝑗
√
𝐸𝑖 𝐸𝑗 −𝐸𝑗/2+ 𝑛𝑗 , for 𝑖 ∕= 𝑗, and 𝐿𝑗(𝑖) = 𝐸𝑖/2+ 𝑛𝑖,

for 𝑖 = 𝑗. It can be easily shown that 𝑛𝑗 is a zero mean

Gaussian RV, with 𝔼⟨𝑛𝑗 𝑛𝑘⟩ = 𝜌𝑗,𝑘
√
𝐸𝑗 𝐸𝑘𝑁0/2, for 𝑗 ∕= 𝑘,

and 𝔼⟨𝑛𝑗 𝑛𝑘⟩ = 𝐸𝑗 𝑁0/2, for 𝑗 = 𝑘. Also, for 𝑗, 𝑘 ∕= 𝑖,
the covariance between 𝑥𝑗(𝑖) and 𝑥𝑘(𝑖) is cov[𝑥𝑗(𝑖), 𝑥𝑘(𝑖)] =
(𝜌𝑗,𝑘

√
𝐸𝑗 𝐸𝑘−𝜌𝑘,𝑖

√
𝐸𝑘 𝐸𝑖−𝜌𝑗,𝑖

√
𝐸𝑗 𝐸𝑖+𝐸𝑖)𝑁0/2, for 𝑗 ∕=

𝑘, and cov[𝑥𝑗(𝑖), 𝑥𝑘(𝑖)] = (𝐸𝑗 + 𝐸𝑖 − 2 𝜌𝑗,𝑖
√
𝐸𝑗 𝐸𝑖)𝑁0/2,

for 𝑗 = 𝑘. The correlation coefficient 𝜖𝑗,𝑘(𝑖) between 𝑥𝑗(𝑖)
and 𝑥𝑘(𝑖) is therefore

𝜖𝑗,𝑘(𝑖)

=
𝜌𝑗,𝑘

√
𝐸𝑗 𝐸𝑘 − 𝜌𝑘,𝑖

√
𝐸𝑘 𝐸𝑖 − 𝜌𝑗,𝑖

√
𝐸𝑗 𝐸𝑖 + 𝐸𝑖√

𝐸𝑗 + 𝐸𝑖 − 2 𝜌𝑗,𝑖
√
𝐸𝑗 𝐸𝑖

√
𝐸𝑘 + 𝐸𝑖 − 2 𝜌𝑘,𝑖

√
𝐸𝑘 𝐸𝑖

.

(6)

We now consider the case where, ∀ 𝑗 ∕= 𝑘, 𝜖𝑗,𝑘 can be
written as a product of two separate terms with respect to the
indices 𝑗 and 𝑘, e.g.,

𝜖𝑗,𝑘(𝑖) = 𝜈𝑗,𝑖 𝜈𝑘,𝑖 . (7)

In order to follow a standard way of decomposing the Gaus-
sian elements of 𝑥(𝑖) having certain correlation properties into
independent and identically distributed (i.i.d.) Gaussian RVs
[13], we define Ω𝑗(𝑖) ≜ (𝐸𝑗 +𝐸𝑖 − 2 𝜌𝑗,𝑖

√
𝐸𝑗 𝐸𝑖)𝑁0/2 and

𝜇𝑗(𝑖) ≜ −𝜌𝑗,𝑖
√
𝐸𝑗 𝐸𝑖 + (𝐸𝑗 + 𝐸𝑖)/2. Now 𝑥𝑗(𝑖) can be

expressed as

𝑥𝑗(𝑖) = −𝜇𝑗(𝑖) + 𝑛𝑗 − 𝑛𝑖
= −𝜇𝑗(𝑖) +

√
Ω𝑗(𝑖)

(√
1− 𝜈2𝑗,𝑖 𝜗𝑗 + 𝜈𝑗,𝑖 𝜗𝑖

)
,

(8)

with 𝜗1, 𝜗2, . . . , 𝜗𝑀 being i.i.d. Gaussian RVs, each having a
𝒩 (0, 1) distribution. By substituting (8) in (4), the probability
of correct decision, under the hypothesis that the 𝑖th signal is
transmitted, is

𝑃𝑐𝑖 =
1√
2 𝜋

∞∫
−∞

exp

(
−𝜗

2
𝑖

2

)⎡⎢⎢⎣
𝑀∏
𝑗=1
𝑗 ∕=𝑖

Pr [𝑥𝑗(𝑖) < 0∣𝜗𝑖]

