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Abstract: The authors study the performance of a dual-hop plus a direct link multiple-input multiple-output (MIMO) wireless
communication system using orthogonal space–time block codes. The system under consideration is based on the decode-
and-forward relaying protocol and operates over spatially correlated Nakagami-m fading channels. The proposed analysis is
generic enough to account for any MIMO correlation model either from measurements or having theoretical and analytical
justification. Analytical expressions for the system end-to-end outage and average symbol error probability are obtained, while
critical parameters of the MIMO channel are taken into consideration such as the angle of arrival, the antenna array
configuration, the wavelength and non-isotropic scattering conditions. Various numerical and computer simulation results
demonstrate the proposed mathematical analysis and the impact of the above parameters to the system performance.
1 Introduction

Multi-hop relaying communications have recently attracted
significant interest as they are able to provide a broad and
efficient coverage in various contemporary communication
networks. In multi-hop transmission, several intermediate
nodes act as relays forwarding data from source to destination.
Many protocols that take advantage of the benefits of
multi-hop transmission have been proposed, with the
decode-and-forward (DF) one demonstrating a reasonable
trade-off between implementation complexity and error rate
performance [1]. On the other hand, multiple-input multiple-
output (MIMO) communication systems have received
considerable attention in the last years owing to their potential
for providing significant capacity and performance
enhancement over conventional single-input single-output
(SISO) systems [2].

Very recently, the application of MIMO systems in
conjunction with relaying protocols has become a topic of
increasing interest, due to the fact that this combination
enables the design of sophisticated and high performance
communication systems. For example in [3], assuming
independent Rayleigh fading channels, exact expressions have
been derived for the outage probability (OP) of the end-to-end
signal-to-noise ratio (SNR) over MIMO relay channels using
space–time block codes (STBCs) and the DF relaying
protocol. In [4], an error rate study has been presented for
the end-to-end performance of dual-hop regenerative and non-
regenerative wireless communication systems with orthogonal
STBCs (OSTBCs). The impact of spatial correlation on the
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performance of amplify-and-forward MIMO relay channels
has been investigated in [5], considering correlated Rayleigh
fading channels. Also in [6], closed-form expressions for the
OP and average symbol error probability (ASEP) have been
extracted for dual-hop transmissions with DF relaying over
independent and non-identically distributed Nakagami-m
fading channels employing partial relay selection. In that work
the relay hop are all equipped with one antenna element.

In this paper we provide an end-to-end performance analysis
of MIMO dual-hop DF systems. In an effort to generalise the
above-mentioned works, all nodes are employed with
multiple-antennas using OSTBCs, while not necessarily
identically distributed spatially correlated Nakagami-m
fading channels are considered. The adopted channel model
is generic enough to account for any correlation model, for
example, a model extracted from field measurements or
mathematical models available in the open technical
literature. We assume that a direct link between the source
and the destination also exists and that the signals received at
destination from the source and the relays are combined
using maximum-ratio combining (MRC). Our analysis
includes the effects of various parameters of interest such as
non-isotropic scattering around the user, antenna array
configuration and the mean directions of the signal arrivals.

Next, the following notations are used: G(.) and G(.,.) for
the gamma and the upper incomplete gamma functions [7,
Equation (8.350.2)], respectively, pFq(.) for the generalised
hypergeometric function, J0(.) for the zero-order Bessel
function of the first kind, I0(.) for the zero-order modified
Bessel function of the first kind, F

(K)
2 (·) for the confluent
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Lauricella hypergeometric function of K variables [8, Equation
10, p. 62], F (n)

D (·) for the Lauricella multiple hypergeometric
function of n variables [9, Equations (7.2.4.57) and
(7.2.4.15)], EX k · l for the expectation operator with respect
to random variable X, FX(.) and MX (·) for the cumulative
distribution function (CDF) and the moments generating
function (MGF) of X, respectively, Pr{.} for the probability
operator, j =

����
−1

√
, vec(.) for the vectorising operator that

maps the elements of a given matrix into a column vector,
(.)H for the Hermitian transpose, (.)T for the matrix transpose,
(.)∗ for complex conjugate, ⊗ for the matrix Kronecker
product, ⊙ for the matrix element-wise (Hadamard) product,
|| · ||2F for the square Frobenius norm, <{.} for the real part,
and L{ · ; · ; ·} and L−1{ · ; · ; ·} for the direct and the
inverse Laplace transforms, respectively.

2 System and channel model

We consider an MIMO dual-hop system where a source
node S communicates with a destination node D both
directly (path a) and via a relay node R (path b). The
source and the destination are equipped with NS and ND

antennas, respectively, whereas the relay is equipped with
NR antennas. The relay uses the DF protocol to forward the
data received from the source to the destination.

2.1 Channel model

A narrowband channel model is assumed that is considered as
frequency non-selective. We denote as H0 [ C

ND×NS ,

H1 [ C
NR×NS and H2 [ C

ND×NR the S �a D, S �b R and

R�
b

D channels matrices, respectively. The ( j,k)th
envelope element of the lth hop (l ¼ 0, 1, 2) rℓjk

= |Hℓjk
|

is Nakagami-m distributed, with probability density
function given by frℓjk

(r) = 2r2mℓ−1 exp ( − r2)/G(mℓ),
where ml ≥ 1/2 is the fading parameter and Ekr2

ℓjk
l = mℓ.

For each one of the three hops, the impact of spatial
correlation can be captured by three corresponding positive
definite covariance matrices Rccℓ

, defined as Rccℓ
W

EHℓ
khℓ hH

ℓ l, with hl ¼ vec(Hl).
Various correlation models have been proposed to capture

the impact of MIMO spatial correlation. Representative
examples are the Kronecker product model [10, 11] and the
Weichselberger et al. model [12]. The Kronecker model is
capable of modelling both narrowband and wideband
channels, whereas the Weichselberger et al. model can be
applied only to narrowband channels [13].

