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A Trivariate Nakagami-m Distribution with Arbitrary Covariance Matrix
and Applications to Generalized-Selection Diversity Receivers
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Abstract—This paper deals with a trivariate Nakagami-m
distribution derived from the diagonal elements of a Wishart
matrix. For this distribution, infinite series representations for
its probability density and cumulative distribution functions are
derived having an arbitrary covariance matrix and integer-order
fading parameters. Moreover, upper bounds on the error result-
ing from truncating the infinite series are obtained. Based on the
derived formulas, the performance of triple-branch generalized-
selection combining (GSC) receivers is analyzed. For this type
of receivers, the outage and the average bit error probability for
a variety of modulation schemes are analytically obtained. The
performance of GSC receivers is compared to that of conventional
selection and maximal-ratio diversity schemes. In order to check
the accuracy and convergence of the derived formulas, various
performance evaluation results are presented and compared to
equivalent simulation ones.

Index Terms—Average bit error probability (ABEP), corre-
lated statistics, diversity, generalized-selection diversity, maximal-
ratio combining (MRC), multichannel receivers, Nakagami-m
fading, order statistics, outage probability, selection diversity,
stochastic models, Wishart matrix.

I. INTRODUCTION

THE Nakagami-m distribution is used in modeling var-
ious propagation channels which are characterized by

multipath scattering with relatively large delay-time spreads
and different clusters of reflected waves [1]–[3]. Of particular
interest is the multivariate Nakagami-m distribution, which is
able to further modeling correlation among wireless channels
[1], [3]–[7]. Multichannel receivers operating in such channels
improve wireless link performance using efficient diversity
schemes [8]–[16]. Among the most known are the maximal-
ratio combining (MRC) and the selection combining (SC)
schemes. Also, a combination of MRC and SC, identified as
generalized-selection combining (GSC), has been proposed to
bridge the performance and complexity gaps between MRC
and SC.

Various works study the performance of GSC receivers over
correlated Nakagami-m fading channels [16]–[22]. For exam-
ple in [16], an analysis of GSC receivers over equicorrelated
slow frequency-nonselective Nakagami-m fading channel has
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been presented. Moreover in [19], [20], by assuming corre-
lated Nakagami-m fading with positive integer-order values
for the fading parameters, the performance of GSC and
threshold-based hybrid SC/MRC receivers has been analyzed.
More specifically in [19], a more general model than the
equicorrelated has been considered, while in [20], Green’s
matrix approximations have been used for studying arbitrary
correlation structures.

Besides, various research findings have been reported in the
statistics research literature, but have not been considered by
researchers working on wireless communications theory yet.
Some of them concern joint chi-square distributions derived
from the diagonal elements of the Wishart matrix [23]–[28].
Although the derivation of the joint moment-generating func-
tion (MGF) is straightforward, the extraction of the associated
probability density function (PDF) or cumulative distribution
function (CDF) is quite complicated. In [23], a closed-form
expression for the distribution of the diagonal elements of the
Wishart matrix has been obtained, but that result seems to be
difficult to be numerically evaluated. In [28], [29], expansions
for the PDF of a trivariate chi-square distribution have been
presented in terms of rapidly convergent infinite sums which
are simple for numerical evaluation.

Based on [29], a trivariate Nakagami-m distribution is
introduced in this paper. It is derived from the diagonal
elements of the complex Wishart matrix, having integer-order
fading parameters and an arbitrary covariance matrix. For
this distribution, infinite series representations for its PDF
and CDF as well as upper bounds on the error resulting
from truncating the infinite series are extracted. The derived
expressions are used to assess the performance of triple-
branch GSC receivers in terms of the outage and the average
bit error probability (ABEP). Performance comparisons with
conventional triple-branch MRC and SC receivers are also
presented.

The paper is organized as follows: In Section II, the trivari-
ate Nakagami-m distribution is introduced. In Section III,
the theoretical results presented in Section II are applied to
analyze the performance of triple-branch GSC receivers. In
Section IV, numerical and computer simulation results are
illustrated and compared, while the paper concludes with a
summary given in Section V.

