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On the ASEP of Decode-and-Forward Dual-Hop
Networks with Pilot-Symbol Assisted M -PSK
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Abstract—We develop an analytical framework for the end-to-
end (e2e) average symbol error probability (ASEP) of dual-hop
relaying networks with pilot-symbol assisted M -ary phase-shift
keying (M -PSK) modulation. The relays use the selective decode-
and-forward protocol and are equipped with multiple receive
antennas. The channels are estimated per antenna branch based
on the least-squares estimation (LSE) technique by means of pilot
symbols. Also, maximal-ratio combining and coherent detection
are performed per receiving end. Exact e2e analytical ASEP
expressions are derived for binary and quadrature phase-shift
keying (BPSK and QPSK), while simple approximate expressions
and bounds are obtained for high signal-to-noise ratio (SNR)
when M ≥ 2. Our analysis is generic enough to account for any
frequency-flat, time-selective, and/or arbitrarily correlated fading
channel model per hop. As a case study, we further provide e2e
ASEP expressions considering arbitrarily correlated Nakagami
fading channels. For high SNR, closed-form expressions are
derived, while the cooperation-gain and diversity-order are
also extracted. In addition, two power allocation strategies are
investigated and analytical solutions are provided. Comparisons
between numerical and computer simulation results are finally
presented to verify the validity of the proposed approach and
the accuracy of the high-SNR approximate expressions.

Index Terms—Average symbol error probability (ASEP),
channel state information (CSI), cooperative communications,
correlated fading, decode-and-forward (DF), imperfect channel
estimation (ICE), least-squares estimation (LSE), M -ary phase-
shift keying (M -PSK), maximal-ratio combining (MRC), opti-
mal power allocation (OPA), pilot-symbols assisted modulation
(PSAM), relays.

I. INTRODUCTION

COOPERATIVE communication networks promise high
quality of services for contemporary and next-generation

communication systems [1]. Their end-to-end (e2e) perfor-
mance can be further improved by employing multiple an-
tennas relays and using efficient combining schemes. A
reasonable choice is the maximal-ratio combining (MRC)
scheme, that maximizes the instantaneous output signal-to-
noise ratio (SNR), and consequently, offers the best error rate
performance. For coherent detection based on this scheme
channel estimates are required. In practice, these estimates
are imperfect. Specifically, noise is added to them, due to the
channel estimation technique used, resulting in performance
degradation. It is, therefore, important to study the effect
of such imperfections on the e2e performance and optimize
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critical parameters, such as the pilot symbols power, number
of pilots per channel block, number of relays and antennas,
etc., to compensate for the degradation.

In the open technical literature there are many important
works on point-to-point communications considering pilot-
symbols assisted modulation (PSAM) techniques, e.g., [2]–[8].
Motivated by these early works, various papers on coopera-
tive communications with imperfect channel state information
(CSI) have been published [9]–[18]. For example in [14] the
impact of imperfect transmitter CSI on the diversity gain
has been investigated assuming dynamic decode-and-forward
(DF) relaying channels, while an analysis for the diversity
and multiplexing tradeoff has been also presented. The effect
of outdated channel estimates on DF relay selection, when
operating over Nakagami-m fading channels has been studied
in [15], where closed-form expressions for the e2e outage
probability have been derived. The performance of a multi-
hop wireless communication system with arbitrary number
of intermediate relays has been analyzed in [19] assuming
Rayleigh fading and the DF relaying protocol. Recently in
[18], the quadrature phase-shift keying (QPSK) average bit
error probability (ABEP) of a cooperative network with adap-
tive DF relaying and PSAM over time-selective and frequency-
flat Rayleigh fading has been studied. Although the aforemen-
tioned works cover important aspects of DF cooperative sys-
tems with imperfect CSI, specific assumptions are being made
that limit their generality, e.g., by assuming a specific channel
model, a single-channel scenario, uncorrelated channels, or a
specific modulation order.

In the current work a different approach is followed to
analyze the performance of dual-hop networks under imperfect
CSI. As it is reported in [20, Appendix C], the error rate
performance of M -ary phase-shift keying (M -PSK) systems,
can be analyzed directly from the distribution of the inner
product of two complex Gaussian random vectors. Following
this approach, a key point in our analysis is the generalization
of a theorem originally presented in [8], [21] for the joint
characteristic function (CF) of the real and imaginary parts
of the inner product of two independent complex Gaussian
random vectors. This preliminary step is required in or-
der to consider not-necessarily identical transmission powers
for each relay. Based on this generalization, we develop
a unified analytical framework for the e2e M -PSK error-
rate performance of dual-hop and multi-relay cooperative
networks. The selective-DF protocol is adopted, while we
consider that the relays are equipped with an arbitrary number
of receive antennas. Prior to data transmission, each relay
estimates the CSI using the least-squares estimation (LSE)
technique by means of pilot symbols. Then, coherent detection
based on the MRC scheme is performed. The inner-product
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approach appears to be a powerful tool, since it has the
advantage of generality. Specifically, our analytical framework
can be exploited assuming any time- and space-correlated
channel model per hop, not-necessarily identical channels, and
arbitrary number of antennas per receiving end. The only
requirement is that the CF of the sum of squared fading
envelopes for the channel model under consideration should
be available. Fortunately, for the most popular channel models,
e.g., Rayleigh, Rice, and Nakagami, such an expression is
readily available [8, eqs. (51) and (63)]. In order to demon-
strate the generality of our analytical framework, we further
consider arbitrarily correlated Nakagami fading for each hop.
Exact closed-form as well as analytical average symbol error
probability (ASEP) expressions are presented for binary phase-
shift keying (BPSK) and QPSK, respectively, while accurate
high-SNR approximate expressions are obtained for any order
M -PSK modulation formats. These expressions help us to
extract the cooperation-gain and diversity-order. Two different
power allocation strategies are also investigated and analytical
solutions are provided.

The rest of this paper is organized as follows. The next
section presents the system and channel models for the co-
operative network under consideration. In Section III general
analytical expressions for the e2e M -PSK ASEP are extracted,
while specific formulas are obtained assuming correlated Nak-
agami fading channels. Section IV presents further results
concerning the cooperation-gain and diversity order, while
a per node and a joint power allocation strategy are also
investigated. In Section V numerical and computer simulation
results are provided, while concluding remarks are given in
Section VI.

Notations: IL is the L × L identity matrix, 1L and 0L

denote L × 1 vectors of ones and zeros, respectively, ⊗
denotes the Kronecker product of matrices, (·)T and (·)H
denote the transpose and Hermitian operators, respectively,
x ∼ CN (μx,Kx) reads as “x is distributed as a complex
normal vector with mean and covariance matrix μx = Ex〈x〉
and Kx = Ex〈(x −μx) (x − μx)

H〉, respectively,” with Ex〈·〉
standing for the expectation over x operator, (·)∗ denotes the
complex conjugate, Tr{·} and Det(·) stand for the trace and
the determinant of a matrix, respectively, Diag{·} stands for
a square diagonal matrix, Res{·} for the residue of a com-
plex function, �{·} and �{·} denote the real and imaginary
operators, respectively, j =

√−1, ‖·‖ denotes the Euclidean
norm, and R and C are the set of real and complex numbers,
respectively.

II. COOPERATIVE SYSTEM AND CHANNEL MODELS

This section presents the cooperative system and channel
models under consideration. It also provides the mathematical
background for the least-squares channel estimation technique.
For the reader’s convenience, Table I summarizes the most
important mathematical symbols that are included in the
analysis follows along with a short description for each one
of them.

