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a b s t r a c t

We present analytical results on the bit-error probability (BEP) of arbitrary order pulse-position mod-
ulation (PPM) of optically pre-amplified receivers. We use the Laguerre photon counting distribution
so as to model the statistic of the optical noise, in order to accurately model the effects of signal
and spontaneous noise beating at the optical detector. The great advantage of our proposed results
is that they are exact and only require a finite summation over the optical noise modes and the
modulation order. In addition, this approach enables the efficient calculation of the BEP in optical
wireless communication links, under the presence of atmospheric scintillations and pointing errors.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The utilization of optical beams in high capacity outdoor com-
unication links has received significant attention [1–4], with a

ecent intense focus on space communications to the Moon [5,6].
he related demonstration prototypes utilize optical amplifica-
ion and pulse-position modulation (PPM) with a goal to improve
he receiver sensitivity [7,8], since the optical beams experience
eavy transmission losses in outdoor environments. PPM is par-
icularly appealing, as it provides a straight-forward trade-off
etween the bit-error probability (BEP) and the required band-
idth. The main body of the existing literature has addressed
he BEP performance of PPM assuming Gaussian and Poisson
oise statistics [9–13], that do not accurately describe the im-
act of the amplified spontaneous emission (ASE) in preamplified
eceivers. In receivers with optical pre-amplification, the signal-
SE and ASE-ASE beating noise terms dominate, and the noise
s more accurately modeled by the χ2 [14–16] or the Laguerre
hoton-counting distribution [17–19].
The main challenge that arises, when the Laguerre distribution

s applied in preamplified systems, is related to high photon
ounts that are observed at the output of the optical amplifiers.
n principle, the BEP of PPM can be numerically evaluated via
n infinite sum over the Laguerre distribution. However, this
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approach becomes more time consuming as the photon counts
increase, since a large number of terms need to be added in order
to converge. This is the case when high gain amplifiers and/or
wide bandwidth optical filters are employed. A more efficient
approach is to convert the infinite sum into a finite one, but
existing works are only limited to binary order PPM [14,18]. It
is to be noted that the applicability of the binary PPM is limited
by the fact that its error performance is worse than the on–
off keying [14], while it simultaneously requires twice as much
bandwidth. As a result, focus has shifted to higher order PPM
modulations [8] and this is the topic of our work.

In the current work, we present novel analytical expressions
for the BEP of an optically pre-amplified PPM receiver, where the
Laguerre noise distribution is considered. Specifically, we present
an expression for the BEP, that is in the form of a finite sum
over the PPM order and the noise modes entering the optical
receiver. The proposed expression is exact and the derived BEP
numerical results fully coincide with equivalent results that are
obtained via infinite summation. The advantage of our proposed
expression is that it can be further used in order to assess the
average BEP (ABEP) performance, when random losses are intro-
duced, as is the case of fading and pointing errors in outdoor
transmission systems. We show in the following sections that
a finite summation is only required in these scenarios, as well.
This approach reduces significantly the time that is required for
the ABEP calculations in comparison with infinite summation,
while simultaneously achieving the same degree of accuracy. To
the best of our knowledge, this is the first time that such an
analytical study is presented for arbitrary order PPM systems

with or without fading and pointing errors. Within this context,
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he current work could be of importance for the design and BEP
valuation of future communication systems that utilize higher
odulation orders.
The rest of the paper is structured as follows: In Section 2

e present an analytical expression for the BEP performance
f PPM receivers and demonstrate its accuracy. The analytical
xpression is then utilized in Section 3 to address the impact of
ading on the ABEP. We present results on weak, moderate and
trong fading for the Malaga-M, γ − γ and negative exponential
istributions, and also calculate the performance improvement
hat can be achieved using spatial diversity. Finally, in Section 4
e include pointing errors in our analysis and show that the
eceiver performance is affected strongly by the beam-width. We
lso present results for the optimal beam-width that minimizes
he ABEP in weak fading.

. Q-PPM bit error probability

We consider a Q−ary PPM optical communication system,
here each transmitted PPM symbol is encoded into Q succes-
ive time-slots. Each time only one of the slots contains the
ntirety of the symbol photons µs, while all slots are corrupted
y optical noise that is distributed over M modes with each
ode contributing λ photons. The received photons are converted

nto an electrical current via direct detection, and at each slot
he detector generates photoelectrons, whose number depends
n the instantaneous signal and noise energy levels. During a
PM slot that contains signal photons, the photon count n1 is
enerated from the incident signal and noise photons, and n1
ollows the Laguerre distribution [17,18]

