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Abstract: The performance of dual-branch equal-gain combining (EGC) and maximal-ratio com-
bining receivers operating over a composite correlated fading environment, modelled by the gen-
eralised Gamma (GG) distribution, is analysed. The moments of the output signal-to-noise ratio are
derived in closed form for both types of receivers, and by employing the Padé approximants
method, the average bit error probability is studied for a great variety of modulation schemes.
Furthermore, based on the statistic of the product of two correlated GG random variables, a
tight union upper bound for the outage probability of the EGC is obtained, whereas for the
special case of Weibull fading a simpler bound is derived in closed form. The proposed mathema-
tical analysis is complemented by various, numericaly evaluated performance results, whereas
simulations verify the correctness of the proposed analysis.
1 Introduction

In general, it is widely accepted that radio propagation is
characterised by three nearly independent phenomena: path
loss variance with distance, shadowing (i.e. long-term
fading) and multipath fading (i.e. short-term fading) [1].
Several experimental measurement campaigns have shown
that multipath fading and shadowing occur simultaneously
[2]. Thus, in order to study such fading environments, a com-
posite fading model must be considered. Many statistical dis-
tributions are available in the technical literature for modelling
composite fading channels, for example, Rayleigh-lognormal,
Nakagami-lognormal [2] and more recently generalised-K [3,
4]. Another generic distribution which accurately describes
the well-known channel models for both multipath and
shadow fading is the generalised-Gamma (GG) [5]. The GG
distribution is considered to be mathematically tractable
when compared with the lognormal-based models. However,
despite its usefulness, it has been applied in the context of wire-
less communications only recently [6] and since then has
gained an increased interest [7–9].

In real life communication scenarios, the received signals
subject to fading impairment may be independent or corre-
lated. The latter results in a degradation of the diversity gain
promised [10]. There are various useful works studying the
performance of diversity receivers over independent [8, 11,
12] and correlated [9, 13, 14] GG fading channels. In [11],
the performance of M-ary modulation schemes has been
analysed for selection combining (SC), maximal ratio com-
bining (MRC) and equal gain combining (EGC), whereas in
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[8], switch-and-stay combining over not necessarily identi-
cally distributed (id) GG fading channels has been studied.
In [12], closed-form union bounds have been derived for the
distribution of the sum of independent GG random variables
(RVs) and have been applied to the performance analysis of
EGC diversity receivers. The bivariate GG distribution with
arbitrary fading parameters has been introduced and studied
in [9, 13]. Moreover in [14], the multivariate GG distri-
bution with exponential correlation has been introduced
and applied to the performance analysis of SC receivers.
However, the performance of dual-branch MRC and EGC
diversity receivers operating over correlated GG fading
channels has not been adequately addressed in the open
technical literature and this is the topic of the current work.

In this paper, the moments of the output signal-to-noise
ratio (SNR) of MRC and EGC diversity receivers, with
not necessarily id fading channels, are derived.
Capitalising on these expressions and by applying the
Padé approximants method [15], the average bit error prob-
ability (ABEP) for several modulation schemes is studied
for the diversity receivers under consideration.
Furthermore, the probability density function (PDF) and
the cumulative distribution function (CDF) of the product
of two correlated GG RVs are derived. These expressions
are useful to derive a tight union upper bound for the
outage probability (OP) of the EGC diversity receiver. A
corresponding bound for the special case of Weibull
fading channel is also extracted in closed form.

This paper is organised as follows. After Introduction, in
Section 2, the bivariate GG channel model is reviewed. In
Section 3, the moments and the upper bounds for the CDF
of the output SNR of EGC are derived. In Section 4, the pre-
viously derived results are applied to the performance
analysis of MRC and EGC diversity receivers, whereas in
Section 5, several numerically evaluated performance and
computer simulation results are presented and discussed.
Finally, concluding remarks are provided in Section 6.