2.1.1 Kronecker correlation model: The Kronecker
model requires knowledge of the transmitter and receiver
correlations (hereafter one-sided correlations) and assumes
that they are independent, and therefore can be treated
separately. More specifically, for the S �a D hop, the
correlation matrix is given by

Rcc0
= RS,a ⊗ RD,a (1a)

with RS,a = EH0
kHT

0 H∗
0 l [ <NS×NS and RD,a = EH0

kH0HH
0 l

[ <ND×ND being the source and destination one-sided
correlation matrices of path a, respectively. Moreover, for

the S �
b

R and R�
b

D hops

Rcc1
= RS,b ⊗ RRd ,b (1b)
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and

Rcc2
= RRs,b ⊗ RD,b (1c)

respectively, with RS,b = EH1
kHT

1 H∗
1 l [ <NS×NS , RRd ,b =

EH1
kH1HH

1 l [ <NR×NR , RRs ,b = EH2
kHT

2 H∗
2 l [ <NR×NR and

RD,b = EH2
kH2 HH

2 l [ <ND×ND being the source, relay as
receiver, relay as transmitter and destination one-sided
correlation matrices of path b, respectively. Experiments
have shown that the Kronecker structure describes quite
well systems equipped with small number of antenna
elements, for example, 2 × 2, however, it looses precision
as the number of elements increases [13, 14]. Nevertheless,
it remains by far the most popular MIMO channel model in
the literature especially due to its simplicity.

2.1.2 Weichselberger et al. correlation model: The
Weichselberger et al. model is slightly more complex than
the Kronecker model, but has been shown to provide a
better match in predicting a variety of channel metrics [12].
This model requires knowledge of source and destination
one-sided correlation matrices, as in the Kronecker case,
while additionally, requires knowledge of power coupling
matrices, Vls. By denoting the transmit and receive ends of
the lth hop as Tx,l and Rx,l, respectively, an estimate of Vl

can be obtained from the measured impulse response, Hl, as

Vℓ = EHℓ
k(UH

Rx,ℓ
HℓU

∗
Tx,ℓ

) ⊙ (UT
Rx,ℓ

H∗
ℓUTx,ℓ

)l (2)

where URx,ℓ
and UTx,ℓ

are the eigenbases of one-sided
correlation matrices at receive and transmit ends,
respectively. The elements of this matrix, vℓi, j

s, denote the
average power of the virtual SISO channel between the ith
eigenmode of the transmit side and the jth eigenmode of
the receive side of the lth hop. The correlation matrix for
the S �a D hop is [12, Equation (6)]

Rcc0
=
∑NS

i=1

∑ND

j=1

v0i, j
(uS,a,j ⊗ uD,a,i)(uS,a,j ⊗ uD,a,i)

H (3a)

where uS,a,j and uD,a,i are the jth and ith eigenvectors of the
one-sided correlation matrices RS,a and RD,a, respectively.

Also, for the S �
b

R and R�
b

D hops

Rcc1
=
∑NS

i=1

∑NR

j=1

v1i, j
(uS,b,j ⊗ uRd ,b,i)(uS,b,j ⊗ uRd ,b,i)

H (3b)

and

Rcc2
=
∑NR

i=1

∑ND

j=1

v2i, j
(uRs,b,j ⊗ uD,b,i)(uRs,b,j ⊗ uD,b,i)

H (3c)

with uS,b,i, uRd ,b,i, uRs,b,i and uD,b,i being the ith eigenvectors
of correlation matrices RS,b, RRd ,b, RRs,b and RD,b,
respectively.

2.1.3 One-sided correlation models: In general, the
elements of the one-sided correlation matrices can be
obtained from field measurements, for example, as in Section
2.1.1. Alternatively, various models can be used, such as the
Abdi-Kaveh [15], exponential, constant and so on [16].
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According to the Abdi-Kaveh model, the entries of the
correlation matrix are

@R|jk =
1

I0(k)
I0

����������������������������������
k2 − 4p2

d2
j,k

l2 + j4pk sin(h)
dj,k

l

√⎡
⎣

⎤
⎦ (4)

whereh [ [2p,p) is the mean direction of the angle of arrival
(AOA), k ≥ 0 controls the width of the AOA (k ¼ 0 denotes
isotropic scattering, whereas k ¼ 1 stands for extremely
non-isotropic scattering), l denotes the wavelength and dj,k

is the separation distance between the pair of receive
antennas j and k. In the case of isotropic scattering around
the user, (4) reduces to the Clarke’s spatial correlation model
@R|jk = J0(2pdj,k/l) [17]. Furthermore, for the exponential

and the constant correlation models, @R|jk = r|j−k| and
@R|jk = r, respectively, with |r| ≤ 1.

2.2 System model

The overall communication from S to D is achieved in two
time frames [18]. Each frame consists of L time slots during
which a complex M-ary phase-shift keying (PSK) or
quadrature amplitude modulation (QAM) symbol is
encoded by a OSTBC having code matrix HNS,Rc,1