1 (n1, µs,M) = ϵM yn1 e−ϵ µs LM−1
n1 (x) , (1)

here y = λ/(1 + λ), ϵ = 1 − y, x = −ϵ2 µs/y and LM−1
n1 (·)

stands for the associated Laguerre polynomial [20, eq. (8.970/1)].
During a slot that does not contain signal photons, the detector
generates a photon count n0 from the noise photons only, and the
istribution simplifies, with respect to (1), to

0 (n0,M) = ϵM yn0
(
n0 + M − 1

n0

)
. (2)

The PPM demodulator monitors the random photon counts of
he Q slots and makes a decision about the transmitted symbol
sing soft-decision decoding [21]. As a result, the symbol is deter-
ined from the slot with the highest count. Assuming that errors

rom equal counts cannot be resolved, a decision is correct when
1 > max{n0}. The corresponding probability equals [22, Eq. (8)]

c,s =

∞∑
n=0

[F0 (n,M)]Q−1 p1 (n + 1, µs,M) , (3)

here F0 (n,M) denotes the cumulative distribution function of
he photon count that is received in the absence of the signal

0 (n,M) = P (n ≥ n0) =

n∑
n0=0

p0 (n0,M) . (4)

2.1. The key result

The infinite sum that appears in (3) is evaluated from the gen-
erating function of the Laguerre polynomials [20, eq. (8.975/1)]
via the following inverse z-transforms

F0 (n,M) = ϵM 1
∮

1
M n+1 dz, (5)
2π ȷ Cα
(1 − y z) (1 − z) z T

2

and

p1 (n + 1, µs,M) = ϵM e−ϵ µs
1

2π ȷ

∮
Cβ

exp(− y z
1−y z x)

(1 − y z)M zn+2 dz . (6)

Cα is a contour of integration that encloses the origin, but not the
poles at z = 1 and z = 1/y, while contour Cβ also encloses the
origin but not the pole at z = 1/y.

By substituting (5) and (6) in (3), the probability of a correct
decision is evaluated from the multi-dimensional integral

Pc,s =
ϵM e−ϵ µs

(2π ȷ)Q

∞∑
n=0

∮
Cα ,...,Cβ

exp(− y zQ
1−y zQ

x) dzQ

(1 − y zQ )M zn+2
Q

Q−1∏
q=1

ϵM dzq
(1 − y zq)M (1 − zq) zn+1

q

=
ϵM e−ϵ µs

(2π ȷ)Q

∮
Cα ,...,Cβ

exp(− y zQ
1−y zQ

x)

(1 − y zQ )M zQ

⎡⎣Q−1∏
q=1

ϵM

(1 − y zq)M (1 − zq)

⎤⎦
Q∏

q=1

dzq

Q∏
q=1

zq − 1

  
I

,
(7)

with the constraint that
∏Q

q=1 |zq| > 1 for the summation to con-
verge. We utilize partial fraction decomposition [20, eq. (2.102)]

ϵM

(1 − y zq)M (1 − zq)
=

1
1 − zq

−
y
ϵ

M−1∑
mq=0

ϵmq+1

(1 − y zq)mq+1 (8)

to evaluate I as

I =
1

(2π ȷ)Q

∮
Cα ,...,Cβ

exp(− y zQ
1−y zQ

x)

(1 − y zQ )M zQ

×

Q−1∏
q=1

⎡⎣ 1
1 − zq

−
y
ϵ

M−1∑
mq=0

ϵmq+1

(1 − y zq)mq+1

⎤⎦
Q∏

q=1

dzq

Q∏
q=1

zq − 1

=

Q−1∑
i=0

(
Q − 1

i

) (
−

y
ϵ

)i
Ii ,

(9)

where Ii (i = 0, 1, . . . ,Q − 1) corresponds to the integral

Ii =
1

(2π ȷ)Q

∮
Cα ,...,Cβ

exp(− y zQ
1−y zQ

x)

(1 − y zQ )M zQ

×

⎡⎣ i∏
q=1

M−1∑
mq=0

ϵmq+1

(1 − y zq)mq+1

⎤⎦ ⎛⎝ Q−1∏
q=i+1

1
1 − zq

⎞⎠ ∏Q
q=1 dzq∏Q

q=1 zq − 1
.

(10)

In the last equation, the empty product that appears for i = 0 is
equal to one.

The integrals of zq (q = i + 1, i + 2, . . . ,Q − 1) are calcu-
ated in a straightforward manner, since they all exhibit a simple
ole at zq = 1/

(
zQ
∏q−1

r=1 zr
)
. The successive evaluation of the

corresponding residues yields

Ii =
1

(2π ȷ)i+1

∮
Cα ,...,Cβ

exp(− y zQ
1−y zQ

x)

(1 − y zQ )M zQ

×

⎡⎣ i∏
q=1

M−1∑
mq=0

ϵmq+1

(1 − y zq)mq+1

⎤⎦ dzQ
i∏

q=1

dzq

zQ
i∏

q=1

zq − 1

.