Next, the following notations are used: (·)T for the trans-
pose, (·)−1 for the inverse, (·)H for the Hermitian transpose,
det (·) for the determinant, (·)∗ for the complex conjugate,
diag (·) for the diagonal elements, E〈·〉 for the expectation
operator, L

−1 [·; ·] for the inverse Laplace transform, and � (·)
and � (·) the real and imaginary parts operators, respectively.
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II. THE TRIVARIATE NAKAGAMI-m DISTRIBUTION

After first recalling same basic issues related to the Wishart
matrix, infinite series representations of the joint PDF and
CDF of the trivariate Nakagami-m distribution are provided,
which are the key results of this section. Additionally, upper
bounds on the error resulting from truncating the infinite series
are derived.

A. Preliminaries

Let Qp = [X1,p, X2,p, X3,p]T be the pth sample of a three-
dimensional zero-mean complex Gaussian random process
(p = 1, 2, . . . ,m). These processes are considered to be
mutually independent and identically distributed (id) having
a covariance matrix

Σ = 2

⎡⎣ σ2
1 c12 c13

c12 σ2
2 c23

c13 c23 σ2
3

⎤⎦ (1)

with σ2
� = E〈|X�,p|2〉/2 and c�,�′ = E〈X�,pX

∗
�′,p〉/2, ∀ � �= �′

(�, �′ = 1, 2, and 3). By defining a six-dimensional sample vec-
tor as Wp = [�(X1,p),�(X1,p),�(X2,p),�(X2,p),�(X3,p),
�(X3,p)]T and setting the crosscorrelation terms between real
and imaginary parts equal to zero, E〈�{X�,p}�{X�′,p}〉 = 0
∀�, �′ = 1, 2, 3, the joint PDF of Wp is

fWp (Wp) =
1√

(2π)6 det (C)
exp

(
−1

2
WT

p C−1 Wp

)
(2)

where C = E〈Wp WT
p 〉 having the following structure

C =

⎡⎢⎢⎢⎢⎢⎢⎣
σ2

1 0 c12 0 c13 0
0 σ2

1 0 c12 0 c13
c12 0 σ2

2 0 c23 0
0 c12 0 σ2

2 0 c23
c13 0 c23 0 σ2

3 0
0 c13 0 c23 0 σ2

3

⎤⎥⎥⎥⎥⎥⎥⎦ . (3)

The inverse of C is

C−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
a1 0 b1 0 b3 0
0 a1 0 b1 0 b3
b1 0 a2 0 b2 0
0 b1 0 a2 0 b2
b3 0 b2 0 a3 0
0 b3 0 b2 0 a3

⎤⎥⎥⎥⎥⎥⎥⎦ (4)

where

a1 =
σ2

2 σ
2
3 − c223√

det(C)
, b1 =

σ2
3 c12 − c13 c23√

det(C)
(5a)

a2 =
σ2

1 σ
2
3 − c213√

det(C)
, b2 =

σ2
1 c23 − c12 c13√

det(C)
(5b)

a3 =
σ2

1 σ
2
2 − c212√

det(C)
, b3 =

σ2
2 c13 − c12 c23√

det(C)
(5c)

while the determinant of C is det(C) = 2−6 [det(Σ)]2.
If we define vector X� = [�(X�,1),�(X�,1),�(X�,2),

�(X�,2), . . . ,�(X�,m),�(X�,m)], then its norm is given by
R2

� = ||X�||2 =
∑m

p=1[�2(X�,p) + �2(X�,p)], which essen-
tially denotes the diagonal elements of the complex Wishart
matrix, S =

∑m
p=1 Qp QH

p . It is obvious that R� is a

Nakagami-m random variable (RV), with an integer-order fad-
ing parameter m and average power Ω� = E〈R2

� 〉 = 2mσ2
� ,

having PDF

fR�
(r) =

2mm

Ωm
� (m− 1)!

r2m−1 exp
(
−m

Ω�
r2
)
. (6)

Also, the nth-order moment of R� [1, eq. (17)] is given by
E〈Rn

� 〉 = (Ω�/m)n/2 Γ(m+ n/2)/(m− 1)!, with Γ (·) being
the gamma function [30, eq. (8.310/1)].