[ C
L×NS

(or simply HNS
when Rc,1 = 1) and rate Rc,1 = L/NS. For

example, OSTBC matrices are H2, H3,3/4 and H4,3/4. H2
denotes the Alamouti OSTBC matrix, H3,3/4 and H4,3/4 are
the Rc,1 = 3/4 rate OSTBC matrices for three and four
transmit antennas, respectively. In the first frame, S sends a
signal to R and D, with the equivalent SISO received SNRs
per symbol being

gsd = �g0

m0NSRc,1

‖H0‖2
F (5a)

gsr =
�g1

m1NSRc,1

‖H1‖2
F (5b)

respectively, where �g0, �g1, are the corresponding average
SNRs, characterising the path-losses on the considered hops.
During the same time frame, the relay decodes the signal
from the source. If gsr is above a specified SNR threshold gt,
then the relay is assumed to be able to fully decode the
source message. The destination terminal has to wait for the
assistance of the relay during the second time frame. We
denote as Jr the state of the relay [3] that when gsr ≥ gt(M ),
Jr ¼ 1 and when gsr , gt(M ), Jr ¼ 0, with gt(M ) being the
required SNR for the successful decoding of the source
message, that depends on the employed modulation scheme.
Note that gt(M ) increases with the number of constellation
points M in order to maintain a given level of error rate
performance. Therefore gt(M ) may be written as
gt(M ) ¼ gref/sin2(p/M ) and gt(M ) ¼ gref2(M 2 1)/3 for
M-PSK and M-QAM constellations, respectively, where gref

is a normalisation constant.
In the second time frame and according to the DF protocol,

if the relay cannot correctly decode the signal, it remains idle;
otherwise, it transmits the decoded signal, after re-encoding it,
towards node D with the equivalent SISO instantaneous
received SNR per symbol being

grd = �g2

m2NRRc,2

‖H2‖2
F (5c)
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with �g2 being the corresponding average SNR and code rate
Rc,2 = L/NR.

The signals received in the destination node during the two
time frames are combined using the MRC scheme. Therefore
the equivalent SISO end-to-end SNR per symbol at node D is

gd = gsd +Jrgrd (6)

Based on the above equation, next, the statistics of gd is
analysed.

3 Statistics of the end-to-end SNR

In this section, the statistical properties of the end-to-end SNR
are studied in terms of the CDF and the MGF.

3.1 Cumulative distribution function

Based on (6), the CDF of gd can be expressed as [3, Equations
(4) and (8)]

Fgd
(g) = Pr{gd , g|Jr = 1}Pr{Jr = 1}

+ Pr{gd , g|Jr = 0}Pr{Jr = 0}

= Fgmrc
(g)[1 − Fgsr

(gt(M ))] + Fgsd
(g)Fgsr

(gt(M ))

(7)

with gmrc ¼ gsd + grd. The CDFs of gsd, gsr, grd and gmrc

appearing in (7) can be obtained from their corresponding
MGFs using inverse Laplace transforms, that is,
Fx(g) = L−1{Mx(s)/s; s; g}. Using (5a), (5b) and [19,
Equation (51)], these MGFs are given by

Mgsd
(s) =

∏K0

k=1

(1 + s p0k
)−u0k (8a)

Mgsr
(s) =

∏K1

k=1

(1 + sp1k
)−u1k (8b)

Mgrd
(s) =

∏K2

k=1

(1 + s p2k
)−u2k (8c)

where p0k
= lk�g0/m0NSRc,1, u0k

= m0mk , p1k
= zk�g1/m1NS

Rc,1, u1k
= m1hk , p2k

= jk�g2/m2NRRc,2 and u2k
= m2nk .

In (8), {l1, l2, . . ., lK0
} are the eigenvalues of Rcc0

with

mk being their corresponding multiplicities with
∑K0

k=1
mk = NSND, {z1, z2, . . . , zK1

} are the eigenvalues of Rcc1

with hk being their corresponding multiplicities with
∑K1

k=1
hk = NSNR, and {j1, j2, . . . , jK2

} are the eigenvalues
of Rcc2

with mk being their corresponding multiplicities with∑K2
k=1 nk = NDNR. Furthermore based on (8), the MGF of

gmrc can be expressed as

Mgmrc
(s) = Mgsd

(s)Mgrd
(s) =

∏K3

k=1

(1 + s p3k
)−u3k (9)

where K3 ¼ K0 + K2, p3k
= p0k

, if k ≤ K0 and p3k
= p2k−K0

,
if k . K0. Furthermore, u3k

= u0k
if k ≤ K0, or u3k

= u2k−K0
if k . K0. Using the above MGF expressions, it can be
easily verified that in order to obtain the CDFs of gsd, gsr,
IET Commun., 2011, Vol. 5, Iss. 15, pp. 2106–2115
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grd and gmrc, inverse Laplace transforms

Fgℓ
(g) = L−1 1

s

∏Kℓ

k=1

(1 + spℓk
)−uℓk ; s; g

{ }
(10)

should be performed. For l ¼ 0, 1 and 2, the CDF of gsd, gsr

and grd are denoted, respectively, whereas for l ¼ 3, the CDF
of gmrc. We may observe that each factor (1 + spℓk

)−uℓk in
(10) is the MGF of a gamma-distributed random variable
(RV) with parameters 1/pℓk

and uℓk
. Hence, the product of

Kl such factors may be considered as the MGF of the sum
of Kl independent gamma RVs, each with parameters 1/pℓk
and uℓk

. Then using [20, Equation (2)] and the definition of
the incomplete gamma function, (10) can be expressed as

Fgℓ
(gℓ)=

∏Kℓ

j=1

pℓm

pℓj

( )uℓj∑1
k=0

dℓk
1−

G k +
∑Kℓ

j=1 uℓj
, gℓ/pℓm

( )
G k +

∑Kℓ
j=1 uℓj

( )
⎡
⎣

⎤
⎦

(11)

where pℓm
= min{pℓj

}, j ¼ 1, 2, . . . , Kl and the coefficients
dℓk

may be recursively obtained as

dℓk+1
= 1

k + 1

∑k+1

i=1

∑Kℓ

j=1

pℓj
1 −

pℓm

pℓj

( )i[ ]
dℓk+1−i

,

k = 0, 1, 2, . . . (12)

with dℓ0
= 1. Two alternative expressions for Fgℓ

(g) may be
obtained using [21] as

Fgℓ
(g) = 1

2
− 1

p

∫1

0

sin
∑Kℓ

j=1 uℓj
arctan(tpℓj

)− tg
[ ]

t
∏Kℓ

j=1 (1+ t2p2
ℓj

)
uℓj

/2 dt

=
∏Kℓ

j=1 (g/pℓj
)
uℓj

G 1+
∑Kℓ

j=1 uℓj

( )F(Kℓ)
2

× uℓ1
, . . . , uℓKℓ

, 1+
∑Kℓ

j=1

uℓj
, − g

pℓ1

, . . . , − g

pℓKℓ

( )

