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ABSTRACT

In this paper, a study on the end-to-end performance of multi-hop non-regenerative relaying networks over independent
generalized-gamma (GG) fading channels is presented. Using an upper bound for the end-to-end signal-to-noise ratio (SNR),
novel closed-form expressions for the probability density function, the moments, and the moments-generating function of
the end-to-end SNR are presented. Based on these derived formulas, lower bounds for the outage and the average bit error
probability (ABEP) are derived in closed form. Special attention is given to the low- and high-SNR regions having practical
interest as well as to the Nakagami fading scenario. Moreover, the performance of the considered system when employing
adaptive square-quadrature amplitude modulation is further analyzed in terms of the average spectral efficiency, the bit
error outage, and the ABEP. Computer simulation results verify the tightness and the accuracy of the proposed bounds.
Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently, multi-hop networks technology has attracted
great interest as it is a promising solution to achieve high
data rate coverage required in future cellular wireless local
area and hybrid networks, as well as to mitigate wireless
channels impairment. In a multi-hop system, intermedi-
ate nodes are used to relay signals between the source and
the destination terminal. Relaying techniques can achieve
network connectivity when the direct transmission is diffi-
cult for practical reasons, such as large path-loss or power
constraints. As a result, signals from the source to the des-
tination propagate through different hops/links. A special
class of multi-hop networks is the serial relaying networks
for which various works have shown that they are able to
achieve high performance gains [1,2].

In the open technical literature, there are several works
dealing with the performance analysis of multi-hop systems.

In Reference [3], the end-to-end outage probability and
the average error rate for multi-hop wireless systems with
non-regenerative relaying operating over Weibull fading
channels were evaluated. In References [4--7], the end-to-
end outage probability as well as the average error rate for
dual-hop wireless systems with non-regenerative relaying
operating over Rayleigh and Nakagami-m fading channels
were presented. In References [8,9], performance bounds
for multi-hop relaying transmissions with fixed-gain relays
over Rice, Hoyt, and Nakagami-m fading channels were
given using the moments-based approach. Moreover, in
Reference [10], an extensive performance analysis for dual-
hop non-regenerative relaying communication systems over
generalized-gamma (GG) fading was presented. It is noted
that the GG distribution is quite general as it includes the
Rayleigh, the Nakagami-m, and the Weibull distribution as
special cases, as well as the lognormal one as a limiting case.
Furthermore, it is considered to be mathematically tractable,
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Figure 1. The serial relaying communication system under consideration.

as compared to lognormal-based models, and recently has
gained increased interest in the field of digital communica-
tions over fading channels [11].

Adaptive modulation techniques [12--14], where the
modulation index is chosen according to the instantaneous
channel conditions, are considered as efficient means to
cope with channel variations, while keeping an accept-
able quality of service (QoS). When channel conditions
are favorable, the transmitter can use higher power, larger
symbol constellations, and reduced coding and error cor-
rection schemes, otherwise the transmitter switches to
low power, smaller symbol constellations, and includes
improved coding and error correction schemes. Although
adaptive modulation techniques have been extensively
applied for direct-link systems, corresponding techniques
for multi-hop systems have only recently received some
special attention. In Reference [15], the performance of
adaptive modulation in a single relay network was stud-
ied, while Reference [16], generalizes Reference [15] for
multi-hop systems.

In this paper, we analyze the statistics and the end-to-end
performance of non-regenerative (amplify-and-forward)
multi-hop systems, with relay nodes in series, operating
over independent GG fading channels. By considering
a union bound for the end-to-end SNR, closed-form
expressions for its cumulative distribution function (CDF),
probability density function (PDF), moments, as well as
its moments-generating function (MGF) are derived. Using
the CDF expression, lower bounds of the end-to-end out-
age probability (OP) are derived. Moreover, using the
well-known MGF-based approach, lower bounds for the
average bit error probability (ABEP) of binary differ-
ential phase shift keying (BDPSK), binary phase shift
keying (BPSK) and binary frequency shift keying (BFSK)
are also presented. For identically distributed hops, the
ABEP expressions are in terms of a finite sum of Meijer
G-functions. An accurate analytical method for the com-
putation of the ABEP is given for arbitrarily distributed
hops. For the high- and the low-SNR region, having spe-
cial practical interest for multi-hop networks, our derived
ABEP expressions are significantly simplified. The same
also occurs when Nakagami fading is being considered as a
special case of the GG distribution. Finally, the performance
of the considered system with fast adaptive square-QAM
and fixed switching levels is analyzed in terms of the aver-
age spectral efficiency (ASE), the bit error outage (BEO),
and the corresponding ABEP. Theoretical expressions for
the outage probability the achievable spectral efficiency and