(11)

e introduce πj = zQ
∏i

q=j zq and integrate over variable z1.
he only pole resides in z = 1/π , since |π | > 1, and the
1 2 1
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orresponding integral equals

1 =
1

2π ȷ

∮
Cα

M−1∑
m1=0

ϵm1+1

(1 − y z1)m1+1

dz1
z1 π2 − 1

=
1
π2

M−1∑
m1=0

ϵm1+1

(1 −
y
π2

)m1+1

=
1
π3

M−1∑
m1=0

ϵm1+1 zm1
2

(z2 −
y
π3

)m1+1

=

M−1∑
m1=0

m1∑
l1=0

(
m1

l1

)
ϵm1+1 yl1

π
l1+1
3

1
(z2 −

y
π3

)l1+1

=

M−1∑
l1=0

M−1∑
m1=l1

(
m1

l1

)
ϵm1+1 yl1

π
l1+1
3

1
(z2 −

y
π3

)l1+1 .

(12)

ith respect to z2, the only pole resides in z2 = y/π3 since
|π2| > 1 > y. Using Cauchy’s integral formula for derivatives,
the integral evaluates to

I2 =

M−1∑
l1=0

M−1∑
m1=l1

(
m1

l1

)
ϵm1+1 yl1

π
l1+1
3

×
1

2π ȷ

∮
Cα

1
(z2 −

y
π3

)l1+1

M−1∑
m2=0

ϵm2+1

(1 − y z2)m2+1 dz2

=

M−1∑
l1=0

M−1∑
m1=l1

(
m1

l1

)
ϵm1+1 y2 l1

π
l1+1
3

M−1∑
m2=0

(
m2 + l1

m2

)
ϵm2+1

(1 −
y2
π3

)m2+l1+1

=

M−1∑
l1=0

M−1∑
m1=l1

(
m1

l1

)
ϵm1+1 y2 l1

π
l1+1
4

M−1∑
m2=0

(
m2 + l1

m2

)
ϵm2+1 zm2

3

(z3 −
y2
π4

)m2+l1+1

=

M−1∑
l1=0

M−1∑
m1=l1

(
m1

l1

)
ϵm1+1 y2 l1

π
l1+1
4 (z3 −

y2
π4

)l1+1

×

M−1∑
m2=0

(
m2 + l1

m2

)
ϵm2+1

m2∑
l2=0

(
m2

l2

)
ϵm2+1

( y2
π4

)l2

(z3 −
y2
π4

)l2

= ϵ2
M−1∑
l1=0

M−1∑
l2=0

C(l1, 0) C(l2, l1)
y2 l1+2 l2

π
l1+l2+1
4

1

(z3 −
y2
π4

)l2+l1+1
,

(13)

where parameters C(u, v) are calculated from

C(u, v) =

M−1∑
m=u

(
m
u

)(
m + v

m

)
ϵm . (14)

By repeating the process for the remaining zq we arrive at

Ii = ϵ i
i(M−1)∑
l=0

Di(l) yi l
1

2π ȷ

∮
Cβ

exp(− y zQ
1−y zQ

x)

(1 − y zQ )M zQ

1
(zQ − yi)l+1 dzQ ,

(15)

here we have introduced

i(l) =

∑
l1+···+li=l

C(l1, 0) C(l2, l1) C(l3, l1 + l2) . . . C(li, l1 + · · · + li−1) .

(16)
3

The parameters Di(l) can be calculated in a recursive manner
following

Di(l) =

min(l,M−1)∑
n=0

Di−1(l − n) C(n, l − n) ,

D0(l) = δ(l) .

(17)

he recursive method is advantageous since it enables the gradual
alculation of the parameters. Assuming that the calculation has
een performed up to some modulation order, then it is pos-
ible to utilize the available parameters and calculate the ones
hat are required for a higher modulation order. Moreover, if
ultiple modulation orders are studied simultaneously then it

s sufficient to calculate the parameters for the highest order
nder consideration. The analysis for lower orders is performed
n a straight-forward manner using a subset of the available
arameters.
The integral in (15) has two poles at zQ = 0 and zQ = yi. For

zQ = 0, we find that

I(0) = −

(
ϵ

y

)i i (M−1)∑
l=0

(−1)l Di(l) = −

(
ϵ

y

)i

, (18)

ince
i(M−1)∑
l=0

(−1)l Di(l) = 1 . (19)

or zQ = yi, we utilize [16, Eq. (10)] to evaluate

(yi) = ϵ i
i(M−1)∑
l=0

Di(l) yi l
1
l!

dl

dzQ

[
exp(− y zQ

1−y zQ
x)