2 Channel model

Let us consider a dual-branch diversity receiver operating in
a correlated fading environment modelled by the bivariate
IET Commun., 2008, 2, (1), pp. 174–178



GG distribution. The equivalent complex baseband received
signal at the ‘th (‘ ¼ 1, 2) input branch is z‘ ¼ qR‘þ n‘,
where q is the transmitted complex symbol with energy
Es ¼ Ekjqj2l (Ek.l denotes expectation), n‘ the complex addi-
tive white Gaussian noise having single-sided power spectral
densityN0 andR‘ the fading channel envelope modelled here
as a GG RV. The usual assumptions for ideal synchronisation
and perfect channels state information at the receiver are
made. The joint PDF ofR1 andR2 is given by [13, Equation (2)]
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where b‘ � 0 and m‘ � 1/2 are the two shaping parameters
related to the fading severity, G(.) the Gamma function [16,
(8.310/1)], (.)n the Pochhammer’s symbol [16, Equation
(9.749)], 1F1 (.; .; .) the confluent hypergeometric function
[16, Equation (9.21)] and V‘ a parameter related to the
average fading power as EkR‘

2l ¼ (V‘/m‘)
2/b‘G(m‘þ 2/

b‘)/G(m‘). Also, r is the correlation coefficient of the
underlying Nakagami-m random processes [13, Equation
(9)] (As it is known, R1 and R2 can be generated by two
Nakagami-m RV W1 and W2, having power correlation
coefficient r, as R‘ ¼ W‘

2/b‘).
Setting different values to m‘ and b‘, (1) simplifies to

several important bivariate distributions for fading
channel modelling. For example, for b‘ ¼ 2 and m‘ ¼ 1,
it becomes Rayleigh, for b‘ ¼ 2, it becomes Nakagami-m
and for m‘ ¼ 1, it becomes Weibull. Moreover, as b‘ ! 0
and m‘ ! 1, (1) approaches the well-known lognormal
joint PDF.

3 Statistics of the output SNR

In this section, closed-form expressions for the moments of
the output SNR of MRC and EGC receivers operating over
correlated GG fading channels, with not necessarily id
fading channels, are derived. Furthermore, a tight upper
bound is derived for the CDF of the output SNR of an
EGC diversity receiver.

3.1 Moments

The instantaneous output SNR per symbol of EGC and
MRC receivers can be written as

gout ¼ fd,1

Es
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where fd,n ¼ (22n2 1) dþ 1 (n . 0), with d ¼ 0 for MRC
and d ¼ 1 for EGC. The nth-order moment of gout can be
obtained by averaging gn

out, that is, mn ¼ Ekgn
outl, yielding
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Let us define the instantaneous SNR per symbol of the ‘th
input branch as g‘ ¼ R‘

2Es/N0 and the corresponding
average SNR g‘ ¼ EkR2

‘lEs=N0 ¼ (V‘=m‘)
2=b‘(Es=N0)=D‘,

where D‘ ¼ G(m‘)/G(m‘þ 2/b‘). It is well known that the
nth power of a GG RV with parameters m‘, b‘ and V‘ is
also a GG RV with parameters m‘, b‘/n and V‘ [12].
Hence, g‘ is a GG RV with parameters m‘, b‘/2
and (D‘g‘)

b‘=2. On the basis of this property, using the binomial
identity [16, Equation (1.111)] in (3), and after performing
some algebraic manipulations, mn can be expressed as

mn ¼ fd,n
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Using the expression for the joint moments of g1 and g2 [13,
Equation (8)], in (4) and after some mathematical simplifi-
cations, the nth-order moment of MRC and EGC output
SNR, with not necessarily id fading channels, can be
derived in closed form as
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where 2F1(., ; .) is the Gauss hypergeometric function [16,
Equation (9.100)]. For the uncorrelated case, that is,
r ¼ 0, (5) becomes identical to a previously known result
[12, Equation (25)].

3.2 Union bounds for the CDF of the output SNR
of EGC

Considering identical shaping parameters to all branches,
that is, b1 ¼ b2 ¼ b and m1 ¼ m1 ¼ m, a union bound for
the CDF of EGC output SNR operating over correlated
GG fading channels is derived as an infinite series represen-
tation. Furthermore, a corresponding closed-form expres-
sion for Weibull fading channel is also provided.

3.2.1 GG channel model: Let R be a RV defined as
R W R1R2. By using [13, Equation (6)] and R in [17,
Equation (6.74)], making a change of variables, using [16,
Equation (3.471/9)], and after some straightforward math-
ematical manipulations, the PDF of R can be obtained in
closed form as
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where Im�1ð�Þ (.) is the (m2 1)th-order modified Bessel of
the first kind [16, Equation (8.406)] and Kn(.) is the
nth-order modified Bessel of the second kind [16,
Equation (8.407)]. By setting b ¼ 2, (6) becomes equal to
a previously derived result [18, Equation (144)].