⎤
⎥⎥⎦ d𝜗𝑖

=
1√
2 𝜋

∞∫
−∞

⎡
⎢⎢⎣

𝑀∏
𝑗=1
𝑗 ∕=𝑖

𝑄

⎛
⎝−𝜇𝑗(𝑖) + 𝜈𝑗,𝑖 𝜗𝑖

√
Ω𝑗(𝑖)√

Ω𝑗(𝑖)
√

1− 𝜈2𝑗,𝑖

⎞
⎠
⎤
⎥⎥⎦

× exp

(
−𝜗

2
𝑖

2

)
d𝜗𝑖 ,

(9)

with 𝑄(𝑥) = erfc(𝑥/
√
2)/2, erfc (⋅) being the complementary

error function. The SEP of coherently detected and correlated
signals can be obtained by substituting (9) in (5). By com-
paring (9) with [2, eq. (4.80)], it is clear that our new result
is less generic but much simpler, since it is in the form of a
single integral. More importantly, the numerical evaluation of
(9) is much less time consuming and complicated. Also, [2,
eq. (4.80)] is limited to equienergy signals.

For binary signaling (𝑀 = 2), 𝜈𝑗,𝑖(𝑖) = 𝜈𝑘,𝑖(𝑖) = 1
(𝑖, 𝑗, 𝑘 = 1 and 2), and thus 𝑥𝑗(𝑖) = −𝜇𝑗(𝑖) +

√
Ω𝑗(𝑖)𝜗𝑖.

By substituting 𝑥𝑗(𝑖) in 𝑃𝑐𝑖 (first equality in (9)) yields
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𝑃𝑐𝑖 = 𝑄(−𝜇𝑗(𝑖)/
√

Ω𝑗(𝑖)). Therefore, the bit error proba-
bility 𝑃𝑒𝑏 = 1− (𝑃𝑐1 + 𝑃𝑐2)/2 is expressed as

𝑃𝑒𝑏 = 𝑄

⎛
⎝
√
𝐸1 + 𝐸2 − 2 𝜌1,2

√
𝐸1 𝐸2

2𝑁0

⎞
⎠ , (10)

which is in agreement with [4, eq. (B.33)]. The minimum
value of 𝑃𝑒𝑏 is obtained for 𝜌1,2 = 𝜌min = −1. For 𝑀 ≥ 2
and in order for 𝜖𝑗,𝑘(𝑖) to have the form presented in (7), a
general solution exists when

𝜌𝑖,𝑗 =
𝜌𝑖𝐸𝑖 + 𝜌𝑗 𝐸𝑗

2
√
𝐸𝑖 𝐸𝑗

, (11)

where ∣𝜌𝑖∣ ≤ 1 is a function of the index 𝑖, e.g., 𝜌𝑖 = 𝜌𝑖 ∀𝑖.
For such a correlation coefficient, 𝜈𝑗,𝑖 = 1/

√
1 + 𝜁𝑗,𝑖, where

𝜁𝑗,𝑖 = (𝐸𝑗/𝐸𝑖) (1 − 𝜌𝑗)/(1 − 𝜌𝑖). However, since ∣𝜌𝑖,𝑗 ∣ ≤ 1,
the following constraint on 𝜌𝑖 and 𝜌𝑗 exists: ∣𝜌𝑖𝐸𝑖+𝜌𝑗 𝐸𝑗 ∣ ≤
2
√
𝐸𝑖𝐸𝑗 . In addition, for 𝜌𝑖,𝑗 = 0, 𝜌𝑖 = 0 ∀𝑖. Now based on

(11), (9) can be expressed as

𝑃𝑐𝑖 =
1√
2 𝜋

∞∫
−∞

exp

(
−𝜗

2
𝑖

2

)

×

⎡
⎢⎢⎣

𝑀∏
𝑗=1
𝑗 ∕=𝑖

𝑄

(
−
√

(1− 𝜌𝑖) 𝐸𝑖

2𝑁0

1 + 𝜁𝑗,𝑖√
𝜁𝑗,𝑖

+
𝜗𝑖√
𝜁𝑗,𝑖

)⎤⎥⎥⎦d𝜗𝑖 .

(12)

Note that a simple form for 𝜌𝑖 is 𝜌𝑖 = 𝑖 𝜌/𝑀 with ∣𝜌∣ ≤ 1.

A. Orthogonal Signaling

When all 𝑀 signals are orthogonal to each other, 𝜌𝑖,𝑗 = 0
∀𝑖 ∕= 𝑗, implying that 𝜌𝑖 = 𝜌𝑗 = 0. When we further consider
equienergy signals, i.e., 𝐸𝑖 = 𝐸𝑗 = 𝐸𝑠 ∀𝑖, 𝑗 (𝑃𝑐𝑖 = 𝑃𝑐),
𝑃𝑒𝑠 = 1− 𝑃𝑐 agrees with [5, eq. (8.41)].