A. Dual-Hop Network

We consider a dual-hop network where a source node
S transmits M -PSK symbols to a destination node D both

TABLE I
A SUMMARY OF MATHEMATICAL SYMBOLS

Symbol Description

S and D Source and destination node notation
R Number of relays

Rp (p = 1, . . . , R) pth relay notation
0 < λ� < 1 (� = 0, . . . , R) �th node transmission power ratio

L0 and Lp Number of antennas of D and Rp

V ∈ RL0 (R+1)×L0 (R+1) Diagonal matrix, elements:
√
λ� IL0

’s
M Modulation order

s and spk Data and kth pilot symbol
Es and Ep Total data- and pilot-symbol energy

N0 Noise power spectral density
γ and γp Average symbol- and pilot-to-noise ratio

wp S → Rp receive signal vector
νp ∼ CN (

0Lp , N0 ILp

) S → Rp link noise vector
gp = [gp,1 gp,2 · · · gp,Lp ]

T S → Rp link channel vector
−1 < �p,i,j < 1 Correlation coefficient of gp,i and gp,j

r� �th node to D receive signal vector
n� ∼ CN (

0L0
, N0 IL0

)
�th node to D noise vector

h� = [h�,1 h�,2 · · · h�,L0
]T �th node to D channel vector

−1 < ρ�,i,j < 1 Correlation coefficient of h�,i and h�,j

r = [r0 r1 r2 · · · rR]T Concatenated receive signal vector
h = [h0 h1 h2 · · · hR]T Concatenated channel vector
n = [n0 n1 n2 · · · nR]T Concatenated noise vector

W� �th link block length
K < W� Pilot sequence length

e Estimation error vector
ĥ = h + e Estimated CSI vector

sp = [sp1 sp2 · · · spK ]T Pilot symbols vector
bp,n pth relay state (on: 1 or off: 0)

Egp

〈
Pse,Rp

〉 S → Rp ASEP

Eh
〈
Pse,D|bn

〉 S,Rp → D ASEP
Pse,e2e End-to-end ASEP

ΨDρ,Dι(j ω1, j ω2) Joint CF of Dρ and Dι

Ψ‖h�‖2(j ω) CF of ‖h�‖2 =
∑L0

i=1 |h�,i|2

directly and through R relay nodes R1, R2, . . ., RR. The
source is equipped with one antenna, the destination with L0,
and the pth relay with Lp (p = 1, 2, . . . , R). The relays use
the selective-DF protocol to forward the data received from the
source to the destination. According to this protocol a relay
forwards the information signal only if it is able to correctly
decode it (we shall refer to as the relay is on); otherwise it
remains idle (we shall refer to as the relay is off ). The overall
S → D transmission of an M -PSK symbol is completed in
R+1 time slots1. In the first time slot node S broadcasts the
information signal to D and to all relays simultaneously. In the
next R time slots, each relay forwards the received signal to
node D one-by-one. In our analysis we consider that each relay
is able to estimate the receive complex channel gain, while
combines the Lp received signals using MRC. The same also
holds for the destination node D. Moreover, we shall assume
that the destination node is able to verify whether a relay is
on or off, for example, using an energy detector.

Let s ∈ S be the information-bearing symbol that belongs
to an M -PSK constellation S = {S0, S1, . . . , SM−1}, with
M denoting the modulation order and Sl = exp{j 2 π l/M},
l = 0, 1, . . . ,M − 1. Also let Es denote the total energy per
symbol transmitted by all nodes during R+1 time slots. The

1Equivalently and more generally we may assume R + 1 orthogonal
channels.
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transmission energy per symbol in the (�+1)th time slot (� =
0, 1, . . . , R) will be λ� Es, with λ� ∈ (0, 1) being the source
(� = 0) or the �th (� �= 0) relay to total transmission power
ratio and

∑R
�=0 λ� = 1. The Lp×1 sampled baseband complex

signal vector received at relay Rp from S in the first time slot
is given by

wp = s
√
λ0 Es gp + νp . (1a)

In (1a) νp ∈ CLp is the additive white Gaussian noise
(AWGN) vector, distributed as νp ∼ CN (

0Lp , N0 ILp

)
.

Also, gp = [gp,1 gp,2 · · · gp,Lp ]
T stands for a random chan-

nel complex gain vector and is independent of νp. The
elements of the Hermitian covariance matrix of gp ∈ CLp

are Kgp [i, j] = Egp,i,gp,j 〈gp,i g∗p,j〉 − Egp,i〈gp,i〉 E∗
gp,j 〈gp,j〉 =

�p,i,j
√
Θp,iΘp,j for i �= j, with �p,i,j standing for the

correlation coefficient between ith and jth channels (i, j =
1, 2, . . . , Lp) and Egp,i〈|gp,i|2〉 = Θp,i for the power of the
ith channel between the source and the pth relay. Moreover,
the L0 × 1 sampled baseband complex signal vector received
at node D from S in the first time slot (� = 0) or from R� in
the (�+ 1)th time slot (� �= 0) can be expressed as

r� = s
√
λ� Es h� + n� . (1b)

In (1b) n� ∈ CL0 is the AWGN vector, distributed as
n� ∼ CN (0L0 , N0 IL0). Also, h� = [h�,1 h�,2 · · ·h�,L0]

T

stands for a random channel complex gain vector and is
independent of n�. The elements of the Hermitian covariance
matrix of h� ∈ CL0 are Kh�

[i, j] = Eh�,i,h�,j
〈h�,i h

∗
�,j〉 −

Eh�,i
〈h�,i〉 E∗

h�,j
〈h�,j〉 = ρ�,i,j

√
Ω�,iΩ�,j for i �= j, with ρ�,i,j

standing for the correlation coefficient between ith and jth
channels (i, j = 1, 2, . . . , L0) and Eh�,i

〈|h�,i|2〉 = Ω�,i for
the power of the ith channel between the �th node and the
destination.

After the first time slot, each relay performs MRC using
the antennas that is equipped with. Also, after R + 1 time
slots, node D performs MRC with L0×(1+number of relays
that are on) signals. Due to the similarity between (1a) and
(1b), next, we continue our analysis based on (1b) which is
more general. Then, it shall be straightforward to transform
the derived results to equivalent formulas for the pth source
to relay link with respect to (1a). We now define three new
vectors r = [r0 r1 r2 · · · rR]T , h = [h0 h1 h2 · · · hR]

T , and
n = [n0 n1 n2 · · · nR]

T . The concatenated received signal
vector at node D after R+ 1 time slots is

r = s
√
Es V h + n , (2)

where the vector h is of length L0 (R + 1), with mean vector
and covariance matrix μh = [μh0

μh1
μh2

· · ·μhR
]T and

Kh = Diag{Kh0 , Kh1 , Kh2 , . . . ,KhR}, respectively. In (2),
n is the noise vector n ∼ CN (

0L0 (R+1), N0 IL0 (R+1)

)
and

V ∈ RL0 (R+1)×L0 (R+1) is a diagonal square matrix defined
as V = Diag{√λ0,

√
λ1, . . . ,

√
λR} ⊗ IL0 .

B. Least-Squares Channel Estimation

We shall assume slowly varying block fading channels. The
length of a block is closely related to the channel coherence
time. In every channel block a sequence of K pilot symbols
is transmitted periodically. Let sp = [sp1 sp2 · · · spK ]

T be
the pilot symbols vector, that is known to all relays and the

destination node prior to data transmission (transmission of s
in (2)). Then, the CSI h per block is estimated based on the
LSE technique after (R+ 1)K time slots.

