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Abstract—We present closed-form expressions for the prob-
ability density function (PDF) and the cumulative distribution
function (CDF) of the sum of non-identical squared Nakagami-m
random variables (RVs) with integer-order fading parameters.
As it is shown, they can be written as a weighted sum of Erlang
PDFs and CDFs, respectively, while the analysis includes both
independent and correlated sums of RVs. The proposed formula-
tion significantly improves previously published results, which are
either in the form of infinite sums or higher order derivatives of
the fading parameter m. The obtained formulas can be applied
to the performance analysis of diversity combining receivers
operating over Nakagami-m fading channels.

Index Terms—Average symbol-error probability (ASEP), diver-
sity, maximal ratio combining (MRC), Nakagami-m fading, outage
probability, Shannon’s channel capacity, sum of Erlang variates.

I. INTRODUCTION

PERFORMANCE analysis of digital wireless commu-
nications systems usually deals with complicated and

cumbersome statistical tasks. One of them arises in the study
of diversity combining receivers operating over Nakagami-
fading channels [2], where the statistics of the sum of squared
Nakagami- random variables (RVs) (or equivalently, the
sum of Gamma RVs) is required. Well-known applications
in the field of wireless communication systems, where such
sums can be useful, are maximal ratio combining (MRC) and
postdetection equal gain combining (EGC). Moreover, they can
be used for the evaluation of the outage probability in cellular
systems with cochannel interference (CCI) (see [3]–[9] and
references therein).

The most general approach related to the distribution of the
sum of Gamma RVs has been presented by Moschopoulos in
[10], where an infinite-series representation for the probability
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density function (PDF) of the sum of independent nonidentical
Gamma RVs has been proposed. Alouini et al. in [9] have ex-
tended the result of [10] for the case of arbitrarily correlated
Gamma RVs, and studied the performance of MRC and post-
detection EGC receivers, as well as receivers in the presence
of CCI. However, in [3]–[8], by following the moment gener-
ating function-based approach [11, Sec. 9] or starting from the
characteristic function, the performance analytical formulas de-
rived (e.g., for the average symbol-error probability (ASEP) and
the outage probability) are in the form of either infinite sums
or higher order derivatives of the fading parameter. This occurs
since, to the best of the authors’ knowledge, there are no simple
closed-form expressions either for the PDF or the cumulative
distribution function (CDF) of the sum of nonidentically dis-
tributed Gamma RVs available in the open technical literature.1

In this letter, novel closed-form expressions for the PDF and
the CDF of the sum of nonidentical squared Nakagami- RVs,
with integer-order fading parameters, are derived. Our analysis
is not only limited to independent fading, but correlated fading
channels are also included. Furthermore, in order to reveal
the importance of the proposed statistical formulation and by
following the PDF-based approach, we study the performance
of -branch MRC and postdetection squared-law combining
(SLC) receivers in the presence of Nakagami- multipath
fading. For these applications, closed-form expressions for the
outage probability, the channel average spectral efficiency (SE),
and the ASEP for several coherent, noncoherent, binary, and
multilevel modulation signalings are obtained.

After this short introduction, in Section II, novel closed-form
expressions for the PDF and the CDF of the sum of squared Nak-
agami- RVs are obtained. In Section III, the theoretical results
of Section II are applied to derive useful expressions for various
performance metrics of diversity receivers, operating over Nak-
agami- fading channels. Finally, in Section IV, useful con-
cluding remarks are provided.

II. CLOSED-FORM STATISTICS FOR THE SUM

OF SQUARED NAKAGAMI- RVS

Let be Nakagami- distributed RVs, with PDF
given by2 [2]

(1)

1Two independent and parallel works are [12] and [13].
2Note that in the case where the fading parameterm is a positive integer, (1)

is an alternative form of the classical Nakagami-m PDF [2].
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where is the well-known unit step function defined as
and zero otherwise, denotes the Nak-

agami- fading parameter, here considered as a positive integer,
and , with denoting expectation. More-
over, the squared value of , , follows the Erlang
distribution3 with PDF given by

(2)

and CDF [11]

(3)

where is the incomplete Gamma function defined in [14,
eq. (8.350.2)]. Using [14, eq. (8.352.2)], the above CDF can be
rewritten as

(4)

A. Independent RVs

Theorem 1: (PDF of the Sum of Squared Nakagami- RVs):
Let be a set of RVs following the PDF defined in (2),
with . Then, the PDF of the sum

(5)

is a nested finite weighted sum of Erlang PDFs, given by

(6)
where the weights are shown in (7) and is defined as

.
Proof: The proof is given in the Appendix.

For the special case where (i.e., Rayleigh fading),
it can be easily verified that (6) reduces to [15, eq. (10)]. Note
that in order to quickly and easily evaluate , we have man-
aged to develop a recursive formula given by (8)

3The Erlang distribution is a special case of the well-known Gamma distribu-
tion for integer values of m .

(7)

(8)

with

Corollary 1 (CDF of the Sum of Squared Nakagami- RVs):
The CDF of is given by

(9)
Proof: The CDF of can be easily obtained by inte-

grating (6) from 0 to and interchanging the order of summa-
tions and integrations.