B. Equicorrelated Signaling

For constant correlation signaling sets, 𝜌𝑗,𝑖 = 𝜌 ∀𝑗 ∕= 𝑖.
Setting 𝜌𝑖 = 𝜌𝑗 = 𝜌 in (12), we get

𝑃𝑐𝑖 =
1√
2 𝜋

∞∫
−∞

exp

(
−𝜗

2
𝑖

2

)⎡⎢⎢⎣
𝑀∏
𝑗=1
𝑗 ∕=𝑖

𝑄

(
−
√

(1 − 𝜌) 𝐸𝑖 + 𝐸𝑗

2𝑁0

×
√

1 +
𝐸𝑖

𝐸𝑗
+

√
𝐸𝑖

𝐸𝑗
𝜗𝑖

)]
d𝜗𝑖 .

(13)

In the Appendix it is proved that ∀𝑖 𝑃𝑐𝑖 is maximized for

𝜌min = − 1

𝑀 − 1
, (14)

and hence, this value of the correlation coefficient minimizes
𝑃𝑒𝑠. It is worth noticing that in case of equienergy and not nec-
essarily equicorrelated signaling with correlation coefficients
given as 𝜌𝑖,𝑗 = (𝜌𝑖 + 𝜌𝑗)/2, constant correlation signaling
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Fig. 3. SEP of simplex and orthogonal signaling sets as a function of received
SNR per symbol.

with 𝜌𝑖 = 𝜌min ∀𝑖 also minimizes 𝑃𝑒𝑠. This is the simplex
signaling set with its SEP yielding from (5) and (13) as

𝑃𝑒𝑠 =(𝑀 − 1)𝑄
(√

𝛾𝑠 (1− 𝜌min)
)

+
1√
2 𝜋

𝑀−1∑
𝑘=2

(−1)𝑘+1

(
𝑀 − 1

𝑘

) ∞∫
−∞

exp

(
−𝜗

2

2

)

×𝑄𝑘
(√

2 𝛾𝑠 (1− 𝜌min)− 𝜗
)
d𝜗 .

(15)

Note that for 𝑀 = 3, (15) numerically agrees with the results
in [14].

Fig. 3 shows the SEP of simplex and orthogonal signals as a
function of 𝛾𝑠. As shown, simplex signaling indicates a better
error performance than orthogonal signaling. Specifically, a
constant SNR difference between simplex and orthogonal
signaling that is 10 log10[𝑀/(𝑀 − 1)] dB is observed [1,
eq. (5-2-35)]. However, as 𝑀 increases, this difference tends
to vanish.

IV. GENERATION OF MULTILEVEL SIGNALING SETS

Given a set of 𝑀 complex orthonormal waveforms 𝜙1(𝑡),
𝜙2(𝑡), . . . , 𝜙𝑀 (𝑡) over [0, 𝑇𝑠), we can easily generate a signal-
ing set 𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝑀 (𝑡) with any correlation structure∫ 𝑇𝑠

0
𝑠𝑖(𝑡) 𝑠

∗
𝑗 (𝑡) d𝑡 = 2

√
𝐸𝑖 𝐸𝑗 𝜌𝑖,𝑗 , where (⋅)∗ denotes the

complex conjugate. The approach is as follows:

∙ Let 𝜙(𝑡) = [𝜙1(𝑡), 𝜙2(𝑡), . . . , 𝜙𝑀 (𝑡)]𝑇 , with
∫ 𝑇𝑠

0
𝜙(𝑡)

×𝜙𝐻(𝑡) d𝑡 = 𝐼𝑀 owing to orthonormality ((⋅)𝐻 denotes
the Hermitian operator).

∙ Let 𝑠(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝑀 (𝑡)]𝑇 and let Σ𝑠 =∫ 𝑇𝑠

0 𝑠(𝑡) 𝑠𝐻(𝑡) d𝑡 be the correlation matrix of the signal-
ing set. The element in the 𝑖th row and the 𝑗th column
of Σ𝑠 is [Σ𝑠]𝑖,𝑗 = 2

√
𝐸𝑖 𝐸𝑗 𝜌𝑖,𝑗 . Note that Σ𝑠 is a

Hermitian matrix.
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If we express

𝑠(𝑡) = 𝐴𝜙(𝑡) , (16)

with 𝐴𝐴𝐻 = Σ𝑠, then 𝑠(𝑡) has the desired correlation matrix
Σ𝑠.