According to (2), in the k (R + 1)th time slot (k =
1, 2, . . . ,K), the concatenated received signal vector at node
D, corresponding to the kth pilot symbol2 transmission, can
be expressed as

rpk
= spk

√
Ep V h + npk

, (3)

where npk
∼ CN (

0L0 (R+1), N0 IL0 (R+1)

)
is the kth pilot

AWGN concatenated vector and Ep is the total pilot sym-
bols energy transmitted during R + 1 time slots. Let rp =

[rp1 rp2 · · · rpK ]
T and np = [np1 np2 · · · npK ]

T represent the
concatenated received signal and AWGN vectors over K pilot
transmissions, respectively. Then using (3), the concatenated
received pilot symbols vector at node D after R+1 time slots,
rp ∈ CL0 (R+1)K , can be written as

rp =
√
Ep

(
sp ⊗ IL0 (R+1)

)
V h + np . (4)

From (4), the estimated CSI vector ĥ ∈ CL0 (R+1) by node D
can be extracted as

ĥ =
1√
Ep K

V−1
(
sHp ⊗ IL0 (R+1)

)
rp . (5)

By substituting (4) in the above equation yields

ĥ = h + e , (6a)

where
e =

1√
Ep K

V−1
(
sHp ⊗ IL0 (R+1)

)
np (6b)

is the estimation error vector and is independent of h. Vector
e is distributed as CN (

0L0 (R+1), γ
−1
p V−2

)
, with γp =

K Ep/N0 being the average pilot-to-noise ratio (PNR) per
pilot sequence and per time slot and N0 being the single-
side noise power spectral density. In (6a), the mean vector
and the covariance matrix of ĥ are μĥ = μh and Kĥ =
Diag{Kh0+

1
λ0 γp

IL0 , Kh1+
1

λ1 γp
IL0 , . . . ,KhR+

1
λR γp

IL0},
respectively.

C. Nakagami Fading Channel Model

A well-known and yet generic model for the complex chan-
nel gains, h�,i’s (and gp,i’s), is the Nakagami [22]. According
to this model, the squared fading envelope, |h�,i|2, follows
the chi-squared distribution. For not necessarily independent
and identical Nakagami fading channels, the CF of ‖h�‖2 =∑L0

i=1 |h�,i|2 is given by [23]

Ψ‖h�‖2(j ω) = Det

(
IL0 −

j ω

m�
Kh�

)−m�

=

N�∏
i=1

(
1− j ω

εi,�
m�

)−m� qi,�

,

(7)

where m� ≥ 0.5 is the Nakagami fading parameter and
Tr{E〈h� hH

� 〉} = E〈‖h�‖2〉 =
∑L0

i=1 Ω�,i. Moreover, εi,�’s
denote N� distinct eigenvalues of the covariance matrix Kh�

having multiplicities qi,� (i = 1, 2, . . . , N�), with
∑N�

i=1 qi,� =

2Our study can be also performed assuming K pilots symbols with not
necessarily equal powers per transmitted sequence.
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TABLE II
NAKAGAMI MODEL PARAMETERS

Symbol Description

m� ≥ 0.5 and κp ≥ 0.5 Fading parameters of h� and gp
Θp,i = E〈|gp,i|2〉 Average power of ith channel of pth link
Ω�,i = E〈|h�,i|2〉 Average power of ith channel of �th link

εi,� > 0 and εi,p > 0 Eigenvalues of Kh�
and Kgp

qi,� ≤ L0 and υi,p ≤ Lp Multiplicities of εi,� and εi,p
N� ≤ L0 and Np ≤ Lp Distinct eigenvalues of Kh�

and Kgp

L0 and
∑N�

i=1 qi,� εi,� =
∑L0

i=1 Ω�,i, while owing to the
positive definiteness of matrix Kh�

, εi,�’s are real and positive.
A summary of the Nakagami model parameters for h� (as well
as for gp) can be found in Table II.

III. END-TO-END M -PSK AVERAGE SYMBOL ERROR

PROBABILITY ANALYSIS

The on or off state for each one of the R relays can be
represented by a binary variable bp,n. When the pth relay
correctly decodes the received signal, bp,n = 1, otherwise,
bp,n = 0. Regarding the set of binary states of all R relays in
the network, there are 2R different combinations that can be
represented by a binary vector bn = [b1,n b2,n · · · bR,n], with
n = 0, 1, . . . , 2R − 1. Under this notation, b0 = 0R when all
relays are off, while b2R−1 = 1R when all relays are on.

Following the approach presented in [24], the e2e ASEP can
be expressed as a sum of the average probabilities of symbol
errors over all different network states, i.e.,

Pse,e2e =

2R−1∑
n=0

Eh 〈Pse,D |bn〉
R∏

p=1

Pr{Rp : on/off|bp,n} ,
(8)

where Eh〈Pse,D |bn〉 denotes the ASEP at node D (averaged
on h), with cooperation of those relays that according to bn

are on. Note that this probability is based on (1b). Moreover,
Pr{Rp : on/off|bp,n} is the probability that the pth relay is
on or off according to bp,n. This probability is

Pr{Rp : on/off|bp,n} =

{ Egp

〈
Pse,Rp

〉
, if bp,n = 0

1− Egp

〈
Pse,Rp

〉
, if bp,n = 1 ,

(9)
with Egp〈Pse,Rp〉 being the ASEP (averaged on gp) for the
S → Rp link. Note that this probability is based on (1a). Next,
we focus on the derivation of Eh〈Pse,D |bn〉. It shall become
obvious in Section III-E that Eh〈Pse,D |bn〉 can be efficiently
used to extract Egp〈Pse,Rp 〉 for the S → Rp link.

A. Coherent Detection

The reception of K pilot symbols per channel block trans-
mitted by the R+ 1 nodes is followed by symbol-by-symbol
reception and coherent detection of data in the destination
node. For a transmitted data symbol s in a symbol interval,
the signals received over L0 (R + 1) diversity branches, as
given by vector r in (2), are combined using MRC. Assuming
that the network is in state bn, the combiner output will be
ĥ
H
Bn r, where Bn = Diag{b0,n, b1,n, . . . , bR,n}, with b0,n

being a dummy variable indicating that S is always on, i.e.,
b0,n = 1, ∀n. From this output, the detected symbol ŝ is
obtained as

ŝ = arg

{
max
s∈S

�
(
s∗ ĥ

H
Bn r

)}
. (10)

When the M -PSK symbol Sl is transmitted, the combiner
output can be expressed using (2) and (6a) as

ĥ
H
Bn r

∣∣∣
s=Sl

=
√
Es (h + e)H Bn (Sl V h + u)

=
√
Es D̃ ,

(11)

where D̃ = (h + e)H Bn (Sl V h + u) and u = n/
√
Es. The

complex random vector u is independent of e and is distributed
as u ∼ CN (0L0 (R+1), γ

−1 IL0 (R+1)), with γ = Es/N0 being
the total average SNR per branch and per symbol. Based on
(11) and in order to be able to also consider rotated M -PSK
constellations, we define D = D̃ exp{j φ} as a fixed φ-rad
rotated combiner output. In fact,

D = (h + e)H Bn (S� V h exp{j φ}+ u exp{j φ}) (12a)

is in the form of an inner product, of which we are especially
interested in obtaining its statistics with respect to h, e and u.
In order this to be accomplished, we first split D in its real
Dρ = �(D) and imaginary Dι = �(D) parts, i.e.,

D = Dρ + jDι , (12b)

while next we present a useful theorem for the joint statistics
of Dρ and Dι.