(1 − y zQ )M zQ

]⏐⏐⏐⏐⏐
zQ =yi

=

(
ϵ

y

)i exp(− yi+1

1−yi+1 x)

(1 − yi+1)M

i(M−1)∑
k=0

dk,i(y) LM−1
k

(
x

1 − yi+1

)
,

(20)

where

dk,i(y) =

(
−yi+1

1 − yi+1

)k i(M−1)∑
l=k

(−1)l Di(l) . (21)

y combining the results for zQ = 0 and zQ = yi, Ii becomes

i =

(
ϵ

y

)i
⎡⎣exp(− yi+1

1−yi+1 x)

(1 − yi+1)M

i(M−1)∑
k=0

dk,i(y) LM−1
k

(
x

1 − yi+1

)
− 1

⎤⎦
(22)

and Pc,s is calculated after combining (22) and (7) as

Pc,s = ϵM
Q−1∑
i=0

(
Q − 1

i

)
(−1)i

exp(− 1−yi

1−yi+1 ϵ µs)

(1 − yi+1)M

×

i(M−1)∑
k=0

dk,i(y) LM−1
k

(
x

1 − yi+1

)
.

(23)

Finally, the symbol-error probability Pe,s = 1 − Pc,s is given by

Pe,s = ϵM
Q−1∑
i=1

(
Q − 1

i

)
(−1)i+1

exp(− 1−yi

1−yi+1 ϵ µs)

(1 − yi+1)M

×

i(M−1)∑
dk,i(y) LM−1

k

(
x

1 − yi+1

) (24)
k=0
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Fig. 1. BEP for a preamplified PPM receiver. Plot lines correspond to finite summation and markers correspond to infinite summation based on (3).
and the BEP Pe,b becomes [10]

Pe,b =
Q

2 (Q − 1)
Pe,s , (25)

espectively, which require the summation over a finite number
f terms. Moreover, parameters dk,i(y) do not depend on the
ignal photons and it is possible to pre-calculate, store and reuse
hem in order to evaluate the BEP for the desired range of signal
nergies. The finite summation over signal-independent terms
lso enables the efficient evaluation of the BEP in applications
ith a varying number of received signal photons, as is the case

n atmospheric transmission systems where scintillations and
ointing errors introduce non-constant path losses. Note that in
hese applications, the calculation of the infinite sum of (3) proves
ven more problematic since each of the signal-dependent terms
s replaced by expressions that involve the Meijer G-function, as
e detail in Sections 3 and 4.

.2. Validation of results

To validate the results that are obtained from (25), we consider
pre-amplified system, where an optical amplifier is used before
he direct detection photodiode to improve its sensitivity. The
mplifier gain is G and the noise photons that are generated per
oise mode equal λ = nsp (G − 1), where nsp is the spontaneous
mission factor. The amplifier output is filtered by an optical filter
ith a bandwidth equal to Bo and as a result the noise modes
qual M = p Bo Ts, where Ts is the PPM slot duration and p are
he polarization modes that enter the receiver (typically two). The
mplified signal photons are equal to µs = Gµb log2(Q ), where
b is the number of photons per received bit at the amplifier
nput. Next, we present our analytical results with respect to the
ignal to noise energy ratio at the amplifier input OSNR = µb/nsp,
hich practically coincides with the OSNR at the amplifier output

or high optical gains.
Fig. 1 shows the bit-error probability for a pre-amplified re-

eiver with G = 100 and n = 1. The noise modes range between
sp

4

M = 2 − 2000 and PPM orders are equal to Q = 2, 4, 8, 16.
The results serve to verify the validity of our approach, and no
difference is observed between finite and infinite summation for
BEPs as low as 10-12, irrespectively of the noise modes and mod-
ulation order. As expected, a significant OSNR gain is observed
as increasing modulation orders, with Q = 4 providing a 3 dB
benefit while requiring the same bandwidth compared to Q = 2,
thus justifying its utilization in recent transmission experiments.
An increase in the noise modes, on the other hand, always proves
detrimental and a penalty of approximately 1 dB is introduced
when the noise modes are doubled.

3. Q-PPM ABEP performance over fading

We consider an optical wireless link where the optical sig-
nal propagates through the atmosphere, and the atmospheric
scintillations introduce a random fluctuation ha on the num-
ber of the received signal photons. The instantaneous value of
the number of photons at the receiver input equals µs ha and
the corresponding conditional BEP on ha is calculated from (25)
as

Pe,b =
Q ϵM

2 (Q − 1)

Q−1∑
i=1

(
Q − 1

i

)
(−1)i+1

exp
(
−

1−yi

1−yi+1 ϵ µs ha

)
(1 − yi+1)M

×

i(M−1)∑
k=0

dk,i(y) LM−1
k

(
x ha

1 − yi+1

)
.