ABEP are derived, while Monte Carlo simulation is used in
order to verify the proposed analysis.

The paper is organized as follows: In Section 2 the system
and channel models are described in details. In Section 3
closed-form expressions for the CDF, PDF, moments, and
MGF of a bounded end-to-end SNR are derived. Based on
these formulas, in Section 4, an end-to-end performance
analysis is presented for both fixed modulation and adap-
tive QAM schemes. In Section 5 numerical and computer
simulation results are presented, demonstrating the tight-
ness of the proposed bound, while the paper concludes with
a summary given in Section 6.

2. SYSTEM AND CHANNEL MODEL

We consider a multi-hop system, as shown in Figure 1,
with a source node communicating with a destination
node via N − 1 relay nodes in series. The fading channel
coefficients hi between source-to-relay (S −→ R), relay-
to-relay (R −→ R) and relay-to-destination (R −→ D)
are considered as independent GG random variables. By
defining as γi = h2

i Es/N0 the instantaneous receive SNR
of the ith hop, with i = 1, 2, . . . , N, Es being the symbols
energy, and N0 being the single sided power spectral density,
the PDF of γi can be written as

fγi
(γ) = βiγ

miβi/2−1

2�(mi)(τiγi)miβi/2

× exp

[
−

(
γ

τiγi

)βi/2
]

(1)

where βi > 0 and mi > 1/2 are parameters related to fad-
ing severity, γi = E〈γi〉 with E〈·〉 denoting expectation,
and τi = �(mi)/�(mi + 2/βi) where �(·) is the gamma
function. For βi = 2, Equation (1) reduces to the square
Nakagami-m fading distribution, whereas for mi = 1, the
Weibull distribution is obtained. Also the CDF of γi is given
by

Fγi
(γ) = 1 − 1

�(mi)
�

[
mi,

(
γ

τiγi

)βi/2
]

(2)

Note that for integer mi and using Reference [17, equation
(8.352.2)], the CDF of γi can be rewritten as
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Fγi
(γ) = 1 − exp

[
−

(
γ

τiγi

)βi/2
]

×
mi−1∑
i=0

1

i!

(
γ

τiγi

)iβi/2

(3)

3. STATISTICS OF THE END-TO-END
SNR

In this section bounds for the end-to-end SNR are proposed,
while associated closed-form lower bounds for the CDF, the
PDF, the moments, and the MGF are derived.

For the system in Figure 1 employing the amplify-
and-forward relaying protocol, the end-to-end SNR at the
destination node can be written as Reference [5]

γequ =
[

N∏
i=1

(
1 + 1

γi

)
− 1

]−1

(4)

The above SNR expression is not mathematically tractable
in its current form due to the difficulty in finding the statis-
tics associated with it. Similarly to Reference [10,18], this
form can be upper bounded by

γequ ≤ γb = min{γ1, γ2, . . . , γN} (5)

Mathematically, this bound is obtained by observing that
the following inequalities are valid [18]

γequ ≤
(

N∑
i=1

1

γi

)−1

≤ min{γ1, γ2, . . . , γN} (6)

A physical interpretation of this bound is that at high SNR
region, the hop with the weakest SNR determines the end-
to-end system performance. This approximation, is adopted
in many recent papers, e.g., References [18--20] and is
shown to be accurate enough, especially at medium and
high SNR values.