B. Inner Product of Two Complex Gaussian Vectors

A new theorem is introduced as follows.
Theorem 1 (Inner Product of Complex Gaussian Vectors: Q

Complex) Let x = [x1 x2 · · ·xL]
T and y = [y1 y2 · · · yL]T be

two mutually independent complex Gaussian random vectors
distributed as x ∼ CN (μx,Kx) and y ∼ CN (μy,Ky),
respectively, where μx = Ex〈x〉 = [μx1 μx2 · · ·μxL ]

T ,
Kx = Diag{σ2

x1
, σ2

x2
, . . . , σ2

xL
} and μy = Ey〈y〉 =

[μy1 μy2 · · ·μyL ]
T , Ky = Diag{σ2

y1
, σ2

y2
, . . . , σ2

yL
}, with

σ2
xi

= Exi

〈|xi|2
〉 − E2

xi
〈|xi|〉, σ2

yi
= Eyi

〈|yi|2〉 − E2
yi
〈|yi|〉

∀i = 1, 2, . . . , L. Also let the complex random variable (rv)
z ∈ C be given by the inner product of y and Q x, i.e.,

z = yH Q x = zρ + j zι , (13)

with zρ = �{z}, zι = �{z}, and Q = Diag{q1, q2, . . . , qL}
being a square diagonal matrix, Q ∈ C

L×L. Then, the joint
CF of zρ and zι is given by (14) (at the top of the next page).

The proof of Theorem 1 is given in the Appendix A. Note
that [8, eq. (2)] is a special case of (14) for Q = IL, Kx =
σ2
x IL, and Ky = σ2

y IL. Since Bn in (12a) is a square matrix
with binary elements, we present the following corollary.

Corollary 1 (Inner Product of Complex Gaussian Vectors:
Q Binary) Let Q be a diagonal matrix with binary qi’s and
z, x and y defined as in Theorem 1. Then, the joint CF of zρ
and zι is given by (15) (at the top of the next page).

It is straightforward to extract (15) from (14) when qi’s are
binary. Therefore, the proof of the above corollary is omitted.

C. Joint CF of Real and Imaginary Parts of MRC Output

By comparing (12a) with (13), we can easily conclude that
they are of the same form. Specifically, conditioned on h, the
two vectors consisting the inner product in (12a), i.e., y = h+e
and x = Sl V h exp{j φ}+u exp{j φ}, are complex Gaussian
and mutually independent, with y ∼ CN (h, γ−1

p V−2) and
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Ψzρ,zι (j ω1, j ω2) =

L∏
i=1

(
1 +

ω2
1 + ω2

2

4
|qi|2σ2

xi
σ2
yi

)−1

× exp

⎧⎨⎩−
ω2

1+ω2
2

4 |qi|2
(
|μxi |2 σ2

yi
+ |μyi |2 σ2

xi

)
− j�{(ω1 − j ω2)μ

∗
yi
qi μxi

}
1 +

ω2
1+ω2

2

4 |qi|2 σ2
xi
σ2
yi

⎫⎬⎭
(14)

Ψzρ,zι (j ω1, j ω2) =

L∏
i=1

(
1 +

ω2
1 + ω2

2

4
σ2
xi
σ2
yi

)−qi

× exp

⎧⎨⎩−qi

ω2
1+ω2

2

4

(
|μxi |2 σ2

yi
+ |μyi |2 σ2

xi

)
− j�{(ω1 − j ω2)μ

∗
yi
μxi

}
1 +

ω2
1+ω2

2

4 σ2
xi
σ2
yi

⎫⎬⎭
(15)

ΨDρ,Dι|h(j ω1, j ω2|h) = EDρ,Dι|h 〈exp {j (ω1 Dρ + ω2 Dι)}| h〉

=

R∏
�=0

exp

⎧⎨⎩−b�,n

(
ω2
1 + ω2

2

) γ+γp

4 γ γp
− j

√
λ�

(
ω1 �{ej φ}+ ω2 �{ej φ}

)
1 +

ω2
1+ω2

2

4 λ� γ γp

‖h�‖2
⎫⎬⎭
(
1 +

ω2
1 + ω2

2

4λ� γ γp

)−b�,n L0 (16)

ΨDρ,Dι(j ω1, j ω2) =

R∏
�=0

Ψ
b�,n
‖h�‖2

⎧⎨⎩−
(
ω2
1 + ω2

2

) γ+γp

4 γ γp
− j

√
λ�

(
ω1 �{ej φ}+ ω2 �{ej φ}

)
1 +

ω2
1+ω2

2

4λ� γ γp

⎫⎬⎭
(
1 +

ω2
1 + ω2

2

4λ� γ γp

)−b�,n L0

(17)

ΨDρ,Dι(j ω1, j ω2) =

R∏
�=0

(
1 +

ω2
1+ω2

2

4λ� γ γp

)b�,n (m�−1)L0

N�∏
k=1

(
1− j

εk,�

m�

√
λ� (ω1 �{ej φ}+ ω2 �{e−j φ}) + (ω2

1 + ω2
2)

(γ+γp)εk,�/m�+1/λ�

4 γ γp

)b�,n m� qk,�

(18)

x ∼ CN (Sl V h, γ−1 IL0 (R+1)). By applying the Corollary 1
in (12a), the joint CF of Dρ and Dι, conditioned on h, is
given by (16) (at top of this page). By averaging (16) over h,
i.e., Eh〈ΨDρ,Dι|h(j ω1, j ω2|h)〉 = ΨDρ,Dι(j ω1, j ω2) and by
the definition of the CF of ‖h�‖2, the joint CF of Dρ and Dι

yields as in (17) (at top of this page). Note that (17) is a quite
general expression in the sense that it only requires a readily
available expression for the CF of the sum of squared fading
envelopes for the distribution under consideration.

Now by assuming Nakagami fading and by substituting (7)
in (17), the joint CF of Dρ and Dι is obtained as in (18) (at
top of this page).

D. M -PSK ASEP Expressions for Eh〈Pse,D |bn〉

Based on (17), next, we provide general ASEP expressions
for Eh〈Pse,D|bn〉, assuming M -PSK PSAM, with cooperation
of those relays that according to bn are on. All these expres-
sions can be easily evaluated via numerical integration. Fur-
thermore, based on (18), we provide corresponding analytical
expressions for Nakagami fading.

1) BPSK: For M = 2 we assume that S0 is transmitted
with φ = 0. The ABEP of pilot-symbol assisted BPSK can be
obtained as

Eh 〈Pbe,D |bn〉 = Pr{Dρ < 0} . (19)

The probability in (19) can be directly evaluated using the
Gil-Pelaez inversion theorem [25] as

Eh 〈Pbe,D |bn〉 = 1

2
− 1

2 π

∞∫
−∞

1

ω
�{ΨDρ (j ω)

}
dω , (20)

with ΨDρ(j ω) = ΨDρ,Dι(j ω, 0) being a marginal CF of
ΨDρ,Dι(j ω1, j ω2).

For Nakagami fading, by setting τ = j ω1 and ω2 = 0 in
(18), the moments-generating function (MGF) of Dρ can be
compactly expressed as

ΨDρ(τ) =

R∏
�=0

(
1− τ2

4 γ γp λ�

)b�,n (m�−1)L0

N�∏
k=1

(1− τ νk�1)
b�,n m� qk,� (1− τ νk�2)

b�,n m� qk,�

,

(21)

with

νk�1 =
εk,�
2m�

(√
λ� +

√
λ� +

(γ + γp) εk,�/m� + 1/λ�

γ γp (εk,�/m�)2

)
(22a)

and

νk�2 =
εk,�
2m�

(√
λ� −

√
λ� +

(γ + γp) εk,�/m� + 1/λ�

γ γp (εk,�/m�)2

)
,

(22b)



SAGIAS: ON THE ASEP OF DECODE-AND-FORWARD DUAL-HOP NETWORKS WITH PILOT-SYMBOL ASSISTED M-PSK 515

Eh 〈Pbe,D|bn〉γ �=γp
=

R∑
�=0

b�,n

N�∑
k=1

1

(m� qk,� − 1)!