(13)

Note that the infinite series representation of Fgℓ
(g) in (11) as

well as the integral representation in (13) are much more
convenient for accurate and efficient numerical evaluation
than the exact closed-form solution involving confluent
Lauricella functions. Now using (11) and (12), or (13), the
CDF of gsd, gsr and gmrc appearing in (7) can be obtained,
and henceforth, Fgd

(g) may be readily extracted. Note
that for uncorrelated Rayleigh fading channels (ml ¼ 1,
lk ¼ zk ¼ jk ¼ 1) and using the identity F

(Kℓ)
2 (1, . . . , 1, 1+

Kℓ, − z, . . . , − z) = 1F1(Kℓ, 1+Kℓ, − z) = g(Kℓ, z)Kℓ/zKℓ

[7, Equation (8.351.2)], (13) reduces to a previously known
result [3, Equation (10)].

3.2 Moments generating function

The MGF of gd , defined as Mgd
(s) = Ek exp(−sgd)l, can be

directly obtained from (7) as Mgd
(s) = s L{Fgd

(g); g; s},
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yielding

Mgd
(s) = Mgmrc

(s)[1 − Fgsr
(gt(M ))] +Mgsd

(s)Fgsr
(gt(M ))

(14)

Although the above expression is in a general form, by restricting∑Kℓ

j=1 uℓj
to integer values, next we present a corresponding

expression which is simpler to handle. With the help of [7,
Equation (8.352.7)], the incomplete gamma function in (11)
may be expressed as a weighted sum of exponentials.
Furthermore, using direct Laplace transforms [7, Equations
(17.13.1) and (17.13.17)], Mgd

(s) may be expressed as

Mgd
(s) = [1 − Fgsr

(gt(M ))]
∏K3

j=1

p3m

p3j

( )u3j

×
∑1
k=0

d3k
1 −

∑k+
∑K3

j=1
u3j

−1

l=1

sp3m

(sp3m
+ 1)l+1

⎡
⎢⎣

⎤
⎥⎦

+ Fgsr
(gt(M ))

∏K0

j=1

p0m

p0j

( )u0j

×
∑1
k=0

d0k
1 −

∑k+
∑K0

j=1
u0j

−1

l=1

sp0m

(sp0m
+ 1)l+1

⎡
⎢⎣

⎤
⎥⎦

(15)

4 End-to-end performance analysis

Using the results of Section 3, analytical expressions for two
performance metrics of interest are derived, namely the OP
and the ASEP of M-PSK and M-QAM modulations.

4.1 Outage probability

An important measure of performance in fading channels is
the OP, denoting the probability that the instantaneous end-
to-end SNR falls below a specified threshold gt. Using (7)
and (11), or (13), the end-to-end OP of the MIMO dual-hop
system under consideration may be obtained as

Pout(gt) = Fgd
(gt) (16)

4.2 Average symbol error probability

To evaluate the ASEP performance of the considered MIMO
dual-hop system, we follow the MGF-based approach for the
error performance of digital communications systems over
fading channels outlined in [16].

4.2.1 M-PSK: The ASEP of M-ary PSK signals is given by
[16, Equation (5.78)]

Pse =
1

p

∫p−p/M

p/2

Mgd

gpsk

sin2 (u)

( )
du

+ 1

p

∫p/2

0

Mgd

gpsk

sin2 (u)

( )
du (17)
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where gpsk ¼ sin2(p/M ). Next, we consider two solutions for
Pse. The first one is for arbitrary values of uℓj

s, while the
second one is when restricting

∑Kℓ
j=1 uℓj

to integer values.
For arbitrary values of uℓj

, by substituting (14) to (17),
integrals of the form

FPSK,1 = 1

p

∫p−p/M

p/2

∏Kℓ

k=1

1 +
gpsk

sin2(u)
pℓk

( )−uℓk

du (18a)

and

FPSK,2 = 1

p

∫p/2

0

∏Kℓ

k=1

1 +
gpsk

sin2(u)
pℓk

( )−uℓk

du (18b)

need to be evaluated, with l ¼ 0, 1, 2. For the integral FPSK,1
by performing the change of variable x ¼ cos2(u)/cos2(p/M )
and after some necessary manipulations, one obtains

FPSK,1 = cos (p/M )

2p

∫1

0

x − x2 cos2 p

M

( )( )−1/2

×
∏Kℓ

k=1

1 +
pℓk

gpsk

1 − x cos2(p/M )

( )−uℓk

dx

= 1

2p
cos

p

M

( )∏Kℓ

k=1

(1 + gpskpℓk
)−uℓk

×
∫1

0

x−1/2 1 − x cos2 p

M

( )( )∑Kℓ

k=1
uℓk

−1/2

×
∏Kℓ

k=1

1 − cos2(p/M )

1 + pℓk
gpsk

x

( )−uℓk

dx

= 1

p

∏Kℓ

k=1

(1 + gpskpℓk
)−uℓk cos

p

M

( )

× F
(Kℓ+1)
D

1

2
, {uℓk

}
Kℓ

k=1,
1

2
−
∑Kℓ

k=1

uℓk
;

3

2
;

(

× cos2 (p/M )

1 + gpskpℓk

{ }Kℓ

k=1

, cos2 p

M

( ))
(19)

where F (n)
D (v, k1, . . . , kn; c; z1, . . . , zn) is the Lauricella

multiple hypergeometric function of n variables defined as

F (n)
D (v, k1, . . ., kn; c; z1, . . ., zn)

= G(c)

G(c − v)G(v)

∫1

0

xv−1(1 − x)c−v−1
∏n

i=1

(1 − zix)−ki dx

=
∑1

l1,l2,...,ln=0

(v)lT

(c)lT

∏n

i=1

(ki)li

G(li + 1)
z

li
i , zi| , 1 (20)

where lT =
∑n

i=1 li, (a)b ¼ G(a+ b) /G(a) is the
Pochhammer symbol. The integral in (20) exists when
<{c 2 v} . 0 and <{v} . 0. It can be seen from (19) that
the conditions for series convergence and integral existence
of F

(Kℓ+1)
D are satisfied. Note that the Lauricella function

can be evaluated numerically in a computational-efficient
manner using its integral representation with the help of any
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of the well-known popular mathematical software packages
such as Maple or Mathematica.