To the best of the authors’ knowledge, (6) and (9) are
novel. Interestingly enough, both expressions can be easily
evaluated due to the fact that only simple elementary functions
(i.e., powers and exponentials) are included. Moreover, (6)
is simpler, compared with the corresponding PDF expression
presented in [3, eq. (10)], which is apparently not in closed
form, since it includes higher order derivatives as functions
of the parameter . Note also that by using [3, eq. (10)], it
seems to be difficult, if not impossible, to study other important
metrics, such as CDF.

B. Correlated RVs

In order to obtain the sum of correlated squared Nakagami-
RVs, the following assumptions, made also in [16]–[18], are
taken into account and repeated here for the reader’s conve-
nience.

1) Without loss of generality, it can be assumed that statistical
parameters are in increasing order, i.e.,

.
2) Let be arbitrarily correlated Nakagami- RVs with

marginal PDFs given by (1).
3) Let be -dimensional vectors defined as

, where denotes trans-
pose, and the elements are independent and
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identically distributed zero-mean Gaussian RVs with
variance .

4) Let be a vector order, defined as
, where ,

with covariance matrix given by .
5) Without loss of generality, let the correlation among the

elements of be constructed such that

if and
if and

otherwise
It can be shown that the relation between the covariance of

and the correlation of the elements of is given by

(10)

where
6) Let be the set of distinct eigenvalues of , where

each has algebraic multiplicity , such that
.

Theorem 2: (PDF of the Sum of Squared Correlated Nak-
agami- RVs): Let

(11)

then it holds that

(12)

where is the th Erlang distributed RV with parameters
and the notation “ ” means “equality in

distribution.”
Proof: See [16], where the Karhunen–Loeve expansion is

used to decorrelate arbitrarily correlated, nonidentical, Erlang
distributed RVs.

Lemma 1: (CDF of the Sum of Squared Correlated Nak-
agami- RVs): The CDF of the sum of arbitrarily correlated
squared Nakagami- RVs can be found in closed form using
Corollary 1 and Theorem 2.

III. DIVERSITY COMBINING RECEIVERS

We consider an -branch diversity receiver operating over a
multipath fading environment. The baseband received signal at
the th, , diversity branch is

(13)

where is the transmitted symbol, with energy
is the Nakagami- distributed fading envelope,

and is the additive white Gaussian noise, with a single-sided
power spectral density . The noise components are assumed

to be statistically independent of the signal and uncorrelated
with each other. Moreover, the channel is considered as being
slowly time-varying, and thus, its characteristics are perfectly
known to the receiver.

The instantaneous signal-to-noise ratio (SNR) per symbol
in the th input branch follows the Erlang dis-

tribution , with and
being the corresponding Nakagami- fading parameter and the
average input SNR per symbol, respectively. The performance
analysis of the MRC and postdetection SLC receivers [19], in
which the instantaneous SNR per symbol at the output is given
by the well-known expression , can be tackled
using the analysis presented in Section II for both independent
and correlative fading.

A. Maximal Ratio Diversity

1) Outage Probability: The outage probability in noise-lim-
ited systems, , is defined as the probability that the instan-
taneous MRC output SNR falls below a given outage threshold

. This probability can be easily obtained by replacing with
in (9) as

(14)

with , for the independent case, or using Lemma 1
for the correlative case. Note that our approach can be efficiently
applied to evaluate the outage probability in cellular systems, in
which CCI may be further assumed.

In Fig. 1, an MRC receiver with antennae, oper-
ating in a Nakagami- multipath fading environment, with

, and , is considered. More-
over, an exponentially decaying power delay profile (PDP)

is assumed with power-decaying fac-
tors , and exponential correlation4 among the input
channels with .
Note that the correlation matrix of this model corresponds to
the scenario of multichannel reception from equispaced diver-
sity antennae [4]. In this figure, is plotted as a function
of the inverse, normalized to , outage threshold .
The obtained results, which have been also verified by Monte
Carlo simulations, clearly show that the outage performance
degrades with an increase of the fading correlation and/or the
power-decay factor.

2) Shannon Channel Capacity: It is well known that the
Shannon channel capacity provides an upper bound of max-
imum transmission rate in a given Gaussian environment. The
average SE, in Shannon’s sense, defined as the normalized (by
the transmitted signal’s bandwidth) average channel capacity, is
given by [21]

(15)

4For �! 1, it can be verified that the covariance matrixK is not a positive
definite matrix (i.e., some eigenvalues are complex or not positive). Therefore,
it is not possible to study cases for values of � close to 1. This fact can be also
explained since two Nakagami RVs with different distribution parameters can
not be completely correlated [20].



1356 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 8, AUGUST 2006

Fig. 1. Outage probability versus 
 =
 for L = 4, with an exponentially
input decaying PDP and fading parameters m = m = 1;m = 2, and
m = 4.