⎡⎢⎢⎢⎢⎢⎣
R∏
i=0

(
1− 1

4 λi γ γp ν2
k�2

)bi,n (mi−1)L0

[
Ni∏
t=1

(
1− νti1

νk�2

)bi,n mi qt,�
]

Ni∏
t=1

−{t=k∧i=�}

(
1− νti2

νk�2

)bi,n mi qt,�

⎤⎥⎥⎥⎥⎥⎦
×

m� qk,�−1∑
l1,l2,...,lm� qk,�−1=0

0≤l1,...,lm� qk,�−1≤m� qk,�−1

l1+2l2+···+(m� qk,�−1)lm� qk,�−1=m� qk,�−1

m� qk,�−1∏
w=1

w1−lw

lw!

×
{
1 +

R∑
i=0

bi,n

[
−(mi − 1)L0

((
1− 2 νk�2

√
γ γp λi

)−w

+
(
1 + 2 νk�2

√
γ γp λi

)−w
)

+

Ni∑
t=1

mi qt,�

(
1− νk�2

νti1

)−w

+

Ni∑
t=1

−{t=k∧i=�}

mi qt,�

(
1− νk�2

νti2

)−w

⎤⎥⎦
⎫⎪⎬⎪⎭

lw

(24)

where νk�1 > 0 and νk�2 < 0, ∀ k = 1, 2, . . . , N� and � =
0, 1, . . . , R. By substituting (21) in (20) and by applying the
Cauchy’s residue theorem, the ABEP of BPSK can be obtained
as the negative of the sum of residues of ΨDρ(τ)/τ at poles
on the left-half τ -plane, that are at τ = 1/νk�2 ∀ k and �. For
γ �= γp, this sum is given by

Eh 〈Pbe,D|bn〉γ �=γp

= −
R∑

�=0

b�,n

N�∑
k=1

Res

{
ΨDρ(τ)

τ

}∣∣∣∣
τ= 1

νk�2

,
(23)

while after a lot of algebraic manipulations can be expressed
in closed form as (24) (at top of this page). Similarly, for
γ = γp, (21) simplifies as

ΨDρ(τ) =
R∏

�=0

(1 + τ ν�2)
b�,n (m�−1)L0

(1− τ ν�2)
b�,n L0

N�∏
k=1

(1− τ νk�1)
b�,n m� qk,�

,

(25)
with

νk�1 =
√
λ�

εk,�
m�

+
1

2 γ
√
λ�

> 0 (26a)

and

ν�2 = − 1

2 γ
√
λ�

< 0 , (26b)

while the sum of residues can be written in the form

Eh 〈Pbe,D|bn〉γ=γp
= −

R∑
�=0

b�,n Res

{
ΨDρ(τ)

τ

}∣∣∣∣
τ= 1

ν�2

,

(27)
yielding (28) (at top of the next page). Note that (24) and (28)
consist only of elementary functions.

2) QPSK: For M = 4 we consider a φ = π/4 rotated
constellation and we assume that S2 is transmitted. For
equiprobable symbols, the QPSK ASEP can be calculated as

Eh 〈Pse,D|bn〉 = 1− Pr{Dρ ≤ 0, Dι ≤ 0} . (29)

The probability of the joint event Dρ ≤ 0 and Dι ≤ 0 can
be analytically evaluated based on the multivariate inversion

theorem [26, eq. (11)] according to which yields

Eh 〈Pse,D|bn〉 = 5

4
− 1

2
(P1 + P2)

+
1

2 π2

∫ ∞

0

∫ ∞

0

1

ω1 ω2
�{ΨDρ,Dι (j ω1, j ω2)

−ΨDρ,Dι (j ω1,−j ω2)
}
dω1 dω2 ,

(30)

with P1 = Pr{Dρ ≤ 0}, P2 = Pr{Dι ≤ 0}, and both can be
evaluated using (20).

By substituting (18) in (30), an exact analytical M -PSK
ASEP expression can be obtained for correlated Nakagami
fading.

3) M -PSK for High SNR: For arbitrary M ≥ 2 we assume
that S0 is transmitted with φ = 0. Using [8, eq. (39)] and
(16), we get the ASEP of M -PSK as

Eh 〈Pse,D |bn〉 = 1

4 π2

×
∞∫

ρ=0

π∫
θ=−π

⎛⎜⎜⎜⎝
R∏

�=0

Ψ
b�,n
‖h�‖2

{
− ρ2 γ+γp

4 γ γp
−j

√
λ� ρ cos(θ)

1+ ρ2

4λ� γ γp

}
(
1 + ρ2

4 λ� γ γp

)L0 b�,n

⎞⎟⎟⎟⎠
× P (θ,M)

ρ
dθ dρ ,

(31)

with P (·, ·) defined in [8, eq. (38)]. Following a similar
procedure such that in [8, Section IV.C], and applying [8,
eq. (43)] in (31) for high SNR (γ � 1 and γp � 1), an
approximate ASEP expression yields

Eh 〈Pse,D |bn〉

≈ 1

π

π M−1
M∫

0

R∏
�=0

Ψ
b�,n
‖h�‖2

(
−λ�

γ γp
γ + γp

sin2(π/M)

sin2(α)

)
dα .

(32)
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Eh 〈Pse,D |bn〉γ=γp

=

R∑
�=0

b�,n
(L0 − 1)!

⎡⎢⎣ R∏
i=0
i�=�

(
1−

√
λ�

λi

)−bi,n L0

⎤⎥⎦
⎡⎢⎣ R∏
i=0

(
1 +

√
λ�

λi

)bi,n (mi−1)L0

∏Ni

k=1

(
1 + 2 γ

√
λ� νik1

)bi,n mi qk,�

⎤⎥⎦ L0−1∑
l1,l2,...,lL0−1=0

0≤l1,...,lL0−1≤L0−1

l1+2l2+···+(L0−1)lL0−1=L0−1

L0−1∏
w=1

w1−lw

lw!

⎧⎪⎨⎪⎩1 + L0

R∑
i=0
i�=�

bi,n

(
1−

√
λi

λ�

)−w

−
R∑
i=0

bi,n

⎡⎢⎣ (mi − 1)L0(
1 +

√
λi

λ�

)w −
Ni∑
k=1

mi qk,�(
1 + 1

2 γ
√
λ� νik1

)w
⎤⎥⎦
⎫⎪⎬⎪⎭

lw

(28)

An upper bound for Eh 〈Pse,D |bn〉 can be also derived setting
sin2(α) = 1 in (32), resulting in

Eh 〈Pse,D|bn〉

≤ M − 1

M

R∏
�=0

Ψ
b�,n
‖h�‖2

(
−λ�

γ γp
γ + γp

sin2
( π

M

))
.

(33)

It can be easily verified that for a fixed value of γp and as
γ → ∞, Eh 〈Pse,D |bn〉 tends to a constant value, i.e., we get
an irreducible error floor.

Using (32) and (7) for Nakagami fading, a high-SNR ASEP
expression yields

Eh 〈Pse,D |bn〉 ≈ 1

π

π M−1
M∫

0

R∏
�=0

N�∏
i=1

(
1 + λ�

γ γp
γ + γp

× εi,�
m�

sin2(π/M)

sin2(α)

)−b�,n m� qi,�

dα .