A. Transorthogonal Signals

In the case of transorthogonal signals, Σ𝑠 is called the𝑀 th-
order intraclass correlation matrix [5, Section 9.7.4.2]. The
eigenvalues of Σ𝑠 are 1 − 𝜌 and 1 + (𝑀 − 1) 𝜌, with multi-
plicities 𝑀 − 1 and 1, respectively. Since Σ𝑠 is positive semi-
definite (non-negative eigenvalues), 𝜌 ≥ 𝜌min = −1/(𝑀−1).
Using the well known eigendecomposition method, Σ𝑠 can be
decomposed as Σ𝑠 = 𝑈 𝐷𝑈𝐻 , where 𝑈 is an 𝑀×𝑀 unitary
matrix containing the orthonormal eigenvectors of Σ𝑠 in its
columns and𝐷 the corresponding diagonal matrix of eigenval-
ues, given by 𝐷 = diag(1−𝜌, 1−𝜌, . . . , 1−𝜌, 1+(𝑀−1) 𝜌).
The matrix 𝐴 can be obtained as 𝐴 = 𝑈

√
𝐷. We must also

mention that instead of using the eigendecomposition method,
simplex signals can be alternatively constructed as described
in [1, eq. (4-3-35)].

B. Signals with Arbitrary Correlation

In general, and except for the case of the transorthogonal
signaling set, it is very difficult to derive the eigenvalues and
the eigenvectors of Σ𝑠 in closed form using the eigendecompo-
sition method. Thus, as a general method, LU decomposition
[15] can be followed. In this method, we can split Σ𝑠 as
Σ𝑠 = 𝐿𝐷′ 𝐿𝐻 , where all the main diagonal entries of the
lower triangular matrix 𝐿 are equal to one (𝐿𝐻 is upper
triangular) and each of the main diagonal entries of the
diagonal matrix 𝐷′ is equal to the corresponding leading
principal minor of Σ𝑠. The matrix 𝐴 can be obtained as
𝐴 = 𝐿

√
𝐷′.

V. CONCLUSIONS

We have studied coherent detection for multilevel correlated
signaling sets over AWGN. Correlation structures that mini-
mize the SEP of multilevel FSK and arbitrarily correlated sig-
naling sets have been investigated via computer simulations.
It is found that the SNR gain achieved by correlated FSK
signaling offers a very slight advantage. Also, it has become
clear that the correlation matrix that minimizes the SEP in case
of arbitrarily correlated signaling sets is the equicorrelated one.
Moreover, a general and analytical expression for the SEP
has been derived for specific correlation structures. Based on
eigendecomposition or LU decomposition, generic methods
for constructing a correlated signaling set for any correlation
matrix under consideration is also provided.

APPENDIX

PROOF THAT 𝜌min = −1/(𝑀 − 1) MINIMIZES SEP

Taking the first derivative of 𝑃𝑐𝑖 in (13) with respect to 𝜌
yields

∂𝑃𝑐𝑖

∂𝜌
=

−1

4 𝜋

𝑀∑
𝑘=1
𝑘 ∕=𝑖

√
𝜉𝑖,𝑘

1 + 𝜆𝑖,𝑘
1− 𝜌

∞∫
−∞

exp

{
−1

2

×
[
−
√

(1− 𝜌) 𝜉𝑖,𝑘
√

1 + 𝜆𝑖,𝑘 +
√
𝜆𝑖,𝑘 𝜗𝑖

]2
− 𝜗2𝑖

2

}

×

⎡
⎢⎢⎣

𝑀∏
𝑗=1
𝑗 ∕=𝑖,𝑘

𝑄

(
−
√

(1− 𝜌) 𝜉𝑖,𝑗
√

1 + 𝜆𝑖,𝑗 +
√
𝜆𝑖,𝑗 𝜗𝑖

)⎤⎥⎥⎦d𝜗𝑖 ,

(A-1)

with 𝜆𝑖,𝑗 = 𝐸𝑖/𝐸𝑗 and 𝜉𝑖,𝑗 = (𝐸𝑖 + 𝐸𝑗)/(2𝑁0). Since the
argument of the above integral is always positive for ∣𝜌∣ < 1,
it becomes obvious that ∂𝑃𝑐𝑖/∂𝜌 < 0, i.e., 𝑃𝑐𝑖 is a strictly
decreasing function of 𝜌. Hence, based on (5), the minimum
𝑃𝑒𝑠 is obtained for minimum 𝜌, as explained in Section IV-A,
and is given by 𝜌min = −1/(𝑀 − 1).
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