By substituting (6) in the above integral and using [14, eq.
(4.358.1)] and [22, eq. (06.06.20.0001.01)], in case of indepen-
dent fading, the average channel SE can be written in closed
form as in (16), where is the Euler’s constant [14, Sec. 9.73]

is a generalized hypergeometric series [14, eq.
(9.14.1)], and

In case of correlative fading, the average SE can be obtained
using (16) and substituting with , and with

(16)
3) Error Performance: The most straightforward approach

to obtain the ASEP is to average the conditional SEP
over the PDF of the combiner output SNR [11], i.e.,

(17)

It is well known that for several signaling constellations,
can be written as follows.

TABLE I
PARAMETERS A AND B FOR SEVERAL SIGNALING CONSTELLATIONS

1) For binary phase-shift keying (BPSK), binary fre-
quency-shift keying (BFSK), and for high values of
average input SNR for Gaussian minimum-shift keying
(GMSK),5 -ary-differentially encoded phase-shift
keying ( -DEPSK), quadrature phase-shift keying
(QPSK), -ary phase-shift keying ( -PSK), -ary fre-
quency-shift keying ( -FSK), square -ary quadrature
amplitude modulation ( -QAM), and -ary-differential
PSK ( -DPSK) in the form of ,
where is the complementary error function [14, eq.
(8.250.4)].

2) For differential binary PSK (DBPSK) and -ary nonco-
herent frequency-shift keying ( -NFSK), in the form of

.
The particular values of and depend on the considered mod-
ulation scheme and are summarized in Table I. In the following,

will be obtained in closed form for each of the above two
cases.

By substituting (6) in (17), it can be easily recognized that
for coherent binary and -ary modulation schemes, such as:
1) BPSK and BFSK; and 2) for high values of the average
input SNR for GMSK, -DEPSK, QPSK, -PSK, -FSK,

-QAM, and -DPSK, the evaluation of integrals of the form
with

is required. The above integral can be evaluated via [14, eq.
(6.455.1)] by noting that can be expressed as an incom-
plete Gamma function [22, eq. (06.06.03.0004.01)]. Therefore,
the ASEP can be derived in closed form as

(18)

5B is determined by the bandwidth of the premodulation Gaussian filter.
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where is the Gauss hypergeometric function [14,
eq. (9.100)].

The ASEP of noncoherent modulation schemes, such as
-NFSK and DBPSK, can be extracted by substituting (6) in

(17) and using [14, eq. (3.381.4)], yielding

(19)

For correlative fading, the ASEP can be obtained using (18)
and (19), after substituting with and with .

B. Postdetection Diversity With -FSK

In postdetection SLC with -FSK signaling, the receiver
consists of receivers, where each one of them has branches,
each followed by a tunable bandpass filter, which is followed
by a square-law detector. The outputs of the receivers, corre-
sponding to each received signal, are combined to form the
decision variables, and it has been proved that the conditional
SEP is [19, eq. (9)]

(20)

(21)

where for
for , and zero, otherwise. For SLC receivers with

-FSK signaling and noncoherent detection, by averaging (20)
over (17) and using [14, eq. (7.621.4)], the ASEP can be ob-
tained in closed form as in (21). (21) improves on previously
published results [19], where the corresponding expressions in-
clude integrals with infinite limits. For correlated fading chan-
nels, (21) also holds after substituting with and with

.

IV. CONCLUSION

We derived novel closed-form expressions for the PDF and
the CDF of the sum of squared, nonidentical, independent
or correlated Nakagami- RVs in the case of integer-order
Nakagami- fading parameters. An interesting finding is that
these expressions can be written as a weighted sum of Erlang
distributions. Based on the statistical formulas obtained, and
following the PDF-based approach, MRC and postdetection

-FSK SLC receivers were studied, and important perfor-
mance metrics, such as outage probability, average SE, and
ASEP, were expressed in closed form. Our results improve on
previously published ones, which are either in the form of infi-
nite sums or higher order derivatives of the fading parameter.

APPENDIX

PROOF OF Theorem 1

In order to derive the PDF of [see (5)] in closed form, we
follow three steps.

1) Step 1 ( Terms): For , the PDF of
can be evaluated as

(A-1)

in which, by substituting (2) and using [14, eq. (3.383.1)], can
be expressed as6

(A-2)

(A-3)

where is the Euler Beta function [14, eq. (8.380.1)], and
is the Kummer confluent hypergeometric function

[14, eq. (9.210.1)]. For being positive integers and by using
[22, eq. (07.20.03.0024.01)], (A-2) can be rewritten as shown
in (A-3), with being the Pochammer

6Note that (A-2) is a generic result concerning the PDF of the sum of two
Gamma RVs for arbitrary (not necessarily integer) values ofm .
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(A-5)

(A-8)

symbol. After some algebraic manipulations, (A-3) can be effi-
ciently expressed as

(A-4)

with shown in (A-5) at the top of the page.
2) Step 2 ( Terms): For , the PDF of

can be evaluated using (A-4) as

(A-6)

By using [14, eq. (3.381.4)], and following similar steps as for
the calculation of the PDF of , after some complicated, but
also straightforward, manipulations, yields

(A-7)

where is shown in (A-8) at the top of the page.
3) Step 3 ( Terms): Following the same procedures as those

in Steps 1 and 2 for the sum of RVs, (6) can be extracted.7
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