3.1. Cumulative distribution function

Using Equations (2) and (5), the CDF of γb can be expressed
as

Fγb
(γ) = 1 −

N∏
i=1

[1 − Fγi
(γ)]

= 1 −
N∏

i=1

1

�(mi)
�

[
mi,

(
γ

τiγi

)βi/2
]

(7)

For independent and identically distributed (i.i.d) hops,
(mi = m, βi = β, τi = τ, and γi = γ ∀ i) and for integer

values of mi, the CDF of γb can be expressed as

Fγb
(γ) = 1 − exp

[
−N

(
γ

τγ

)β/2
]

×
[

m−1∑
i=0

1

i!

(
γ

τγ

)iβ/2
]N

(8)

3.2. Probability density function

Using the multinomial identity [21, equation (24.1.2)],
Equation (8) can be reexpressed as†

Fγb
(γ) = 1 − N! exp

[
−N

(
γ

τγ

)β/2
]

×
N∑

n0 ,n1 ,...,nm−1=0
n0+n1+···+nm−1=N

An0,n1,...,nm−1γ
β
∑m−1

i=1
ini/2

(9)

where

An0,n1,...,nm−1 =
m−1∏
i=0

[
(i!)nini!(τγ)βini/2

]−1
(10)

The PDF of γb can be found by taking the derivative of
Equation (9) with respect to γ . After some straightfor-
ward algebraic manipulations, the PDF of γb can be finally
expressed as

fγb
(γ) = βNγβ/2−1N!

2(τγ)β/2
exp

[
−N

(
γ

τγ

)β/2
]

×
N∑

n0 ,n1 ,...,nm−1=0
n0+n1+···+nm−1=N

An0,n1,...,nm−1γ
β
∑m−1

i=1
ini/2

− exp

[
−N

(
γ

τγ

)β/2
]

βN!

2

×
N∑

n0 ,n1 ,...,nm−1=0
n0+n1+···+nm−1=N

An0,n1,...,nm−1

× γ
−1+β

∑m−1

i=1
ini/2

m−1∑
i=1

ini (11)

†
∑N

n0 ,n1 ,...,nm−1=0
n0+n1+···+nm−1=N

denotes multiple summation over n0, n1, . . . , nm−1,

with n0 + n1 + . . . + nm−1 = N.
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3.3. Moments

The νth order moment of γb is defined as

µγb
(ν) � E〈γν

b 〉 =
∫ ∞

0

γνfγb
(γ)dγ (12)

By substituting Equation (11) in Equation (12), making a
change of variables t = N[γ/(τγ)]β/2, and using the defini-
tion of the gamma function, the νth order moment of γb can
be expressed in closed form as

µγb
(ν) = N!

N∑
n0, n1, . . . , nm−1 = 0

n0 + n1 + · · · + nm−1 = N

An0,n1,...,nm−1

× N−2 η2/β (τ γ)η2 �

(
2 η1

β

)

− N!
N∑

n0, n1, . . . , nm−1 = 0

n0 + n1 + · · · + nm−1 = N

An0,n1,...,nm−1

× (τ γ)η2

N2 η2/β
�

(
2 η2

β

) m−1∑
i=1

i ni (13)

where

η1 = ν + β

2

m−1∑
i=1

ini + β

2
(14a)

and

η2 = η1 − β

2
(14b)

3.4. Moments-generating function

The MGF of γb defined as Mγb
(s) � E〈exp(−sγb)〉, can be

extracting from the CDF of γb as

Mγb
(s) = sL{Fγb

(γ); s} (15)

whereL{·; ·} denotes the Laplace transform. By substituting
Equation (11) in the above equation and using Reference
[22, equation (2.2.1.22)], the MGF of γb can be expressed
in closed form as

Mγb
(s) = 1 − N!

N∑
n0 ,n1 ,...,nm−1=0

n0+n1+···+nm−1=N

An0,n1,...,nm−1

×
√

klν1+ 1
2 s−ν1

(2π)(k+l)/2−1
G

k, l

l, k

[
Nkll/sl

(τγ)βk/2kk

∣∣∣∣�(l, −ν1)

�(k, 0)

]
(16)

where G
k,l

l,k
[·] is the Meijer’s G-function, see Reference [17,

equation (9.301)], k and l are two minimum integers that
satisfy β = 2l/k, �(k, α) = α

k
, α+1

k
, . . . , α+k−1

k
, and

ν1 = β

2

m−1∑
i=1

i ni (17)

It is noted that for Weibull fading channels (m = 1),
Equation (16) numerically coincides with a previously
known result, see Reference [3, equation (11)]. Also, for
Nakagami-m fading channels, (β = 2, k = 1, l = 1), using
Reference [23, equation 07.34.03.0271.01], Equation (16)
simplifies to

Mγb
(s) = 1 − N!