B. Joint PDF

According to [29], there are two cases which should be
taken into consideration for the trivariate Nakagami-m PDF.
The first one is form = 1 and the second one form = 2, 3, . . .
Since the first case (Rayleigh fading) has been already studied
in [31], next we are exclusively interested in the second one.
Using (2), the joint PDF of R� can be extracted as [29, eq.
(11)]

fR1,R2,R3 (r1, r2, r3)

=
∫

|X1|=r1

∫
|X2|=r2

∫
|X3|=r3

fWp (Wp) dX1 dX2 dX3
(7)

where
∫
|X�|=r�

denotes integration over the surface of a 2m-
dimensional sphere of radius r�. The triple integral in (7)
has been solved in [29], and thus, the trivariate Nakagami-
m PDF with integer-order fading parameters and an arbitrary
covariance matrix (with entries R�,�′ = mΣ2

�,�′) can be
expressed as1

fR1,R2,R3 (r1, r2, r3) =
exp

[− (a1 r
2
1 + a2 r

2
2 + a3 r

2
3

)
/2
]

(m− 1) [det (Σ/2)]m (b1 b2 b3)
m−1

× r1 r2 r3

∞∑
k=m−1

k (−1)k−m+1

(
m+ k − 2
2m− 3

)
× Ik (b1 r1 r2) Ik (b2 r2 r3) Ik (b3 r1 r3)

(8)

where Ik (·) denotes the kth-order modified Bessel function
of the first kind [30, Section 8.406]. The power correla-
tion coefficient between �th and �′th channels, defined as2

ρ��′ = cov(R2
� , R

2
�′)/ [

√
var(R2

� )
√

var(R2
�′)], can be easily

expressed as a function of c��′ as c��′ =
√
ρ��′ Ω� Ω�′/(4m2).

Hence, all parameters given by (5) can be reexpressed in terms
of parameters of interest in wireless communications, such as
ρ��′’s, m, and Ω�’s, as follows

a1 =
2m
T Ω1

(1 − ρ23) , b1 =
−2m/T√

Ω1 Ω2

(
√
ρ12 −√

ρ23 ρ13)

(9a)

a2 =
2m
T Ω2

(1 − ρ13) , b2 =
−2m/T√

Ω2 Ω3

(
√
ρ23 −√

ρ12 ρ13)

(9b)

a3 =
2m
T Ω3

(1 − ρ12) , b3 =
−2m/T√

Ω1 Ω3

(
√
ρ13 −√

ρ12 ρ23)

(9c)
and det(Σ) = T

∏3
�=1 Ω�/m with T = 1 − (ρ12 + ρ23 +

ρ13) + 2
√
ρ12 ρ23 ρ13.

1Note that (8) agrees with a parallel and independent result [32, eq. (19)].
2As it is well known, ρ��′ is related to the correlation coefficient of the

underlying real Gaussian processes, ���′ , as ρ��′ = �2
��′ .
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1) Uncorrelated: In case where the three channels are
uncorrelated, i.e., ρ�,�′ = 0 ∀� �= �′ (T = 1), a� = 2m/Ω�

and b� = 0 ∀�. Based on the following power series expansion
for Ik (·)’s

lim
b�→0

Ik (b� r� r�′)
bm−1
�

=

{
1

(m−1)!