(34)

Although (34) can be easily evaluated using numerical in-
tegration techniques, some insights of Eh〈Pse,D |bn〉 can be
revealed as follows. For (34), it can be easily proved that

Iζ = lim
∀i,�, xi,�→∞

(
R∏

�=0

N�∏
i=1

x
b�,n m� qi,�
i,�

)
Eh 〈Pse,D|bn〉

=
1

π

(√
π

2

Γ
(
1
2 + ζ

)
Γ (1 + ζ)

− ξ 2F1

(
1

2
,
1

2
− ζ;

3

2
; ξ2

))
,

(35)

with xi,� = Gλ�
εi,�
m�

, G =
γ γp

γ+γp
sin2( π

M ), ξ = cos(π M−1
M ),

ζ = L0

∑R
�=0 b�,nm�, and with Γ (·) and 2F1(·, ·; ·; ·) being

the Gamma and Gauss hypergeometric functions, respectively.
Using (34) and (35), an alternative closed-form expression for
Eh 〈Pse,D |bn〉 can be obtained as

Eh 〈Pse,D |bn〉 = Iζ G
−ζ

R∏
�=0

λ
−b�,n m� L0

�∏N�

i=1 (εi,�/m�)
b�,n m� qi,�

.

(36)
The above expression is quite useful because it includes G
and λ�’s as separate power product terms. This specific form
for Eh 〈Pse,D|bn〉 simplifies the analysis for the OPA, while
provides important information concerning the cooperation-
gain and diversity-order.

E. Derivation of Egp〈Pse,Rp〉 From Eh〈Pse,D |bn〉
As already mentioned in Section II-A, all the preceding

analysis has been performed with respect to (1b). However, the

TABLE III
SUBSTITUTION PAIRS OF SYMBOLS FOR DERIVING Egp 〈Pse,Rp 〉 FROM

Eh〈Pse,D |bn〉 IN SECTIONS II-C, III-C AND III-D

Current Formula New Formula
Based on (1b) Based on (1a)

h� gp

L0 Lp

λ� λ0∑R
�=0 or

∏R
�=0 –

b�,n 1
m� κp

Ω�,i Θp,i

εi,� εi,p
qi,� υi,p
N� Np

νk�1, νk�2 νkp1, νkp2

e2e ASEP in (8) also requires the knowledge of Egp〈Pse,Rp〉
with respect to (1a). In order to be able to extract Egp〈Pse,Rp〉
from Eh〈Pse,D|bn〉, the substitutions of all those pairs of
symbols provided in Table III should be performed. For
example, using Table III with (36) yields

Egp

〈
Pse,Rp

〉
=

Iκp Lp G
−κp Lp∏Np

i=1 (εi,p/κp)
κp υi,p

1

λ
κp Lp

0

, (37)

with εi,p’s and υi,p’s being respectively Np positive eigenval-
ues and their multiplicities of the S → Rp Nakagami channel
and κp ≥ 0.5 being the fading parameter.

F. E2E M -PSK ASEP for High SNR

Using (8) and Table III with any of (20), (30) or (32),
general e2e ASEP expression can be derived for any fading
channel model under consideration.

For Nakagami fading, by substituting (36) and (37) in (8),
the e2e ASEP of M -PSK for high SNR can be expressed as

Pse,e2e =
2R−1∑
n=0

Iζ
∏R

�=0(Gλ�)
−b�,n m� L0∏R

�=0

∏N�

i=1 (εi,�/m�)
b�,n m� qi,�

×
R∏

p=1

[
bp,n + (−1)bp,n

Iκp Lp (λ0 G)−κp Lp∏Np

i=1 (εi,p/κp)
κp υi,p

] (38)

and can be accurately approximated as

Pse,e2e �
2R−1∑
n=0

Iζ
∏R

�=0(Gλ�)
−b�,n m� L0∏R

�=0

∏N�

i=1 (εi,�/m�)
b�,n m� qi,�

×
R∏

p=1

[
Iκp Lp (λ0 G)−κp Lp∏Np

i=1 (εi,p/κp)
κp υi,p

]1−bp,n

.

(39)
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IV. COOPERATION-GAIN, DIVERSITY-ORDER AND OPA

In an effort to highlight some direct benefits of our proposed
formulation, this section presents some further analysis on the
e2e ASEP over Nakagami fading, including the derivation of
the cooperation-gain, diversity-order, and OPA.

A. Cooperation-Gain and Diversity-Order

When γ, γp → ∞, i.e., G → ∞, simple e2e approximate
ASEP expressions can be obtained for two meaningful limiting
cases: (i) L0 > Lp and m > κ, (ii) L0 < Lp and m < κ,
assuming m� = m ∀� and κp = κ ∀p. Using (39), Pse,e2e can
be expressed as

Pse,e2e �
2R−1∑
n=0

An

GmL0+
∑R

p=1[bp,n mL0+(1−bp,n) κLp]
, (40)

where

An =
Iζ λ

−mL0
0∏N0

i=1

( εi,0
m

)mqi,0

×
R∏

p=1

λ
−bp,n mL0
p∏Np

i=1

( εi,p
m

)bp,n mqi,p

[
IκLp λ

−κLp

0∏Np

i=1

( εi,p
κ

)κ υi,p

]1−bp,n

.

The dominant term in the above sum as G → ∞ will be the
one that is in the lowest power of G. It can be easily verified
that for cases (i) and (ii), these terms correspond to network
states b0 and b2R−1, respectively. Hence, the e2e M -PSK
ASEPs can be simplified as

Pse,e2e � ImL0 (Gλ0)
−mL0−κ

R∑

p=1
Lp∏N0

i=1

( εi,0
m

)mqi,0

R∏
p=1

IκLp∏Np

i=1

( εi,p
κ

)κ υi,p
,

(41a)
for case (i) and

Pse,e2e � ImL0 (R+1)

R∏
�=0

(Gλ�)
−mL0∏N�

i=1 (εi,�/m)
mqi,�

, (41b)

for case (ii). By transforming the above e2e ASEP expressions
in the form Pse,e2e = lim

γ→∞ (Gc/γ)
Gd , the cooperation-gain,

Gc, and diversity-order, Gd, can be obtained as follows. From
(41a), when γp → ∞, i.e., G � γ sin−2(π/M), Gc and Gd

are given by

Gc =
sin2 (π/M)

λ0

[
ImL0∏N0

i=1 (εi,0/m)
mqi,0

×
R∏

p=1

IκLp∏Np

i=1 (εi,p/κ)
κυi,p

]1/(mL0+κ
∑R

p=1 Lp) (42a)

and

Gd = mL0 + κ

R∑
p=1

Lp , (42b)

respectively. Moreover, with respect to (41b), Gc and Gd are
given by

Gc =sin2
( π

M

)
×
[
ImL0 (R+1)

R∏
�=0

λ−mL0

�∏N�

i=1 (εi,�/m)
mqi,�

]1/(mL0 (R+1))

(42c)

and
Gd = mL0 (R+ 1) , (42d)

respectively. It should be noted that for a fixed γp, i.e., G �
γp sin−2(π/M), the diversity-order approaches to zero due
to the error floor. By comparing the above results for cases
(i) and (ii), we may conclude that the e2e performance for
high SNR depends mainly on the characteristics of the “less
and worse” channels hop. For cases (i) and (ii), the worse
channels are all these ones considered in the first and second
hop, respectively.

B. Optimal Power Allocation

Two power optimization strategies are next presented that
can be used either separately or in a combination.