N∑
n0 ,n1 ,...,nm−1=0

n0+n1+···+nm−1=N

Bn0,n1,...,nm−1

× s−ν2ν2!

(
1 + Nm

γs

)−ν2−1

(18)

where

Bn0,n1,...,nm−1 =
m−1∏
i=0

[
(i!)nini!

(
γ

m

)ini

]−1

(19a)

and

ν2 = 2
ν1

β
(19b)

For non-identically distributed hops, the MGF of γb can
be obtained using Equations (15) and (7) as

Mγb
(s) = 1 −

∫ ∞

0

s exp(−s γ)

×
N∏

i=1

1

� (mi)
�

[
mi,

(
γ

τi γi

)βi/2
]

dγ. (20)

Using the Gauss–Laguerre quadrature rule [21, pp. 890 and
923], an accurate approximation of the MGF is obtained as

Mγb
(s) 	 1 −

L∑
i=1

N∏
j=1

wi

�
(
mj

) �

[
mj,

(
xi

sτj γj

)βj/2
]

(21)

whereL is the number of integration points, xi’s are the roots
of the Laguerre polynomial Ln(x) and wi the corresponding
weights with

wi = xi

(L + 1)2 L2
L+1(xi)

. (22)
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Next, based on Equation (16), asymptotic MGF expres-
sions for high- and low-SNR regions are presented. We
show that the MGF of γb can be significantly simplified
expressing it only in the form of elementary functions.

3.4.1. Low-SNR region.

By expressing the Meijer G-function as a finite sum
of hypergeometric functions pFq(·; ·; z), see Reference
[17, equation (9.304)] and taking into consideration that
pFq(·; ·; z) tends to unity as z → 0, a simplified asymptotic
expression for the MGF of γb at low SNR may be obtained
as

Mγb
(s) = 1 − N!

N∑
n0, n1, . . . , nm−1 = 0

n0 + n1 + · · · + nm−1 = N

An0,n1,...,nm−1

×
√

k lν1+ 1
2 s−ν1

(2π)
k+l

2 −1

l∑
h=1




l∏
j = 1

j 
= h

�(ah − aj)




×
[

k∏
j=1

�(1 + bj − ah)

][
Nk ll

(τ γ)βk/2 kk sl

]ah−1

(23)

where ai, bi denotes the ith element of the lists �(l, −ν1)
and �(k, 0), respectively. Note that the above expression is
given in terms of elementary functions only.

3.4.2. High-SNR region.

A simplified expression for the MGF of γequ at high
SNR, defined asMγequ (s) � E〈exp(−sγequ)〉, is obtained by
applying the analysis presented in Reference [24]. In that
work it has been proved that if Xi’s, i = 1, 2, · · · , N, are
N independent and non-negative random variables and the
series expansion of the PDF of Xi in the neighborhood zero
can be expressed as‡

PXi
(x) = aix

ti + o(xti+ε) (24)

where ai > 0, ti ≥ 0, ε > 0, then the series expansion of the
PDF of Z = (

∑N

i=1 1/Xi)−1 is given by

fZ(z) =
N∑

i=1,ti=tmin

aiz
tmin + o(ztmin+ζ) (25)

‡ it is noted that for two functions f and g of a real variable x, we write
f (x) = o(g(x)) when x → x0 if limx→x0

f (x)
g(x) = 0.

where tmin = mini ti and ζ is a constant that depends on ti and
ε. Using exp(z) 	 1 when z → 0 along with the previously
cited theorem, the PDF of γi can be approximated as

fγi
(γ) 	 βi

2�(mi)(τiγi)miβi/2
γβimi/2−1 (26)

Using the definition of the gamma function, the MGF of
γequ may be easily expressed as

Mγequ (s) 	 �(tmin)

2stmin

N∑
i=1

βi

�(mi)(τiγi)miβi/2
(27)

where tmin = mini{miβi/2}. Note once again that the above
expression is given in terms of elementary functions only.