( r� r�′
2

)m−1
, k = m− 1;

0, k > m− 1,
(10)

all terms except for k = m − 1 vanish in the sum in (8), re-
ducing fR1,R2,R3 (r1, r2, r3) to a product of three independent
marginal PDFs, i.e., fR1,R2,R3(r1, r2, r3) =

∏3
�=1 fR�

(r�).
2) Constant correlation: In case of constant correlation

among the three channels, i.e., ρ�,�′ = ρ ∀� �= �′ (T =
1 − 3 ρ+ 2 ρ3/2), a� = 2m (1 − ρ)/Ω� and

b1 =
2mτ√
Ω1 Ω2

, b2 =
2mτ√
Ω2 Ω3

, and b3 =
2mτ√
Ω1 Ω3

with τ =
√
ρ/(2 ρ−√

ρ− 1).
3) Exponential correlation: In case of exponential cor-

relation among the three channels, i.e., ρ�,�′ = ρ|�−�′|

∀�, �′ (T = (1 − ρ)2), ai = 2m/[Ωi (1 − ρ)] (i =
1 and 3), a2 = (2m/Ω2) (1 + ρ)/(1 − ρ) and bj =
−(2m/

√
Ωj Ωj+1)

√
ρ/(1 − ρ) (j = 1 and 2), b3 = 0.

Note that using (10) and setting the above specific form of
parameters to (8), fR1,R2,R3 (r1, r2, r3) reduces to [6, eq. (3)].

C. Joint CDF

Using the PDF expression given by (8), the corresponding
joint CDF of R� can be calculated as FR1,R2,R3(r1, r2, r3) =∫ r1

0

∫ r2

0

∫ r3

0 fR1,R2,R3(x, y, z) dxdy dz. Using an infinite se-
ries representation for Bessel functions [30, eq. (8.445)] in (8)
and after performing some straightforward algebraic manipu-
lations, yields

FR1,R2,R3 (r1, r2, r3) =
T 2m

m− 1

×
∞∑

k=m−1

∞∑
l1,l2,l3=0

k (−1)k−m+1

(
m+ k − 2
2m− 3

)

×
3∏

�=1

ω2 l�+k+1−m
� n�!

ψn�+1
� l�! (l� + k)!

×
[
1 − exp

(
−mψ�

T Ω�
r2�

) n�∑
p=0

1
p!

(
mψ�

T Ω�
r2�

)p
]

(11)

with n1 = l1 + l3 + k, n2 = l1 + l2 + k, and n3 = l2 + l3 + k.
Also, ψ�’s and ω�’s are defined as ψ1 = 1−ρ23, ψ2 = 1−ρ13,
ψ3 = 1 − ρ12 and ω1 = −√

ρ12 +
√
ρ23 ρ13, ω2 = −√

ρ23 +√
ρ12 ρ13, ω3 = −√

ρ13 +
√
ρ12 ρ23. Note that (11) consists

only of elementary functions.

D. Truncation Error

In order to find a simple bound for the truncation error of
the CDF series in (11), we follow the method presented in [31,
Section II.B]. Assume that the series in (11) are limited to L0,
L1, L2, and L3 terms in indexes k, l1, l2, and l3, respectively.
The remaining terms constitute the truncation error. Based on

TABLE I
NUMBER OF REQUIRED TERMS FOR CONVERGENCE OF (11) FOR THE

CONSTANT CORRELATION MODEL TO ACHIEVE A TARGET RATIO
|ET |/FR1,R2,R3(r, r, r) < 10−3

r2/Ω = 0.3 r2/Ω = 1 r2/Ω = 3
m = 2 m = 4 m = 2 m = 4 m = 2 m = 4

ρ = 0.1 6 9 5 7 4 6
ρ = 0.5 15 21 12 15 10 13
ρ = 0.7 23 38 20 29 10 13

the fact that 1− exp(x)
∑n�

p=0 x
p/p! ≤ 1, the truncation error

of (11) can therefore be upper bounded by

|ET (L0, L1, L2, L3)| ≤
∞∑

k=L0

∞∑
l1=0

∞∑
l2=0

∞∑
l3=0

H (k, l1, l2, l3)

+
L0−1∑

k=m−1

∞∑
l1=L1

∞∑
l2=0

∞∑
l3=0

H (k, l1, l2, l3)

+
L0−1∑

k=m−1

L1−1∑
l1=0

∞∑
l2=L2

∞∑
l3=0

H (k, l1, l2, l3)

+
L0−1∑

k=m−1

L1−1∑
l1=0

L2−1∑
l2=0

∞∑
l3=L3

H (k, l1, l2, l3)

(12)

with

H (k, l1, l2, l3) =
T 2m

m− 1

(
m+ k − 2
2m− 3

)(
n1

l3

)(
n2

l1

)
×
(
n3

l2

) 3∏
�=1

|ω�|2 l�+k+1−m

ψn�+1
�

.