For the integral FPSK,2, by performing the change of
variable x ¼ cos2(u) and after some manipulations, we obtain

FPSK,2 =
1

2p

∏Kℓ

k=1

(1+gpskpℓk
)−uℓk

×
∫1

0

x−(1/2)(1−x)
∑Kℓ

k=1
uℓk

−(1/2)

×
∏Kℓ

k=1

1− 1

1+pℓk
gpsk

x

( )−uℓk

dx

=
G (1/2)+

∑Kℓ

k=1 uℓk

( )∏Kℓ

k=1 (1+gpskpℓk
)−uℓk

2
��
p

√
G 1+

∑Kℓ

k=1 uℓk

( )

×F
(Kℓ)
D

1

2
, {uℓk

}
Kℓ

k=1; 1+
∑Kℓ

k=1

uℓk
;

1

1+gpskpℓk

{ }Kℓ

k=1

( )

(21)

By restricting
∑Kℓ

j=1 uℓj
to integer values and substituting (15)

to (17), integrals of the form

I 1(k, A)=
gpsk

p

∫p/2

0

sin2k−2 (u)

(Asin2(u)+gpsk)k
du (22a)

and

I 2(k, A)=
gpsk

p

∫p−p/M

p/2

sin2k−2(u)

(Asin2(u)+gpsk)k
du (22b)

need to be evaluated, with k ≥ 1 and A . 0. By substituting
cos2 (q)=v and with the help of [7, Equations (9.111) and
(9.121.1)], I1(k, A) can be expressed as

I1(k, A)=
�����
gpsk

√

2
��
p

√ G(k−1/2)

G(k)(A+gpsk)k−1/2
(23)

Under the assumption of integer k, the integral in I2(k, A) can
be expressed in closed form as

I 2(k, A)=
(A+gpsk)−k+1/2

p/
�����
gpsk

√
T1

22k−2

2k−2

k−1

( )[

+ 1

22k−3

∑k−2

j=0

2k−2

j

( )
sin[(2k−2−2j)T1]

2k−2−2j

]
(24)

where T1 = arccos[(A−cos(2p/M ))/(A+1)]/2. In (24)
and (30), when 2k 2 2j 2 2 ¼ 0, sin(2k 2 2j 2 2)/
(2k 2 2j 2 2) ¼ 1. The proof of I2(k, A) is given in
Appendix.
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4.2.2 Square M-QAM: The ASEP of square M-QAM
constellations is given by

Pse =
4b

p

∫p/2

0

Mgd

gqam

sin2 (q)

( )
dq

− 4b2

p

∫p/4

0

Mgd

gqam

sin2 (q)

( )
dq (25)

where b = 1 − 1/
���
M

√
and gqam ¼ 3/[2(M 2 1)]. Similar to

M-PSK, next, we consider two solutions for Pse. The first
one is for arbitrary values of uℓj

s, whereas the second one
is when restricting

∑Kℓ
j=1 uℓj

to integer values.

For arbitrary values of uℓj
, by substituting (14) to (25),

integrals of the form

FQAM,1 = 4b

p

∫p/2

0

∏Kℓ

k=1

1 +
gqam

sin2(q)
pℓk

( )−uℓk

dq (26a)

and

FQAM,2 = 4b2

p

∫p/4

0

∏Kℓ

k=1

1 +
gqam

sin2(q)
pℓk

( )−uℓk

dq (26b)

need to be evaluated, with l ¼ 0, 1, 2. The first integral can be
easily recognised to be similar to the one in the M-PSK case,
and therefore it can be expressed as

FQAM,1 =
2bG (1/2)+

∑Kℓ

k=1 uℓk

( ) ∏Kℓ

k=1
(1+gqam pℓk

)−uℓk

��
p

√
G 1+

∑Kℓ

k=1 uℓk

( )

×F
(Kℓ)
D

1

2
, {uℓk

}
Kℓ

k=1; 1+
∑Kℓ

k=1

uℓk
;

1

1+gqam pℓk

{ }Kℓ

k=1

( )

(27)

For the integral FQAM,2, upon making the change of variable
x=1− tan2 (q) and after some manipulations, we obtain

FQAM,2 =
4b2

p

∏Kℓ

k=1

(1+2gqam pℓk
)−uℓk

∫1

0

(1−x)
∑Kℓ uℓk

−(1/2)

×
∏Kℓ

k=1

1−
1+gqam pℓk

1+2gqam pℓk

x

( )
1− x

2

( )−1
dx

=
b2∏Kℓ

k=1 (1+2gqam pℓk
)−uℓk

p(1/2+
∑Kℓ

k=1 uℓk
)

×F
(Kℓ+1)
D

(
1, {uℓk

}
Kℓ

k=1, 1;

3

2
+
∑Kℓ

k=1

uℓk
;

1+gqam pℓk

1+2gqam pℓk

{ }Kℓ

k=1

,
1

2

)

(28)

By restricting
∑Kℓ

j=1 uℓj
to integer values and substituting (15)
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to (25), the first integral has a similar form to I1(k, A), that is