4. END-TO-END PERFORMANCE
ANALYSIS

Using the previous analysis, lower bounds for the OP of the
end-to-end SNR are derived in this section. Also, using the
MGF approach, lower bounds for the ABEP for a variety of
modulation schemes are presented, while the performance
is further investigated when employing fast adaptive QAM.

4.1. Fixed modulation scheme

Here we assume a fixed modulation scheme with a constant
modulation index.

4.1.1. Outage probability.

The outage probability is defined as the probability that
the end-to-end output SNR, falls below a specified threshold
γth. This threshold is a minimum value of the SNR above
which the quality of service is satisfactory. For the consid-
ered multi-hop system the use of upper bound γb leads to
lower bounds for the outage probability at the destination
terminal D expressed as Pout(γth) ≥ Fγb

(γth). The outage
probability of the considered system can be obtained based
on Equation (7) as

Pout (γth) ≥ Fγb
(γth) . (28)

It is noted that for identical parameters mi = m, βi = β,
τi = τ, and γi = γ ∀ i and m integer, the outage probability
can be extracted based on Equation (8).

4.1.2. Average bit error probability.

The MGF of γb can be efficiently used to evaluate lower
bounds for the ABEP of BDPSK, BPSK, and BFSK. The
ABEP of BDPSK can be readily obtained from Equation
(16) or Equation (21) as Pbe = 0.5Mγb

(1), while for coher-
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ent binary signals as Reference [25]

Pbe = 1

π

∫ π/2

0

Mγb

[
ψ

sin2(θ)

]
dθ (29)

where ψ = 1 for coherent BPSK, ψ = 1/2 for coherent
BFSK and ψ = 0.715 for coherent BFSK with mini-
mum correlation. An alternative ABEP expression can be
obtained following a technique described in Reference [26]
as

Pbe = 1√
2π

∫ ∞

0

Fγb

(
t2

2ψ

)
exp

(
− t2

2

)
dt (30)

For non-identically distributed hops, the ABEP for coherent
signals can be evaluated using Equations (21) and (29) or
(7) and (30) by means of numerical integration.

For identically distributed hops, substituting Equation
(16) to Equation (29) and by making the change of variables,
sin2(θ) = x, integrals of the form

I =
∫ 1

0

xν1−1/2(1 − x)−1/2

× G
k, l

l, k

[
Nkllxl

(τγ)βk/2kkψl

∣∣∣∣�(l, −ν1)

�(k, 0)

]
dx (31)

need to be evaluated. Using Reference [27, equation
(2.24.2.2)], I can be evaluated in closed form as

I = l−1/2√π

× G
k, 2l

2l, k + l

[
Nkll

(τγ)βk/2kkψl

∣∣∣∣�(l, 1/2 − ν1), �(l, −ν1)

�(k, 0), �(l, −ν1)

]
(32)

Therefore, the ABEP at the destination node is lower
bounded as

Pbe = 1

2
− N!

√
π

N∑
n0 ,n1 ,...,nm−1=0

n0+n1+···+nm−1=N

An0,n1,...,nm−1

√
klν1ψ−ν1

(2π)
k+l

2

× G
k, 2l

2l, k + l

[
Nkll

(τγ)βk/2kkψl

∣∣∣∣�(l, 1/2 − ν1), �(l, −ν1)

�(k, 0), �(l, −ν1)

]
(33)

For Nakagami-m fading channels, (β = 2, k = 1, l = 1),
using References [23, equation 07.34.03.0400.01] and [27,
equation (7.3.1.27)], Equation (33) simplifies to

Pbe = 1

2
− N!

2

N∑
n0 ,n1 ,...,nm−1=0

n0+n1+···+nm−1=N

Bn0,n1,...,nm−1

× (2ν2 − 1)!!

(2ψ)ν2

(
1 + Nm

γψ

)−ν2− 1
2

(34)

where (2ν2 − 1)!! � 1 · 3 · · · (2ν2 − 1) is the double facto-
rial.