(26)

The ABEP is obtained by integrating (26) over the probability
density function (pdf) of ha. For the random fluctuations we
consider the generalized Malaga-M model, which quantifies the
effect of weak, moderate and strong scintillations in a unified
manner.
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Fig. 2. ABEP of PPM modulation for weak, moderate and strong Malaga-M fading.
M
a
i
w
s
c
b
m
a
f

3.1. ABEP over normalized Malaga-M fading

The pdf of normalized Malaga-M distributed random variables
(RVs) is [23]

fha (ha) =
1
ha

β∑
j=1

bj G
2,0
0,2

(
δ ha

⏐⏐⏐⏐⏐ −

α, j

)
,

δ =
α β (γ + Ω ′)

γ β + Ω ′
,

bj =
A
2
aj

(
α β

γ β + Ω ′

)−
a+j
2

,

(27)

here Gm,n
p,q (·) is the Meijer G-function [20, eq. (9.301)] and the

alaga-M model parameters α, β, γ , Ω ′ are described in detail
in the literature [23], along with the calculation of A, aj.

The ABEP calculation requires the evaluation of the integral

I =

∫
∞

0
exp

(
−

1 − yi

1 − yi+1 ϵ µs ha

)
× LM−1

k

(
x ha

1 − yi+1

)
G2,0
0,2

(
δ ha

⏐⏐⏐⏐⏐ −

α, j

)
dha

ha

=

k∑
n=0

(
k + M − 1
n + M − 1

) (
−x

1 − yi+1

)n

×
1
n!

∫
∞

0
hn−1
a exp

(
−

1 − yi

1 − yi+1 ϵ µs ha

)
G2,0
0,2

(
δ ha

⏐⏐⏐⏐⏐ −

α, j

)
dha

=

k∑
n=0

(
k + M − 1
n + M − 1

) (
ϵ

y (1 − yi)

)n

×
1
n!

G2,1
1,2

(
δ (1 − yi+1)
ϵ µs (1 − yi)

⏐⏐⏐⏐⏐ 1 − n
α, j

)
,

(28)
5

Table 1
Malaga-M Distribution Parameter Values.
Parameter Irradiance Fluctuations

Weak Moderate Strong

α 50 2.55 2.281

β 14 22 33

γ 0.006 0.016 0.135

Ω ′ 1.099 1.751 2.04

where we expanded the Laguerre polynomials following [20, eq.
(8.970/1)] and used [20, eq. (7.813)] for the integral of the Meijer
G-function. After sum term re-arrangements, the final expression
for the ABEP becomes

Pe,b =
Q ϵM

2 (Q − 1)

Q−1∑
i=1

(
Q − 1

i

)
(−1)i+1 1

(1 − yi+1)M

×

i(M−1)∑
n=0

i(M−1)∑
k=n

(
k + M − 1
n + M − 1

)
dk,i(y)

(
ϵ

y (1 − yi)

)n

×
1
n!

β∑
j=1

bj G
2,1
1,2

(
δ (1 − yi+1)
ϵ µs (1 − yi)

⏐⏐⏐⏐⏐ 1 − n
α, j

)
.

(29)

Eq. (29) is plotted in Fig. 2 for weak, moderate and strong
alaga-M fading. The distribution parameters are taken from [23]
nd are summarized in Table 1. The results show that an increase
n the modulation order provides a very significant benefit in
eak fading. In high OSNRs, where the ABEP attains a constant
lope, 4-PPM reduces the ABEP by two orders of magnitude in
omparison to 2-PPM, and 16-PPM further reduces the ABEP
y the same amount. The improvement is less significant in
oderate and strong fading, where the ABEP is decreased by
pproximately a factor of 10 in 16-PPM. These observations hold
or both noise mode values under consideration (M = 2, 200),
although higher OSNRs are required for a given ABEP target at
increased noise modes, as expected.
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Fig. 3. Exact and asymptotic ABEP of PPM modulation for moderate and strong
Malaga-M fading.

3.2. Asymptotic ABEP approximation

The evaluation of the ABEP at high OSNRs can be facilitated by
expanding the Meijer G-function in Eq. (29) as the sum of 1F 1 (·)
hypergeometric functions. We utilize [20, eq. (9.303)] to obtain

G2,1
1,2

⎛⎝z

⏐⏐⏐⏐⏐⏐ 1 − n
α, j

⎞⎠ = z j Γ (j + n)Γ (α − j) 1F 1 (j + n; 1 + j − α; z)

+ zα Γ (α + n)Γ (j − α) 1F 1 (α + n; 1 + α − j; z) ,

(30)

here Γ (·) is the Gamma function. For sufficiently high OSNRs,
he argument of the Meijer-G function attains values near zero,
nd we approximate the hypergeometric function by keeping
he leading term. This yields the following approximation of the
eijer-G function

2,1
1,2

(
z

⏐⏐⏐⏐⏐ 1 − n
α, j

)
≊ zα Γ (α + n)Γ (j− α) + z j Γ (j+ n)Γ (α − j) .