1) Per Node Optimization: In order to lower the energy
consumption per transmitting node, let us now limit the total
transmission energy per symbol and per channel block for the
�th transmitting node as

K λ� Ep + (W� −K) λ� Es ≤ ET (�) , (43)

with ET (�) being the predetermined energy threshold of the
S → D (� = 0) or R� → D (� �= 0) links and W� > K being
the �th channel block length. Also, let define the percentage
of the pilot symbols energy per block of the �th link as

β� =
K λ� Ep

ET (�)
, (44)

with 0 < β� < 1 ∀�. Then, in order to minimize (32), the
argument

J� =

(
γ γp

γ + γp

)−1

=
Es +K Ep

KEs Es
(45)

should be minimized. Using (43) and (44), (45) can be
expressed as

J� =
1 + β� (W� −K − 1)

β� (β� − 1) ET (�)/λ�
. (46)

After setting the first derivative of J� with respect to β� equal
to zero, the optimum β� is given by

β̂� =

√
W� −K − 1

W� −K − 1
. (47)

Note that the optimal value of β� depends only on the
information symbols length per block W� − K . Note that a
different power allocation strategy per link may be applied by
following [8, Section V].

2) Joint Optimization: In order to minimize the e2e ASEP
based on (8), OPA can be succeeded with respect to λ�’s. Let
λ = [λ0 λ1 · · ·λR]

T be the power allocation vector. Then, the
minimization problem is formulated as follows:

λopt = argmin
λ

{Pse,e2e} , (48a)

subject to
R∑

�=0

λ� = 1 (48b)

and
0 < λ� < 1, ∀� = 0, 1, . . . , R. (48c)
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λ̂0 =

B
Ωrd

+ 3AB
GΩsr Ωrd

− 4A2

Ωsr
+

√(
B
Ωrd

+ 3AB
GΩsr Ωrd

− 4A2

Ωsr

)2
− 16A

Ωsr

(
B
Ωrd

− A2

Ωsr

) (
B

GΩrd
−A

)
4
(

B
Ωrd

− A2

Ωsr

) (51)

In general, the above nonlinear optimization problem can be
solved using numerical techniques. Hence, a generic analytical
solution can not be derived.

As a case study here, we limit our analysis to one relay. Us-
ing (38) for independent and identically distributed Nakagami
fading with L� = L and m� = κp = m, ∀�, p, the e2e ASEP
is given by

Pse,e2e =
G−2mL(
Ωsd

m

)mL

×
(

I2L(
Ωsr

m

)mL
λ2mL
0

+
I2L(

Ωrd

m

)mL
λmL
0 λmL

1

− G−mL I2L IL(
Ωsr

m
Ωrd

m

)mL
λ2mL
0 λmL

1

)
,

(49)

where Ω0,i = Ωsd, Θ1,i = Ωsr and Ω1,i = Ωrd stand for
the S → D, S → R1, and R1 → D channel powers, respec-
tively. Based on (49), the optimization problem in (48) with
respect to λ0 can be easily solved using standard minimization
techniques (λ1 = 1− λ0). Starting from dPse,e2e(λ0)/dλ0 =
0|λ0=λ̂0

, and after some algebraic manipulations, we get

λ̂mL
0 (2 λ̂0 − 1)

I2L

(Ωrd/m)
mL

+ (3 λ̂0 − 2)
G−mL I2L IL

(Ωsr Ωrd/m2)
mL

=
2 I2L

(Ωsr/m)mL
(1− λ̂0)

mL+1 .

(50)

Well-known root-finding techniques for polynomials must
be applied in order to get a real root for λ̂0 in (0, 1).
For single-antenna reception (L = 1) and Rayleigh fading
(m = 1), λ̂0 is given by (51) (at top of this page), where
A = I1 = 1

π

(
π
4 − ξ 2F1

(
1
2 ,− 1

2 ;
3
2 ; ξ

2
))

and B = I2 =
1
π

(
3π
16 − ξ 2F1

(
1
2 ,− 3

2 ;
3
2 ; ξ

2
))

. Note that, Ωsd does not have
any impact on the optimization of the power allocation. This
finding has been also reported in [24].

V. NUMERICAL AND COMPUTER SIMULATION RESULTS

In our numerical results and in order to simplify their
presentation, we shall consider identical channel models for
all hops, the same number of receive antennas, L� = L
∀� = 0, 1, . . . , R, and Ωsd = Ωsr = Ω0,j = Θp,j = 1 and
Ωrd = Ωp,j = 10 ∀p = 1, 2, . . . , R and j = 1, 2, . . . , L.
Moreover, for correlated fading channels, the exponential
correlation model is adopted with �p,i,j = ρ�,i,j = ρ|i−j|

∀i, j = 1, 2, . . . , L, while identical Nakagami fading parame-
ters, m� = κp = m ∀�, p, are assumed.

Fig. 1 presents curves for the exact e2e ABEP of a BPSK
pilot-symbols assisted system versus the total average SNR
per branch and per bit, γ, using (8) with (24) and (28)
(solid curves). A dual-hop system is considered with a single
relay (R = 1), λ0 = 0.7 and λ1 = 0.3, dual-branch MRC
(L = 2), correlated Nakagami fading and different values
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Fig. 1. E2e ABEP of BPSK versus average SNR per branch and per bit,
γ, for a dual-hop system with dual-branch MRC/LSE, one relay, Nakagami
fading, Ωsd = Ωsr = 1, Ωrd = 10, and different values of average PNR,
γp, Nakagami parameter, m, and exponential correlation coefficient, ρ.
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Fig. 2. E2e ASEP of QPSK versus total average SNR per branch and per
symbol, γ, for a dual-hop system with MRC/LSE, γp = 10 dB, Ωsd =
Ωsr = 1, Ωrd = 10, two relays, exponential correlation and different values
of number of branches L, correlation coefficient, ρ, and Nakagami parameter,
m.

for the average PNR per pilot symbol and per time slot, γp,
Nakagami fading parameter, m, and correlation coefficient,
ρ. It is obvious that the ABEP performance significantly
improves as γ, γp and/or m increase. Clearly, an increase of γp
significantly reduces the error floor. High-SNR approximate
results (dotted curves) are also included in the same figure
using (8) with (34) in order to verify their accuracy. From the
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Fig. 3. E2e ASEP of QPSK versus total average SNR per branch and per
symbol, γ, for a dual-hop system with MRC/LSE, γp = 10 dB, Ωsd =
Ωsr = 1, Ωrd = 10, independent Rayleigh fading and different values of
number of branches L and number of relays R.

comparison with the exact ones it can be easily verified that
(34) is highly accurate.

Similar conclusions can be drawn from Fig. 2 where e2e
QPSK ASEP curves are presented as a function of the total
average SNR per branch and per symbol for γp = 10 dB,
R = 2, λ0 = 0.5, λ1 = 0.3, and λ2 = 0.2, and different
values of L, ρ, and m. Both exact and high-SNR approximate
curves are included for comparison purposes using (8) with
(30) (dotted curves) and (34) (solid curves), respectively. As
shown, the higher the m and L are, the better performance
is achieved. Moreover, the ASEP performance is significantly
degraded for highly correlated (ρ = 0.9) channels. Once again
note the accuracy of the high-SNR curves as compared to the
exact ones.

In Figs. 3 and 4 a comparison between the performances
of two dual-hop systems with R = 1 and 2 is presented
assuming independent Rayleigh channels. The main difference
between these two figures is that in Fig. 3, γp = 10 dB is
fixed, while in Fig. 4, γp is equal to γ. From both figures
it can be easily observed that as R and/or L increase, the
performance improves, as expected. Moreover, from Fig. 3, the
ASEP difference between two error floor levels (correspond to
the same L) increases with increasing L. Fig. 4 demonstrates
that for a given value of the e2e ASEP, the SNR difference
between two curves (for R = 1 and 2 that correspond to the
same L) decreases by increasing L. For example, for a fixed
Pse,e2e = 10−5, the SNR difference is about 7, 3 and 1.5
dB for L = 1, 2 and 4, respectively. It should be noticed that
since γp equally increases with γ, no error floors are observed.
From the above comparisons we may conclude that it is more
beneficial to increase the number of antennas, instead of the
number of relays.