Finally, at the high-SNR region and using Equations
(27) and (29), a simplified asymptotic expression for Pbe

is obtained as

Pbe 	 �
(

1
2 + tmin

)
4tmin

√
πψtmin

N∑
i=1

βi

�(mi)(τiγi)miβi/2
(35)

4.2. Fast adaptive square-QAM

According to the fast adaptive QAM technique, the constel-
lation size is selected based on the instantaneous received
SNR at the destination. In particular, for a fixed target bit
error probability, SNR thresholds for different constella-
tion sizes are calculated. By comparing the instantaneous
SNR at the destination with these thresholds, the size of
the constellation M is adapted to provide the best possible
throughput while satisfying QoS requirements. Information
on which value of M to be set is determined after communi-
cating the source with the destination through a reliable and
low-delay feedback link. Note that an error-free feedback
from the destination to source is being assumed.

4.2.1. Average spectral efficiency.

Let Mj and γ∗
j , j = 0 · · · J , be the jth element from the

set of possible constellation sizes and corresponding SNR
threshold respectively, to achieve a target bit error probabil-
ity P∗

b . The ASE is obtained using Reference [14, Equation
(19)] as

η =
J−1∑
j=0

M̃j P{γ∗
j < γequ ≤ γ∗

j+1}

+M̃J P{γ∗
J < γequ}

=
J−1∑
j=0

M̃j

[
Fγequ

(
γ∗

j+1

) − Fγequ

(
γ∗

j

)]
+M̃J

[
1 − Fγequ

(
γ∗

J

)]
(36)

where M̃j = log2(Mj) and P{·} denotes the probability
operator. To evaluate the corresponding thresholds γ∗

j , the
analytical expression for the instantaneous bit error proba-
bility is required. This expression is given in Reference [28]
as

Pb(e | γequ) = 2√
M log2(

√
M)

×
log2(

√
M)∑

h=1

(1−2−h)
√

M−1∑
i=0

(−1)�i2
h−1/

√
M


×
(

2h−1 −
⌊

i2h−1

√
M

+ 1

2

⌋)
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× Q

(
(2i + 1)

√
3γequ

M − 1

)
(37)

where �x
 denotes the largest integer less than or equal to
x and Q(·) is the well-known Gaussian Q-function. For a
given target bit error probability P∗

b , γ∗
j is obtained as the

solution of the following equation

Pb(e | γ∗
j ) = P∗

b (38)

Since the roots of Equation (38) cannot be obtained in closed
form, any of the well-known root-finding techniques may
be used for numerical evaluation.

4.2.2. Bit error outage.

An important performance measure in adaptive modula-
tion systems is the BEO, defined as the outage probability
based on bit error probability, that is Reference [14]

Po(P∗
b ) = P{Pb(γequ) ≥ P∗

b } (39)

where Pb(γequ) is the bit error probability as a function of
the instantaneous SNR γequ and P∗

b is the target bit error
probability defined above. Since the event Pb(γequ) ≥ P∗

b is
equivalent to the event γequ ≤ γ∗

j , ∀j = 0, 1, . . . , J − 1, a
lower bound for BEO can be readily obtained as

Po(P∗
b ) ≤ Fγb

(γ∗
j ) (40)

4.2.3. Average bit error probability.

The ABEP of an adaptive M-QAM system is given by
Reference [29, equation (11)]

Pbe =
∑J−1

j=0 M̃jPj∑J−1
j=0 M̃jδj

(41)

In the above equation δj = P{γ∗
j ≤ γequ ≤ γ∗

j+1} =
Fγequ (γ∗

j+1) − Fγequ (γ∗
j ) and Pj is the bit error probability of

the jth transmission mode, given by

Pj =
∫ γ∗

j+1

γ∗
j

PMj
(γ)fγequ (γ)dγ (42)

where PMj
(γ) is the bit error probability of Mj-QAM given

by Equation (37). Since γ∗
J = ∞, it can be observed that

the denominator of Equation (41) is equal to the ASE, η.
Also, by performing partial integration, Equation (42) can
be written as

Pj = Fγequ (γ∗
j+1)PMj

(γ∗
j+1) − Fγequ (γ∗

j )PMj
(γ∗

j )

−
∫ γ∗

j+1

γ∗
j

dPMj
(γ)

dγ
Fγequ (γ)dγ (43)

In the above equation the probabilities PMj
(γ) are linear

combinations of Gaussian Q-functions, the derivatives of
which with respect to γ can be easily derived using the
identity dQ(x)/dx = − exp(−x2/2)/

√
2π. Consequently,

Pj can be easily evaluated using numerical integration.