(31)

he exact results of Eq. (29) are compared with the approxima-
ion in Fig. 3, and the validity of the approximation is verified
rom the figure, especially at high OSNRs. It should be noted, how-
ver, that the approximation is not valid in weak fading, mainly
ecause the Malaga-M parameter δ attains an increased value
nd higher OSNRs are required to achieve asymptotic behavior.
ue to weak fading, this lead to ABEPs lower than 10−12, which
re beyond the scope of this work.

.3. ABEP over γ − γ and negative exponential fading

Analytical results can also be obtained for γ − γ fading,
ince the corresponding distribution has a functional form that
esembles the Malaga-M one. In the γ − γ model, the channel
 n

6

Table 2
γ − γ Distribution Parameter Values.
Parameter l-100 m l-275 m l-325 m l-1000 m

α 16.5347 4.62457 4.22772 5.50966

β 14.9057 2.8674 2.3177 1.1138

fluctuations ha are distributed as [24]

fha (ha) =
1

Γ (α)Γ (β) ha
G2,0
0,2

(
α β ha

⏐⏐⏐⏐⏐ −

α, β

)
. (32)

The distribution parameters α and β are calculated from [25, eq.
(5.15, 9.41, 9.46, 9.138)]. Following a similar analysis as in
Section 3.1, the ABEP evaluates to

Pe,b =
Q ϵM

2 (Q − 1)Γ (α)Γ (β)

Q−1∑
i=1

(
Q − 1

i

)
(−1)i+1

(1 − yi+1)M

×

i(M−1)∑
n=0

i(M−1)∑
k=n

(
k + M − 1
n + M − 1

)
dk,i(y)

(
ϵ

y (1 − yi)

)n

×
1
n!

G2,1
1,2

(
α β (1 − yi+1)
ϵ µs (1 − yi)

⏐⏐⏐⏐⏐ 1 − n
α, β

)
.

(33)

he γ −γ and Malaga-M ABEPs are compared in Fig. 4 for 16-PPM
nd M = 200 noise modes. The γ −γ parameters are summarized
n Table 2 and are evaluated for a wavelength of 1550 nm and for
structure constant equal to C2

n = 4.58 ·10−13 m-2/3. Comparable
results are obtained between the two distributions when the
transmission length in the γ − γ model is equal to 100, 275
and 325 m. In addition, a longer transmission length of 1000 m
is included in the figure to demonstrate the applicability of our
analytical relations in severe fading. In this scenario, the γ − γ

ABEP performance resembles the one of a negative exponential
fading model, where ha is distributed as [25]

ha (ha) = e−ha = G1,0
0,1

(
ha

⏐⏐⏐⏐⏐−0
)

(34)

nd the corresponding ABEP equals

Pe,b =
Q ϵM

2 (Q − 1)

Q−1∑
i=1

(
Q − 1

i

)
(−1)i+1 1

(1 − yi+1)M

×

i(M−1)∑
n=0

i(M−1)∑
k=n

(
k + M − 1
n + M − 1

)
dk,i(y)

(
ϵ

y (1 − yi)

)n

×
1
n!

G1,1
1,1

(
1 − yi+1

ϵ µs (1 − yi)

⏐⏐⏐⏐⏐ 1 − n
1

)
.

(35)

3.4. ABEP of multi-branch receivers over normalized Malaga-M fad-
ing

We also consider a multiple receiver architecture, where L
reamplified branches are utilized in order to partially mitigate
he adverse impact of irradiance fluctuations. In this arrangement,
he received photon counts are added in an equal-gain combiner
EGC) prior to PPM demodulation. This type of combiner is rela-
ively simple to implement, since it does not require estimations
or the channel state or the signal energy level, while at the
ame time it achieves comparable results with more complex
ulti-branch architectures [26].
Assuming that the amplifiers have identical gains and sponta-

eous emission factors, independent and identically distributed
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Vs for the noise signals are generated, and the EGC output
ollows a Laguerre distribution with an increased number of noise
odes N = LM [18]. Moreover, the total number of signal
hotons at the EGC output equals µs

∑L
ℓ=1 ha,ℓ/L , where ha,ℓ

enotes the ℓth channel response. For the rest of our analysis, it
s assumed that the lateral separation of the receiver branches
s adequate and the received signals ha,ℓ µs are distributed as
ndependent Malaga-M RVs.