K1(k, A)=
4bgqam

p

∫p/2

0

sin2k−2(u)

(Asin2(u)+gqam)k
du

=
2b

�����
gqam

√��
p

√ G(k−1/2)/G(k)

(A+gqam)k−1/2
(29a)

while the second integral is

K2(k, A)=
4b2 gqam

p

∫p/4

0

sin2k−2(u)

(Asin2(u)+gqam)k
du (29b)

Based on Appendix (Section 8.2) and under the assumption
of integer k, the integral in K2(k, A) can be expressed in
closed form as

K2(k, A)=
4b2 �����

gqam
√

p(A+gqam)k−1/2

T2

22k−2

2k−2

k−1

( )[

+(−1)k−1

22k−3

∑k−2

j=0

(−1) j 2k−2

j

( )
sin[(2k−2−2j)T2]

2k−2−2j

]

(30)

where T2 =p/2−arccos(A/(A+2gqam))/2.

4.2.3 Unified ASEP expression: Using the integral
solutions of both Sections 4.2.1 and 4.2.2, a unified
expression for the ASEP of both PSK and QAM when∑Kℓ

j=1 uℓj
is restricted to integer values can be written as

Pse

= [1−Fgsr
(gt(M ))]

∏K3

j=1

p3m

p3j

( )u3j

×
∑1
k=0

d3k
1− 1

M
−

∑k+
∑K3

j=1
u3j

−1

l=1

p−l
3m

∑2

r=1

J r l+1,
1

p3m

( )⎡
⎢⎣

⎤
⎥⎦

+Fgsr
(gt(M ))

∏K0

j=1

p0m

p0j

( )u0j

×
∑1
k=0

d0k
1− 1

M
−

∑k+
∑K0

j=1
u0j

−1

l=1

p−l
0m

∑2

r=1

J r l+1,
1

p0m

( )⎡
⎢⎣

⎤
⎥⎦

(31)

where for M-PSK J i(k, A) W I i(k, A) and for M-QAM
J i(k, A) W Ki(k, A), i ¼ 1, 2.

4.3 Asymptotic end-to-end performance analysis

We observe that for s � 1, Mgsd
(s) and Mgmrc

(s) in (8) can
be expressed as

Mgsd
(s) = s−

∑K0

k=1
u0k

∏K0

k=1

p
−u0k
0k

∏K0

k=1

1 + 1

sp0k

( )−u0k

= Csds−dsd +O(s−dsd ) (32)
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and

Mgmrc
(s) = s−

∑K3

k=1
u3k

∏K3

k=1

p
−u3k
3k

∏K3

k=1

1 + 1

sp3k

( )−u3k

= Cmrcs−dmrc +O(s−dmrc ) (33)

where Csd =
∏K0

k=1 p
−u0k
0k

, Cmrc =
∏K3

k=1 p
−u3k
3k

, dsd =
∑K0

k=1 u0k

and dmrc =
∑K3

k=1 u2k
. We write f (x) = O[g(x)] as x � x0, if

limx�x0
(f (x)/g(x)) = 0. Using [22, Proposition 3], it is

obvious that dsd is the diversity gain of the S � D hop,
whereas dmrc is the diversity gain for the combined S � D
and R � D hop. The MGF of gd is then expressed as

Mgd
(s) = [1 − Fgsr

(gt(M ))]Cmrcs−dmrc

+ Fgsr
(gt(M ))Csds−d/sd (34)

Using (34) along with (17) and (25), simplified asymptotic
expressions for the ASEP of M-PSK and M-QAM can be
obtained. Also, the corresponding CDF can be easily
obtained as

Fgd
(g) = [1 − Fgsr

(gt(M ))]Cmrc

gdmrc

G(dmrc + 1)

+ Fgsr
(gt(M ))Csd

gdsd

G(dsd + 1)
(35)

with the help of which and (16), an asymptotic expression for
the end-to-end outage probability can be readily obtained.

5 Numerical and computer simulation
results

In this section, we provide numerical and computer
simulation results for the OP and ASEP performance of the
considered dual-hop MIMO system. In order to show the
generality of the presented results, the correlation models
that are used are both analytical (see Section 2.1.3) as well
from measurements.

We first consider a dual-hop system equipped with two
antennas at the source, the relay and the destination nodes,
where the Alamouti scheme is used. The impact of fading
correlation is taken into account using the Kronecker model,
where the transmit and receive correlation matrices at all hops
ends are obtained using the Abdi-Kaveh model. Such a
correlation has been derived under the assumption of a
Rayleigh channel. However, the choice of a particular
correlation structure is not an essential issue for the purpose of
2112
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illustration. Since there is no alternative temporal correlation
model available for Nakagami-m fading [23], next, we will
use the Abdi-Kaveh correlation model in the following
numerical examples. For the evaluation of the OP, a fixed M
has been selected, so that gt(M) ¼ 0 dB, whereas for the
ASEP gref ¼ 0 dB. Fig. 1 depicts the end-to-end OP using
the Alamouti scheme against the first-hop normalised
outage threshold, �g1/gt for different values of the width of
AOA, k and as it is evident, the end-to-end OP improves
as k decreases. Furthermore, as expected, the balanced
test case (�g0 = �g1 = �g2) outperforms the unbalanced one
(�g0 = �g2 = 0.5�g1) for all the corresponding values of k. For
the same scenario, Table 1 shows the number of terms
required in (11) to achieve an accuracy of up to the sixth-
significant digit. As it is obvious, the infinite series converges
rapidly and steadily requiring only a few terms for the target
accuracy, especially at medium and high values of �g1/gt.
Moreover, the number of required terms increases as k
increases and/or �g1/gt decreases. For low values of �g1/gt, the
integral representation in (13) may also be used to evaluate the
OP. Fig. 2 depicts the end-to-end OP using the Alamouti