5. NUMERICAL AND COMPUTER
SIMULATION RESULTS

In this section, numerical results for the derived lower
bounds and computer simulation results for the correspond-
ing exact OP and ABEP performance criteria are presented.
In Figure 2, lower bounds curves for the OP of a three-hop
system (N = 3) are plotted as a function of the first hop
normalized outage threshold γth/γ1, for non-identically dis-
tributed hops, having β = 2, γ2 = 2γ1, γ3 = 3γ1 and for
different values of m. As expected, OP improves as γth/γ1

decreases and/or m increases. Dashed curves for the exact
outage performance, obtained via Monte Carlo simulations
based on Equation (4), are also included for comparison
purposes. As it can be observed the difference between the
exact value of the OP and the obtained bound gets tighter as
γth/γ1 decreases. However, at very high values of γth/γ1,
the bounds get loose.

Moreover, in Figure 3 lower bounds for the OP for i.i.d.
hops, are plotted as a function of the normalized outage
threshold γth/γ , for β = 1, m = 3 and for different values of
N. As it is evident, OP improves as γth/γ and/or N decrease.
Similar to the Figure 2, the analytically obtained lower
bound results are compared to corresponding exact outage
performance results, obtained via Monte Carlo simulations.
It is obvious that the difference between the exact value of
the OP and the obtained bound gets tighter with the decrease

Figure 2. End-to-end outage probability of a three-hop wireless
communication system operating over non-identical GG fading
channels as a function of the first hop normalized outage thresh-
old (N = 3, ˇ = 2, �2 = 2�1, �3 = 3�1, and m = 1.5, 2.5, 3.5).
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Figure 3. End-to-end outage probability of multi-hop wireless
communication systems operating over i.i.d. GG fading channels
as a function of the normalized outage threshold (m = 3, ˇ = 1,

and N = 2, 3, 5).

of γth/γ and/or N. Also, it can be observed that the bounds
get less tight at high values of γth/γ and as N increases.

In Figures 4 and 5 lower bound curves for the ABEP of
BDPSK and BPSK modulations are plotted, respectively,
for i.i.d. hops, as a function of the average input SNR
per bit γ , for various values of N, β = 1 and m = 3. It
is obvious that ABEP improves as N decreases. Also, in
Figure 6 the ABEP of BDPSK is plotted as a function
of γ for various values of β, m = 3 and N = 3. As
expected, the ABEP improves as β increases. For the

Figure 4. End-to-end ABEP of BDPSK for multi-hop wireless
communication systems operating over i.i.d. GG fading channels
as a function of the average input SNR per bit (m = 3, ˇ = 1, and

N = 2, 3, 5).

Figure 5. End-to-end ABEP of BPSK for multi-hop wireless com-
munication systems operating over i.i.d. GG fading channels as
a function of the average input SNR per bit (m = 3, ˇ = 1, and

N = 2, 3, 5).

low (γ ≤ 2dB) and high (γ ≥ 20dB) SNR regions, the
simplified expression given by Equations (23) and (27)
can be used, respectively, for the numerical evaluation
of the proposed ABEP bounds. Moreover, in Figure 7
lower bound curves for the ABEP of BDPSK and BPSK
modulations are plotted as a function of the first hop aver-
age input SNR per bit, γ1, for non-identically distributed
hops, N = 3, m = [2.8, 1.3, 0.4], β = [1.75, 3.2, 4.25],
γ2 = 2γ1, and γ3 = 3γ1. Asymptotic ABEP curves are also
plotted and as it can be observed, Equations (27) and (35)