By integrating (6) with respect to x and after making a
standard change of variables, an integral of the form

I ¼
Ð A

0
xmIm�1(Bx)K0(Cx) dx needs to be solved, with A,
175



B, C . 0. This integral is very difficult, if not impossible, to
be solved in closed form. An alternative and mathematically
more tractable solution is to employ the infinite series rep-
resentation for the modified Bessel function of the first
kind [16, Equation (8.445)]. Following this approach,
using [19, Equation (03.04.21.0009.01)] and after
some mathematical manipulations, the CDF of R can be
obtained as
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where pFq(.) represents the generalised hypergeometric
function with p, q integers [16, Equation (9.14/1)].

Let us define another RV S W R1 þ R2. Using the
inequality between the arithmetic, A ¼ (R1 þ R2)=2, and
geometric, G ¼ (R1R2)1=2, means, given by A � G [20,
Equation (3.2.1)], S can be lower bounded as S � 2

ffiffiffiffiffi
R

p
.

Hence, using (2) (for d ¼ 1), gegc can be lower bounded
as gegc � 2R. Using (7) and after performing standard
RVs transformations, the CDF of the EGC receiver output
SNR can be upper bounded as
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with D ¼ G(m)/G(mþ 2/b) and j ¼ (D
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3.2.2 Weibull channel model: By letting m ¼ 1, that is,
assuming Weibull fading, (6) simplifies to
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By integrating (9) from zero to y, applying the
transformation w ¼ yb/2, and using [16, Equation (5.54/
176
1)], a closed-form expression for the CDF of R yields
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By following a procedure similar to that for deriving (8), the
CDF of EGC operating over correlated Weibull fading
channels can be upper bounded as follows
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with z ¼ 2[G(1 þ 2=b)
ffiffiffiffiffiffiffiffiffiffi
g1g2

p
]�b=(1 � r). Note that for

b ¼ 2 and r ¼ 0, (11) agrees with a previously derived
result [21, Equation (20)].

4 Performance analysis

In this section, several performance criteria of MRC and
EGC diversity receivers operating over correlated GG
fading channels are studied.

4.1 Amount of fading

The amount of fading (AoF), defined as Af W var(gout)=g
2
out

out, is a unified measure of the severity of the fading
channel and gives an insight into the performance of the
entire system [2]. It can be expressed in closed form in
terms of first- and second-order moments of gout as
Af ¼ m2/m1

2 2 1. Using (5), the AoF at the output of both
EGC and MRC receivers can be obtained.

4.2 Outage probability

The OP at the output of EGC is given as the probability that
the output SNR falls below a predetermined threshold gth.
This probability can be obtained by simply replacing g
with gth in the previously derived expressions for the
upper bounds, that is, (8) for GG fading channels and (11)
for Weibull fading channels, as

Pout(gth) ¼ Fgegc
(gth) (12)

4.3 Average bit error probability

One very convenient approach to evaluate the ABEP of
several modulation formats of signals transmitted in gener-
alised fading channels is to follow the moments-generating
function (MGF)-based approach [2]. However, the required
MGF of the output SNR for the receivers under consider-
ation is not readily available (It should be noted that an
analytical solution of this MGF can be extracted.
However, its form is computationally inefficient as it
includes infinite series of Meijer’s G-functions.). An
alternative and also efficient method to approximate the
MGF, and consequently evaluate the ABEP, is the so-called
Padé approximants [22], which has been used in the past in
various scientific fields, for example, to approximate PDFs
[23] and in wireless communications [15, 24]. A Padé
approximant is that rational function (of a specified order)
IET Commun., Vol. 2, No. 1, January 2008



whose power series expansion agrees with a given power
series to the highest possible order.