Similarly to the single-branch analysis, the conditional BEP is
alculated as

e,b =
Q ϵN

2 (Q − 1)

Q−1∑
i=1

(
Q − 1

i

)
(−1)i+1

exp
(
−

1−yi

1−yi+1
ϵ µs
L

∑L
ℓ=1 ha,ℓ

)
(1 − yi+1)N

×

i(N−1)∑
k=0

dk,i(y) LN−1
k

(
x

L (1 − yi+1)

L∑
ℓ=1

ha,ℓ

)
,

=
Q ϵN

2 (Q − 1)

Q−1∑
i=1

(
Q − 1

i

)
(−1)i+1 1

(1 − yi+1)N

×

i(N−1)∑
k=0

dk,i(y)
k∑

n=0

(
k + N − 1
n + N − 1

) [
−x

L (1 − yi+1)

]n

×

∑
n1+···+nL=n

L∏
ℓ=1

hnℓ
a,ℓ

nℓ!
exp

(
−

1 − yi

1 − yi+1

ϵ µs

L
ha,ℓ

)
.

(36)

sing (28), the ABEP of the EGC is evaluated as

Pe,b =
Q ϵN

2 (Q − 1)

Q−1∑
i=1

(
Q − 1

i

)
(−1)i+1 1

(1 − yi+1)N

×

i(N−1)∑
k=0

dk,i(y)
k∑

n=0

(
k + N − 1
n + N − 1

) [
ϵ

y (1 − yi)

]n

×

∑ L∏ 1
nℓ!

β∑
bj G

2,1
1,2

⎛⎝ L δ (1 − yi+1)
ϵ µs (1 − yi)

⏐⏐⏐⏐⏐ 1 − nℓ

α, j

⎞⎠ ,

(37)
n1+···+nL=n ℓ=1 j=1 ⏐
7

and we introduce the definitions of the extended binomial coef-
ficients

w(s) =
1
s!

β∑
j=1

bj G
2,1
1,2

(
L δ (1 − yi+1)
ϵ µs (1 − yi)

⏐⏐⏐⏐⏐ 1 − s
α, j

)
,

L
n

)
w

=

∑
n1+···+nL=n

L∏
ℓ=1

w(nℓ) ,

(38)

o arrive at

Pe,b =
Q ϵN

2 (Q − 1)

Q−1∑
i=1

(
Q − 1

i

)
(−1)i+1 1

(1 − yi+1)N

×

i(N−1)∑
n=0

i(N−1)∑
k=n

(
k + N − 1
n + N − 1

)
dk,i(y)

[
ϵ

y (1 − yi)

]n (L
n

)
w

.

(39)

he coefficients
(L
n

)
w
can be efficiently calculated using the recur-

sion formula [27, Eq. (4)](
L
n

)
w

=

n∑
s=0

w(s)
(
L − 1
n − s

)
w

,

0
n

)
w

= δn

(40)

hich re-uses the previously calculated values of the Meijer
-function.
The ABEP performance of the EGC receiver is presented in

ig. 5 for 16-PPM and up to L = 10 branches. In weak fading,
he utilization of additional branches proves detrimental at low
SNRs due to the excess noise that is generated by the amplifiers,
nd this effect becomes worse for an increased number of noise
odes (M = 200). The performance of the multi-branch receiver

mproves at higher OSNRs and a gain of a couple dB is observed
hen the second receiver is introduced. A further increase in the
umber of the branches above two provides a limited improve-
ent which may not justify the associated implementation cost,
omplexity and energy consumption of such a multi-branch in
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eak fading, unless mandated by additional impairments such
mperfect tracking and acquisition, beam wander, or a require-
ent for increased reliability [5,6]. The utilization of five and ten

eceivers is more appealing in moderate and strong fading. In
hese application scenarios, the diversity gain outweighs the am-
lification noise penalty and significant overall gains are observed
or both a reduced (M = 2) and an increased (M = 200) number
f noise modes.

. Q-PPM ABEP performance over fading and pointing errors

The introduction of pointing errors modifies the channel re-
ponse to h = ha hp, where ha and hp are RVs that model the
impact of fading and pointing errors, respectively. Pointing errors
introduced by misalignments are modeled as Gaussian RVs [28].
8

It has been previously shown that the distribution of hp can be
approximated by [29]

fhp (hp) =
φ2

Aφ2 hφ2
−1

p , 0 ≤ hp ≤ A . (41)

he distribution parameters φ and A are calculated from the
eceiver aperture radius a, the beam-width at the receiver wz and
he misalignment mean values µx and µy and variances σx and
y [29]. Given (27) and (41), the channel response h is distributed
s [30]

h(h) =
φ2

h

β∑
bj G

3,0
1,3

(
δ h
A

⏐⏐⏐⏐⏐ φ2
+ 1

φ2, α, j

)
. (42)
j=1
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Fig. 6. ABEP for 16-PPM in weak, moderate and strong Malaga-M fading with pointing errors. Markers correspond to the asymptotic approximation.
a

The conditional BEP is identical to (26) and using [20, eq. (7.813),
(8.970/1)]

I =

∫
∞

0
exp

(
−

1 − yi

1 − yi+1 ϵ µs h
)

× LM−1
k

(
x h

1 − yi+1

)
1
h
G3,0
1,3

(
δ h
A

⏐⏐⏐⏐⏐ φ2
+ 1

φ2, α, j

)
dh

=

k∑
n=0

(
k + M − 1
n + M − 1

) (
ϵ

y (1 − yi)

)n

×
1
n!