Figure 6. End-to-end ABEP of BDPSK for multi-hop wireless
communication systems operating over i.i.d. GG fading channels
as a function of the average input SNR per bit (m = 3, N = 3, and

ˇ = 1, 2, 3).
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Figure 7. End-to-end ABEP of BDPSK and BPSK of a three-hop
wireless communication system operating over non identical GG
fading channels as a function of the first hop average input SNR
per bit (m = [2.8, 1.3, 0.4], N = 3, ˇ = [1.75, 3.2, 4.25], �2 =

2�1, �3 = 3�1).

correctly predict the behavior of the ABEP at high SNR
region.

For all the ABEP results in Figures 4–7, associate curves
for the exact error performance, obtained via Monte Carlo
simulations based on Equation (4) are also depicted for
comparison purposes. From all comparisons one can verify
similar findings to that mentioned in Figures 2 and 3.

Figure 8. End-to-end BEO of a multi-hop wireless communi-
cation system operating over non identical GG fading channels
versus �1, for an adaptive QAM scheme with P ∗

b
= 10−2, N = 3,

m = 1.4, ˇ = 2.25, �2 = 2�1, �3 = 3�1 and different constella-
tion sizes M .

Figure 9. End-to-end ASE of a multi-hop wireless communication
system operating over non identical GG fading channels versus
�1, for an adaptive QAM scheme with maximum constellation
size 16, 64, and 256, P ∗

b
= 10−2, N = 3, m = 1.4 ˇ = 2.25, �2 =

2�1 and �3 = 3�1.

In Figure 8 lower bound curves for the BEO of a three-hop
system using fast adaptive M-QAM are plotted versus γ1,
assuming P∗

b = 10−2, m = 1.4, β = 2.25, γ2 = 2γ1, γ3 =
3γ1 and different constellation sizes. Associate curves for
the exact BEO, obtained via Monte Carlo simulations based
on Equation (4) are also presented and as it can be observed,
similar findings to that mentioned in Figures 2 and 3 may
be verified.

Figure 10. End-to-end ABEP of a multi-hop wireless communi-
cation system operating over non identical GG fading channels
versus �1, for non-adaptive and adaptive 256-QAM schemes with
P ∗

b
= 10−2, N = 3, m = 1.4, ˇ = 2.25, �2 = 2�1 and �3 = 3�1.
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In Figure 9 lower bound curves for the ASE of a three-hop
system using fast adaptive M-QAM are plotted versus γ1,
assuming P∗

b = 10−2, m = 1.4, β = 2.25, γ2 = 2γ1, γ3 =
3γ1. We assume M0 = 4, M1 = 16, M2 = 64 and M3 =
256. Different maximum constellation sizes are considered.
Curves for the exact ASE based on Equation (4) are also
presented and as one can observe the ASE bounds are tight
at high values of γ1.

Finally, in Figure 10 curves for the ABEP of the same
system using non adaptive 256-QAM as well fast adaptive
256-QAM are plotted versus γ1. Clearly the adaptive system
outperforms the non-adaptive one and maintains the target
BER requirement, namely P∗

b = 10−2. Curves for the exact
ABEP based on Equation (4) are also plotted and as it is
obvious the ABEP bounds are tight at high values of γ1 for
both the adaptive and non-adaptive systems.

6. CONCLUSIONS

In this paper, we provided union tight bounds for multi-
hop transmissions with non-regenerative relays in series,
operating over independent GG fading channels. Using a
tight upper bound of the end-to-end SNR, novel closed-
form expressions for the MGF, PDF, and CDF of this
upper bounded SNR were derived. Additionally, tight lower
bounds for the OP and the ABEP were presented. More-
over the performance of fast adaptive QAM was addressed,
deriving tight bounds for the ASE, the BEO, and the ABEP.
Also, it is obvious that all the derived bounds gets tighter
as the number of relays decreases. Numerical results were
presented and demonstrated the accuracy and the tightness
of the proposed bounds. The obtained results show that the
proposed bounds gets tighter with the increase of the SNR
corresponding to computer simulation results which are also
included and verify the accuracy and the correctness of the
proposed analysis.
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