The MGF of the output SNR per symbol of EGC and
MRC receivers, that is, Mgout

(s) ¼ Ekexp (�sgout)l, can be
represented as a formal power series, for example, Taylor,
yielding

Mgout
(s) ¼

X1
n¼0

mn

n!
sn (13)

Although, in general, mn given by (5) is in closed form, the
above infinite series does not always converge or a very
high number of moments is required. The main advantage
of the Padé method is that an infinite series such as that in
(13) can be approximated by a rational expression of
finite low-order N1 and N2 . N1 polynomials for the nomi-
nator and denominator, respectively. Hence, the main
advandage of the Padé method is that only the first
(N1 þ N2) order moments are required for approximating
(13). In our research, we consider sub-diagonals Padé
approximants, that is, (N2 ¼ N1 þ 1), since it is only for

Fig. 1 MRC and EGC diversity employing Gray-encoded square
16-QAM signalling: ABEP against the first-branch average input
SNR per bit and for r ¼ 0.5

Fig. 2 EGC diversity employing Gray-encoded square M-PSK
signalling: ABEP against the first-branch average input SNR per
bit for r ¼ 0.5 and m ¼ 2
IET Commun., Vol. 2, No. 1, January 2008
such order of approximants that the convergence rate and
the uniqueness can be assured [15, 22]. Hence, by obtaining
accurate approximate rational expressions for Mgout

(s) and
using the MGF-based approach, the ABEP of EGC and
MRC can be numerically evaluated.

5 Performance evaluation results and discussion

In this section, numerically evaluated performance results
complemented by the equivalent computer simulation
ones are presented and discussed. These results include per-
formance comparisons of dual-branch MRC and EGC recei-
ver structures, employing various modulation formats and
different GG channel channels. As per our previous per-
formance analysis, the following performance criteria will
be used: ABEP [(5) and (13)], and OP [(8), (11) and
(12)]. From now on, when non-id fading channels are con-
sidered, it is assumed that g2 ¼ g1=

ffiffiffi
e

p
, similar to [25].

In Figs. 1 and 2, the ABEP is plotted as a function of the
average input SNR per bit of the first branch, that is,
gb ¼ g1=log2(M). In Fig. 1, the ABEP performance of
MRC and EGC is plotted for Gray-encoded square
16-quadrature amplitude modulation (QAM), with r ¼ 0.5

Fig. 3 EGC diversity over GG fading: OP against the normal-
ised outage threshold for r ¼ 0.5 and several values of b and m

Fig. 4 EGC diversity over Weibull fading: OP against the nor-
malised outage threshold for r ¼ 0.5 and several values of b
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and different values ofm andb. It is illustrated that the ABEP
improves with an increase of gb and/or b and/or m. Note
that for m ¼ 1 and b ¼ 2 Rayleigh fading is assumed,
while for m ¼ 4 and b ¼ 5 the fading severity is limited.
In Fig. 2, the ABEP of EGC is plotted for Gray-encoded
M-ary-phase-shift keying (PSK) (M ¼ 2, 8 and 16), for
r ¼ 0.5 and m ¼ 2. Moreover, for the case of id fading chan-
nels, it is assumed that b‘ ¼ 2, while for non-id, b1 ¼ 2 and
b2 ¼ 1.5. As expected, binary PSK has always the best per-
formance, whereas 16-PSK the worst. Furthermore, by con-
sidering id fading channels, the ABEP significantly
improves. For comparison purposes, computer simulation
results are also included in Figs. 1 and 2, verifying the accu-
racy of the proposed theoretical analysis.

In Figs. 3 and 4, the union upper bounds for the OP of an
EGC receiver are plotted as a function of the normalised
outage threshold and for id fading channels. Moreover, in
order to verify the tightness of the proposed bounds, curves
for the exact OP obtained by means of computer simulations
are also included. In Fig. 3, the generic case of GG fading
channel is considered with r ¼ 0.5 and different values of
b andm. It can be easily observed that asb and/orm increase,
that is, the severity of the fading decreases, the OP decreases,
whereas the differences between bound and simulation
curves lessen. Finally, in Fig. 4, the special case of Weibull
fading channel is considered with r ¼ 0.5 and different
values of the shaping parameter b. Once again by increasing
b, the OP decreases. In both cases, it can be easily
observed that the bounds are very close to the exact simu-
lation ones.