Fig. 1 End-to-end OP of dual-hop DF MIMO relay system with
orthogonal STBCs (H2 scheme), against first-hop normalised
outage threshold under correlated Nakagami-m fading (Abdi-
Kaveh model, uniform antenna arrays with dR ¼ dS ¼ 10l,
hS ¼ hR ¼ p/4, dD ¼ 0.2l, hD ¼ p/32, k ¼ 0, 2, 5) m0 ¼ 2.5,
m1 ¼ m2 ¼ 1.5, for unbalanced (ḡ0 ¼ ḡ2 ¼ 0.5ḡ1) and balanced
(ḡ0 ¼ ḡ1 ¼ ḡ2) hops
Table 1 Number of required terms for convergence of the outage probability based on (11) and (17) to achieve an accuracy of up to the

sixth-significant digit (Abdi-Kaveh model, uniform antenna arrays with dR ¼ dS ¼ 10l, dD ¼ 0.2l, hS ¼ hR ¼ p/4, hD ¼ p/32, k ¼ 0, 2, 5,

m0 ¼ 2.5, m1 ¼m2 ¼ 1.5), for unbalanced hops (ḡ0 ¼ ḡ2 ¼ 0.5ḡ1)

�g1/gt , dB k ¼ 0 k ¼ 2 k ¼ 5

S � D S � R MRC S � D S � R MRC S � D S � R MRC

0 47 7 40 63 6 58 110 6 104

2.5 27 3 20 38 4 29 68 3 58

5 16 2 8 22 4 13 38 2 25

7.5 7 2 3 11 2 6 20 2 14

10 3 2 2 3 2 3 9 1 7
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scheme against �g1/gt and its asymptotic behaviour for
exponential correlation, balanced and unbalanced hops. As it
can be observed, the asymptotic expression for the OP
obtained using (35) correctly predicts the outage performance
of the considered system at high values of �g1/gt, thus
verifying the correctness of our analysis. In Fig. 3 the ASEP
of M-ary PSK and square QAM is depicted as a function of �g1
for the Alamouti scheme, the Clarke correlation model and for
different values of M. As shown, the ASEP always improves
as �g1 increases and/or M decreases.

Fig. 2 End-to-end OP of dual-hop DF MIMO relay system with
orthogonal STBCs (2 transmit and receive antennas, H2 scheme),
versus first-hop normalised outage threshold under correlated
Nakagami-m fading (exponential correlation model, rS ¼ 0,
rR ¼ 0.1, rD ¼ 0.5), m0 ¼ 1.25, m1 ¼ 0.75, m2 ¼ 2.15 for
unbalanced (ḡ0 ¼ ḡ2 ¼ 0.5ḡ1, ḡ0 ¼ ḡ2 ¼ 0.25ḡ1), and balanced
(ḡ0 ¼ ḡ1 ¼ ḡ2 ) hops
IET Commun., 2011, Vol. 5, Iss. 15, pp. 2106–2115
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Next, we consider a dual-hop system equipped with four
antennas at the source, the relay and the destination nodes,
where the H4,3/4 code is used. We consider a more realistic
propagation environment for the following two test cases.
The first test case corresponds to the propagation
environment presented in [24], where a narrowband
Kronecker model was used, while the correlation matrices
at both link ends were obtained from data collected in two
types of environments, namely microcell and picocell. The
term picocell and microcell refer to indoor-to-indoor and
indoor-to-outdoor environment, respectively. In the picocell
environment, the propagation scenario offers a decorrelated
case, whereas in the microcell a correlated one. Note that
although the Kronecker model generally performs poorly
for MIMO systems equipped with more than two antennas,
in this case, it agrees quite well with the measured data.
The correlation matrices at the base station and the mobile
terminal are [24, Equations (12) and 13)] (see (36a))

and (see (36b))

for picocell and (see (37a))

and (see (37b))

for microcell. Fig. 4 shows the end-to-end ASEP of the
considered system when square M-QAM is employed for
both considered environments under Rayleigh fading and
for different values of M. As it can be observed, the error
performance is slightly better in the picocell environment
than in the microcell for all values of M. This result is in
agreement with [24, Figure (12)], where the MIMO channel
capacity of the picocell environment is better than the
corresponding one of the microcell environment. The final
test case is based on the experimental setup presented in
[25]. Four-element single polarisation patches with half-
wavelength spacing are considered, while the transmitter is
fixed whereas the receiver can be at locations 2, 3 and
4. The Weichselberger et al. model has been adopted and
based on measurements for Hls [26], the parameters of this
RTx ,pico =

1 −0.45 + 0.53j 0.37 − 0.22j 0.19 + 0.21j
−0.45 − 0.53j 1 −0.35 − 0.02j 0.02 − 0.27j
0.37 + 0.22j −0.35 + 0.02j 1 −0.10 + 0.54j
0.19 − 0.21j 0.02 + 0.27j −0.10 − 0.54j 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (36a)

RRx,pico =

1 −0.13 − 0.62j −0.49 + 0.23j 0.15 + 0.28j
−0.13 + 0.62j 1 −0.13 − 0.52j −0.38 + 0.12j
−0.49 − 0.23j −0.13 + 0.52j 1 0.02 − 0.61j
0.15 − 0.28j −0.38 − 0.12j 0.02 + 0.61j 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (36b)

RTx,micro =

1 −0.61 + 0.77j 0.14 − 0.94j 0.24 + 0.89j
−0.61 − 0.77j 1 −0.85 + 0.50j 0.57 − 0.78j
0.14 + 0.94j −0.85 − 0.50j 1 −0.91 + 0.40j
0.24 − 0.89j 0.57 + 0.78j −0.91 − 0.40j 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (37a)