G3,1
2,3

(
δ (1 − yi+1)

A ϵ µ (1 − yi)

⏐⏐⏐⏐⏐ 1 − n, φ2
+ 1

φ2, α, j

)
(43)
s T

9

and the ABEP is given by

Pe,b =
Q ϵM

2 (Q − 1)

Q−1∑
i=1

(
Q − 1

i

)
(−1)i+1 1

(1 − yi+1)M

×

i(M−1)∑
n=0

i(M−1)∑
k=n

(
k + M − 1
n + M − 1

)
dk,i(y)

(
ϵ

y (1 − yi)

)n

×
φ2

n!

β∑
j=1

bjG
3,1
2,3

(
δ (1 − yi+1)

A ϵ µs (1 − yi)

⏐⏐⏐⏐⏐ 1 − n, φ2
+ 1

φ2, α, j

)
.

(44)

The ABEP performance is presented in Fig. 6 for a 16-PPM system
nd for pointing error parameters that are summarized in Table 3.
he table values correspond to a zero boresight error µ = µ =
x y
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Table 3
Pointing Errors Parameter Values.
Parameter Values

wz/a 10 20 30

A 0.020 0.005 0.002

φ2 2.807 11.14 25.029

0 and equal jitters σx = σy = 3 a. The figure also presents results
that are obtained using the asymptotic expression

G3,1
2,3

(
z
⏐⏐⏐ 1 − n, φ2

+ 1
φ2, α, j

)
≊ zφ2

Γ (φ2
+ n)Γ (α − φ2)Γ (j − φ2)

+ z j
Γ (j + n)Γ (α − j)

φ2 − j
+ zα Γ (α + n)Γ (j − α)

φ2 − α
,

(45)

hich is derived from [20, eq. (9.303)] and after keeping the first
erm of the appearing hypergeometric functions.

The results show that the ABEP performance is determined by
he relative strength of the fading and pointing errors. In weak
ading, a narrow beam-with equal to wz = 10 a is preferable at
ower OSNRs, but the beam must be expanded to wz = 20 a at
igher OSNRs. Expanding the beam introduces a power penalty
ue to the increase in the static losses A, but this is compensated
y the fact that a broader beam is more resilient to random mis-
lignments, and a net gain is observed. This approach, however, is
ot applicable in moderate and strong fading, where the impact of
ading is far more detrimental than that of pointing errors. In this
egime, the results show that the utilization of a broader beam
orsens the ABEP and that the narrowest beam-width should be
tilized.
The presented analytical relations are further investigated for

he optimization of the beam-width and the ABEP in weak fading.
o this end, we repeatedly calculate (44) to locate the beam-
idth that minimizes the ABEP. The optimal beam-width is de-
ermined with an accuracy of δw = ±0.1 a and the results of the
z D

10
ptimization process are presented in Fig. 7. The results show that
he optimal beam-width increases with the OSNR, as expected
rom the previous figure, and that both the modulation order and
he noise modes affect its values. Higher modulation orders allow
or the utilization of broader beams, given that they provide a
etter receiver sensitivity. On the other hand, an increase in the
oise modes worsens the receiver performance at any given OSNR
evel and therefore the optimal beam-width is reduced.

. Conclusion

We have derived analytical relations for the BEP performance
f optically amplified PPM receivers using the photon count-
ng Laguerre noise distribution. The proposed relations are ex-
ct, not limited to the binary modulation format, require a fi-
ite summation, and involve constants that can be stored and
e-used for the more efficient calculation of the BEP. This ap-
roach also enables the efficient calculation of the ABEP in scenar-
os where the received signal energy fluctuates due to fading or
ointing errors, since the aforementioned constants only depend
n the amplifier noise. We have shown that ABEP calculation in
cenarios with fading and pointing error requires similar finite
ums. We have presented results on weak, moderate and strong
ading conditions considering widely accepted distributions and
emonstrated the beneficial effects of spatial diversity in moder-
te and strong fading. Finally, we have presented results on the
ombined impact of fading and pointing errors, verifying that the
eam-width at the receiver plays a key role, especially in weak
ading where the two impairments assume comparable strengths.
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