6 Conclusions

We analysed the performance of dual-branch EGC and
MRC diversity receivers operating over correlated GG
fading channel. First, closed-form expressions for the
moments of the output SNR were derived and then, follow-
ing the MGF-based approach, used to study the ABEP of
EGC and MRC. Furthermore, a tight upper bound for the
CDF of the output SNR of the EGC receiver operating
over GG fading channels was obtained, whereas for the
special case of Weibull fading, a mathematically simpler
bound was extracted in closed form. Several numerically
evaluated results were presented, and simulations were
also performed to verify the correctness and accuracy of
the proposed analysis.
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1 Stüber, G.L.: ‘Mobile communication’ (Kluwer, USA, 2003, 2nd edn.)
2 Simon, M.K., and Alouini, M.S.: ‘Digital communication over fading

channels’ (Wiley, New York, 2005, 2nd edn.)
178
3 Shankar, P.M.: ‘Error rates in generalized shadowed fading channels’,
Wirel. Pers. Commun., 2004, 28, (4), pp. 233–238

4 Bithas, P.S. et al.: ‘On the performance analysis of digital
communications over generalized-K fading channels’, IEEE
Commun. Lett., 2006, 5, (10), pp. 353–355

5 Stacy, E.W.: ‘A generalization of the Gamma distribution’, Ann.
Math. Stat., 1962, 33, (3), pp. 1187–1192

6 Coulson, A.J., Williamson, A.G., and Vaughan, R.G.: ‘Improved
fading distribution for mobile radio’, IEE Proc. Commun., 1998,
145, (3), pp. 197–202

7 Aalo, V.A., Piboongungon, T., and Iskander, C.D.: ‘Bit-error rate of
binary digital modulation schemes in generalized Gamma fading
channels’, IEEE Commun. Lett., 2005, 9, (2), pp. 139–141

8 Sagias, N.C., and Mathiopoulos, P.T.: ‘Switch diversity receivers over
generalized Gamma fading channels’, IEEE Commun. Lett., 2005, 9,
(10), pp. 871–873

9 Yacoub, M.D.: ‘The a2 m distribution: a physical fading model for
the Stacy distribution’, IEEE Trans. Veh. Technol., 2007, 56, (1),
pp. 27–34

10 Karagiannidis, G.K., Zogas, D.A., and Kotsopoulos, S.A.: ‘BER
performance of dual predetection EGC in correlative Nakagami-m
fading’, IEEE Trans. Commun., 2004, 52, (1), pp. 50–53

11 Aalo, V.A. et al.: ‘Performance of diversity receivers in generalised
Gamma fading channels’, IET Commun., 2007, 1, (3), pp. 341–347

12 Sagias, N.C. et al.: ‘On the performance analysis of equal-gain
diversity receivers over generalized Gamma fading channels’, IEEE
Trans. Wirel. Commun., 2006, 5, (10), pp. 2967–2975

13 Piboongungon, T. et al.: ‘Bivariate generalized gamma distribution
with arbitrary fading parameters’, Electron Lett., 2005, 41, (12),
pp. 709–710

14 Aalo, V.A., and Piboongungon, T.: ‘On the multivariate generalized
Gamma distribution with exponential correlation’. Proc. IEEE
Global Telecommun. Conf., Missouri, USA, 2005, vol. 3,
pp. 1229–1233

15 Karagiannidis, G.K.: ‘Moments-based approach to the performance
analysis of equal gain diversity in Nakagami-m fading’, IEEE
Trans. Commun., 2004, 52, (5), pp. 685–690

16 Gradshteyn, I.S., and Ryzhik, I.M.: ‘Table of integrals, series, and
products’ (Academic Press, New York, 2000, 6th edn.)

17 Papoulis, A.: ‘Probability, random variables, and stochastic processes’
(McGraw-Hill, New York, 1984, 3rd edn.)

18 Nakagami, M.: ‘The m-distribution – a general formula of intensity
distribution of rapid fading’ (Pergamon Press, Oxford, UK, 1960)

19 The Wolfram Functions Site. Wolfram; 2007, available at: http://
functions.wolfram.com

20 Abramowitz, M., and Stegun, I.A.: ‘Handbook of mathematical
functions, with formulas, graphs, and mathematical tables’ (Dover,
New York, 1972, 9th edn.)

21 Karagiannidis, G.K., Tsiftsis, T.A., and Sagias, N.C.: ‘A closed-form
upper bound for the distribution of the weighted sum of Rayleigh
variates’, IEEE Commun. Lett., 2005, 9, (7), pp. 589–591

22 Baker, G.A., and Graves-Morris, P.: ‘Padé Approximants’
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