RRx,micro =

1 −0.12 − 0.18j 0.08 + 0.05j −0.02 − 0.13j
−0.12 + 0.18j 1 −0.17 − 0.16j 0.11 + 0.04j
0.08 − 0.05j −0.17 + 0.16j 1 −0.17 − 0.16j
−0.02 + 0.13j 0.11 − 0.04j −0.17 + 0.16j 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (37b)
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model can be easily extracted. More specifically, based on
[26], we first performed an estimation of coupling matrices
Vls using (2) assuming that for a specific indoor location, a
reasonable assumption is Rcc0 ¼ Rcc1 ¼ Rcc2. Then, the
correlation matrices were estimated using (3). Furthermore,
according to the findings of all experiments performed in

Fig. 3 ASEP of M-ary PSK and M-ary QAM constellations of
dual-hop DF MIMO relay systems with orthogonal STBCs (2
transmit and receive antennas, H2 scheme) against transmit SNR
per symbol of the first hop, under correlated Nakagami-m fading
(Clarke model, uniform antenna arrays with dR ¼ dS ¼ 10l,
dD ¼ 0.2l), m0 ¼ 2.5, m1 ¼ m2 ¼ 1.5, for unbalanced
(ḡ0 ¼ ḡ2 ¼ 0.5ḡ1) hops

Fig. 4 ASEP of M-ary QAM constellations of dual-hop DF MIMO
relay systems with orthogonal STBCs (4 transmit and receive
antennas, H4,3/4 scheme) against transmit SNR per symbol of the
first hop, under correlated Rayleigh fading (picocell decorrelated
and microcell correlated environments based on [24] for balanced
hops (ḡ0 ¼ ḡ2 ¼ ḡ1)
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[25], Rayleigh distributed channel envelopes were assumed
for all considered hops. To demonstrate our analysis, Fig. 5
shows the ASEP of 4- and 16-QAM over Rayleigh fading
as a function of �g1 in locations 2, 3 and 4, and as it is
evident, ASEP improves as �g1 increases.

To verify the correctness of the proposed analysis, our
numerically evaluated results are accompanied with semi-
analytical Monte-Carlo simulations, where in our simulations,
we form (6) with more than 107 samples. Note that the
Frobenius norms involved in (5) are sums of correlated gamma
variates. Hence, we can reduce the computational effort by
using the fact that the sum of correlated gamma variates can be
expressed as the sum of independent gamma variates with
suitably scaled parameters, which depend on the elements of
the covariance matrix. This result was first proved in [27],
where the Karhunen-Loeve expansion was used to decorrelate
arbitrarily correlated, non-identical, Erlang distributed RVs.
Standard built-in functions available in popular mathematical
software packages, such as the Matlab gamrnd function,
can be readily used to generate gamma distributed samples
with suitably defined parameters. Therefore, in Figs. 1–5,
corresponding results are included (square signs) for
comparison purposes. It can be observed that for all curves, we
have an excellent match with the analytically evaluated results,
validating the mathematical formulation.

6 Conclusions

A performance study of a DF dual-hop wireless
communication system, employing OSTBC and operating
over spatially correlated Nakagami-m fading channels was
presented. Analytical expressions for the CDF and MGF of
the end-to-end SNR were derived, valid for any orthogonal
design and correlation model. Based on these formulas, a
thorough performance analysis of the considered system
was presented in terms of OP and ASEP of M-ary

Fig. 5 ASEP of M-ary QAM constellations of dual-hop DF MIMO
relay systems with orthogonal STBCs (4 transmit and receive
antennas, H4,3/4 scheme) against transmit SNR per symbol of the
first hop, under correlated Rayleigh fading (Weicshelberger et al.
model, based on the experimental setup in [25]) for balanced
hops (ḡ0 ¼ ḡ2 ¼ ḡ1)
IET Commun., 2011, Vol. 5, Iss. 15, pp. 2106–2115
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modulation schemes. Extensive numerical and computer
simulation results were presented that demonstrate the
proposed mathematical analysis.
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8 Appendix

8.1 Evaluation of I2(k, A)

We first employ the change of variables u ¼ f 2 p/2 in
I 2(k, A) yielding

I 2(k, A) =
gpsk

Akp

∫p/2−p/M

0

cos2k−2 (u)

(cos2 (u) + gpsk/A)k
du

=
gpsk

(A + 2gpsk)kp

∫p−2p/M

0

(1 + cos (j))k−1

(1 + d cos (j))k
dj

(38)

where d W A/(A + 2gpsk). By employing the Euler–Legendre
change of variables {1 + d cos(j) = (1 − d2)/(1 − d cos(x)),
dj =

��������
1 − d2

√
/(1 − d cos(x)) dx} and after some algebraic

manipulations, the following form is obtained

I 2(k, A)=gpsk/((A+2gpsk)kp)((1+d)1/2−k)/
������
1−d

√ �2T1

0
(1+

cos(x))k−1 dx, where 2T1 ¼ arcos[(A 2 cos(2p/M )))/(A + 1)].
By performing the change of variables x ¼ 2t and after some
algebraic and trigonometric manipulations, I 2(k, A) can be
expressed as

I 2(k, A) =
�����
gpsk

√

p
(A + gpsk)−k+1/2

∫T1

0

cos2k−2 (t) dt (39)

where using [7, Equation (2.513.3)], (24) is obtained.

8.2 Evaluation of K2(k, A)

After some algebraic and trigonometric manipulations,
K2(k, A) can be expressed as K2(k, A) = 4b2 gqam/

(p(A + gqam)k)
�p/2

0
((1 − cos(j))k−1)/((1 − d cos(j))k )dj where

d W A/(A + 2gqam). Similarly to Section 8.1, using the
Euler–Legendre change of variables, the following form
is obtained

K2(k, A) = (4b2/p)(A + gqam)1/2−k �����
gqam

√ ∫T2

0

sin2k−2 (x)dx

(40)

where T2 ¼ p/2 2 arccos(A/(A + 2gqam))/2, while further
using [7, Equation (2.513.1)], (30) is obtained.
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