In order to verify the correctness of the proposed analysis,
in Figs. 1–4, Monte Carlo computer simulation results (star
signs) for the exact e2e BPSK and QPSK ASEP are included
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Fig. 4. E2e ASEP of QPSK versus total average SNR per branch and per
symbol, γ, for a dual-hop system with MRC/LSE, γ = γp, Ωsd = Ωsr = 1,
Ωrd = 10, independent Rayleigh fading and different values of number of
branches L and number of relays R.
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Fig. 5. E2e ASEP of M -PSK versus total average SNR per branch and
per symbol, γ, for a dual-hop system with MRC/LSE, Ωsd = Ωsr = 1,
Ωrd = 10, correlated Rayleigh fading, ρ = 0.5, and different values of the
average PNR, γp, and diversity order M .

for Rayleigh fading. From all these figures, it can be easily
concluded that there is a perfect match between numerical
exact and equivalent computer simulations results. Some notes
regarding the implementation of the channel estimator devel-
oped in the context of our simulations are provided in the
Appendix B.

Fig. 5 presents approximate e2e M -PSK ASEP curves
(solid curves) as a function of γ for L = 2, correlated Rayleigh
channel with ρ = 0.5, and different values of γp and the
modulation order, M . Exact results are plotted for BPSK and
QPSK (dotted curves), while equivalent computer simulation
results for the exact e2e ASEP, denoted with star signs, are
included for all M ’s. As expected, for fixed γ, the higher
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Fig. 6. E2e ASEP of QPSK versus normalized source power transmission
ratio, λ0, for a dual-hop system with MRC with LSE, γ = γp = 15 dB,
one relay, Rayleigh fading, γ = 15 dB, Ωsd = Ωsr = 1, Ωrd = 10, and
different values of number of branches, L, and, fading parameter, m.

the γp and/or the lower the M are, the better performance
is obtained. Moreover, the highest difference between the
error floor levels correspond to the same M is succeeded for
M = 2, while as M increases this difference decreases. From
this figure it can be concluded that our approximate results
are highly accurate for any value of M .

In Fig. 6 approximate e2e ASEP curves of QPSK versus the
normalized source transmission power ratio, λ0, are presented
(using (8) with (34) for dotted curves and (49) for solid
curves) for a dual-hop system, γ = γp = 15 dB, R = 1,
independent Rayleigh fading, and different values of L and m.
From this figure we observe that (49), and consequently, (50)
are highly accurate in finding the optimum λ0 that minimizes
the e2e ASEP. This conclusion is further supported from the
comparison with exact results that are included in the same
figure (square signs) and which are plotted using (8) with the
help of (30). From this comparison we may conclude that
there is a perfect match in the numerical evaluation of the e2e
ASEP using either (30) or (34).

VI. CONCLUSIONS

The e2e error rate performance of dual-hop communication
networks, based on PSAM M -PSK, was analyzed directly
from the distribution of the inner product of two complex
Gaussian random vectors. In order to consider not-necessarily
identical relay transmission powers, a key point in our analysis
was the introduction of a new theorem for the joint CF of
the real and imaginary parts of the inner product of two
independent complex Gaussian random vectors. The selective-
DF protocol was adopted, while we considered that the relays
are equipped with an arbitrary number of receive antennas. It
was also assumed that each relay estimates the CSI using the
LSE technique by means of pilot symbols. Then, coherent de-
tection based on the MRC scheme is performed. Our analysis
was generic enough and could include any time- and space-
correlated channel model per hop, not-necessarily identical

channels, and arbitrary number of antennas per receiving end.
The only requirement was that it should be readily available
the CF of the sum of squared fading envelopes for the channel
models under consideration. As a case study we specifically
considered arbitrarily correlated Nakagami fading channels,
where exact closed-form as well as analytical ASEP expres-
sions were presented for BPSK and QPSK, respectively, while
tight high-SNR approximate expressions were obtained for
higher-order M -PSK modulation formats. These expressions
helped us to extract the cooperation-gain and diversity-order.
The OPA was also investigated and different power allocation
strategies were proposed.

APPENDIX A
PROOF OF THEOREM 1

Below is presented the proof of Theorem 1.
Proof: Let xi ∼ CN (μxi , σ

2
xi
) and yi ∼ CN (μyi , σ

2
yi
)

be two independent complex Gaussian rvs from x and y,
respectively. We define a new set of L random variables
wi = qi xi distributed as wi ∼ CN (qi μxi , |qi|2 σ2

xi
). Then,

the joint CF of zρi = �{wi y
∗
i } and zιi = �{wi y

∗
i } can be

derived from [8, eq. (2)] as (A-1) (at the top of the next page).
Let wj ∼ CN (qj μxj , |qj |2 σ2

xj
) and yj ∼ CN (μyj , σ

2
yj
) be

another group of independent rvs. Then, wj y
∗
j is indepen-

dent of wi y
∗
i , ∀j �= i, since wi, yi, wj , yj are mutually

independent complex Gaussian rvs. Therefore, the joint CF
of zρj = �{wj y

∗
j } and zιj = �{wj y

∗
j } is independent of the

joint CF of zρi and zιi ∀i �= j. Thus from (13), since z can
be written as

z =

L∑
i=1

qi xi y
∗
i =

L∑
i=1

wi y
∗
i , (A-2)

we can express Ψzρ,zι (j ω1, j ω2) as a product of L joint CFs,
i.e.,

Ψzρ,zι (j ω1, j ω2) = Ezρ,zι 〈exp {−j (ω1 zρ + ω2 zι)}〉

=

L∏
i=1

Ψzρi,zιi (j ω1, j ω2) ,

(A-3)

according to which yielding (14).

APPENDIX B
IMPLEMENTATION DETAILS FOR THE LSE

An ideal method has been used to estimate the complex
channel gain from the pilot symbols. This method is based
on the fast Fourier transform (FFT). Specifically, a low-
pass interpolator of sinc-type impulse response and infinite-
length buffer size has been implemented. In time domain,
this method interpolates the samples between successive pilot
symbols with frame duration Tf = 1/(2fD), with fD being
the maximum Doppler frequency shift. More specifically,
after extracting from the pilot symbols a samples vector
with channel estimates, it is upsampled by a factor W , with
W = �Tf/Ts� = �1/(2 fD Ts)� being the channel block
length, Ts being the symbol duration and �·� standing for the
closest rounded-down positive integer. Then, FFT is performed
and all samples correspond to frequencies higher than fD are
being set to zero. Finally, inverse FFT (IFFT) is performed



SAGIAS: ON THE ASEP OF DECODE-AND-FORWARD DUAL-HOP NETWORKS WITH PILOT-SYMBOL ASSISTED M-PSK 521

Ψzρi,zιi (j ω1, j ω2) = Ezρi,zιi 〈exp {−j (ω1 zρi + ω2 zιi)}〉 =
(
1 +

ω2
1 + ω2

2

4
|qi|2 σ2

xi
σ2
yi

)−1

× exp

⎧⎨⎩−
ω2

1+ω2
2

4 |qi|2
(
|μxi |2 σ2

yi
+ |μyi |2 σ2

xi

)
− j�{(ω1 − j ω2)μ

∗
yi
qi μxi

}
1 +

ω2
1+ω2

2

4 |qi|2 σ2
xi
σ2
yi

⎫⎬⎭
(A-1)

to get the interpolated complex gain channel estimates in the
time domain.
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