(13)

As an example, we consider the constant correlation model,
i.e., ρ��′ = ρ ∀� �= �′ (ψ� = 1 − ρ and ω� = −√

ρ+ ρ), with
m = 2, 4 and ρ = 0.1, 0.5, 0.7. Setting r2�/Ω� = r2/Ω ∀�
and assuming L0 = L1 = L2 = L3, Table I summarizes
the number of the terms required in (11) to achieve a ratio
|ET |/FR1,R2,R3(r, r, r) < 10−3. As shown, the convergence
rate depends strongly on m and ρ. Specifically, the higher
the m and/or ρ are, the more terms are needed. However, as ρ
approaches to unity, the bound in (12) becomes loose similarly
to [4], [6]. Moreover, for fixed m and ρ, as r2/Ω increases,
less terms are needed in the CDF series to achieve the target
ratio.

III. TRIPLE-BRANCH GSC RECEIVERS

In this section, the performance of triple-branch GSC
receivers operating over arbitrarily correlated Nakagami-m
fading channels is analyzed, utilizing known issues from the
order statistics theory. The MGF of the GSC output signal-to-
noise ratio (SNR) per symbol is analytically obtained and used
to evaluate both the ABEP for various signalling constellations
as well as the outage probability following the well-known
MGF-based approach [3].

A. System Model

We consider a GSC(K ,3) (K = 1, 2, 3) receiver op-
erating over an arbitrary correlated Nakagami-m multipath
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fading environment with not necessarily id channel statistics.
According to GSC(K ,3) scheme, the K strongest branches
having the highest instantaneous SNRs are selected among the
three available and appropriately combined. The GSC(K ,3)
reception is equivalent to MRC reception if all three branches
are combined (K = 3), while it is equivalent to SC reception
if only one out of the three branches is selected (K = 1).

The baseband received signal at the �th diversity branch
is ζ� = z R� + w� where z is the transmitted symbol with
energy Es = E〈|z|2〉, R� is the Nakagami-m distributed
fading envelope, and w� is the additive white Gaussian noise
with a single-sided power spectral density N0. The noise
components are assumed to be statistically independent of
the signal and uncorrelated to each other. Moreover, all three
channels are considered as slowly time varying, and thus, their
characteristics are perfectly known to the receiver.

B. SNR Joint Statistics

The instantaneous SNR per symbol γ� = R2
� Es/N0 in the

�th input branch is an Erlang RV with γ� = Ω�Es/N0 being
the corresponding average input SNR per symbol. By applying
the following RVs transformation R� =

√
Ω� γ�/γ� in (8), the

joint PDF of γ1, γ2, γ3 becomes

fγ1,γ2,γ3 (γ1, γ2, γ3) =
23 (m−1) exp

(
− 1

2

∑3
�=1 ã� γ�

)
(m− 1)

[
det
(
Σ̃
)]m (

b̃1 b̃2 b̃3

)m−1

×
∞∑

k=m−1

k (−1)k−m+1

(
m+ k − 2
2m− 3

)
Ik

(
b̃1

√
γ1 γ2

)
× Ik

(
b̃2

√
γ2 γ3

)
Ik

(
b̃3

√
γ1 γ3

)
.

(14)

The parameters ã� and b̃� as well as the determinant det(Σ̃)
can be easily derived from corresponding a� and b�, and
det(Σ), just replacing Ω� with γ� ∀� in (9). Similarly to
Section II-C, the corresponding CDF to fγ1,γ2,γ3(γ1, γ2, γ3)
can be easily found to be

Fγ1,γ2,γ3 (γ1, γ2, γ3) =
T 2m

m− 1

∞∑
k=m−1

∞∑
l1,l2,l3=0

k (−1)k−m+1

×
(
m+ k − 2
2m− 3

) 3∏
�=1

ω2l�+k+1−m
� n�!

ψ1+n�

� l�! (l� + k)!

×
[
1 − exp

(
−mψ�

T γ�

γ�

) n�∑
p=0

1
p!

(
mψ�

T γ�

γ�

)p
]
.

(15)

C. Order Statistics

The instantaneous SNR per symbol at the output of a
GSC(K ,3) receiver can be expressed as γgsc =

∑3
k=1 ξk γ(k),

where ξk = 1, if k = 1, 2, K , and ξk = 0, if k = K + 1,
3, while γ(�)’s are the descending ordered γ�’s, i.e., γ(1) ≥
γ(2) ≥ γ(3) (by default, ξ1 = 1). Based on (14) and [22,
Appendix], the joint PDF of γ(�)’s can be expressed as

fγ(1),γ(2),γ(3) (γ1, γ2, γ3) =
∑

ei∈S3

fγ1,γ2,γ3

(
γei[1], γei[2], γei[3]

)
(16)

with ei ∈ S3 denoting e� = {ei[1], ei[2], ei[3]}, one specific
permutation of the integers {1, 2, 3}. The MGF of the GSC
output SNR per symbol can be obtained from the above
equation as Mγgsc(s) = E〈exp(−s γgsc)〉. Using an infinite
series representation for Bessel functions [30, eq. (8.445)] in
(14), this MGF yields

Mγgsc(s) =
23 (m−1)

(m− 1)
[
det
(
Σ̃
)]m

×
∞∑

k=m−1

∞∑
l1,l2,l3=0

k (−1)k−m+1

(
m+ k − 2
2m− 3

)

×
[

3∏
�=1

2−k−2l� b̃2 l�+k+1−m
�

l�! (l� + k)!

]
×
∑

ei∈S3

G
[
s; nei[1], ãei[1]; nei[2], ãei[2]; nei[3], ãei[3]

]
(17)

with G(s; n1, a1; n2, a2; n3, a3) =
∫∞
0

∫∞
γ3

∫∞
γ2

{∏3
i=1 γ

ni

i

exp[−(ai/2+s ξi) γi]} dγ1 dγ2 dγ3. Using [30, eqs. (8.350/2)
and (8.352/2)], this triple integral can be solved in closed form
as

G (s; n1, a1; n2, a2; n3, a3)

= n1!
n1∑

p1=0

n2+p1∑
p2=0

(p1)n2
(p2)n3

3∏
�=1

[
(B� + s)

�∑
i=1

ξi

]−u�

(18)

with B� = 0.5
∑�

i=1 ai/
∑�

i=1 ξi, u1 = 1 + n1 − p1, u2 =
1 + p1 + n2 − p2, and u3 = n3 + p2 + 1.

Note that for ξ1 = ξ2 = ξ3 = 1 (K = 3: MRC scheme),
(17) numerically agrees with [10, eq. (11)] Mγmrc(s) =
[det(I3 + s Σ̃)]−m, with I3 being the 3 × 3 identity matrix.

D. Performance Analysis

Based on the above derived expressions, next we analyze the
performance of GSC(K ,3) in terms of the ABEP and outage
probability.

1) Error probability: Using the MGF of triple-branch GSC
output SNR per symbol, as given by (17), the ABEP for
non-coherent binary frequency shift keying (NBFSK) and
binary differential phase shift keying (BDPSK) modulation
schemes can be directly calculated (e.g. for BDPSK, P be =
0.5Mγgsc(1)). For other schemes, including binary phase shift
keying (BPSK), M -ary-phase shift keying (M -PSK), quadra-
ture amplitude modulation (M -QAM), amplitude modulation
(M -AM), and differential phase shift keying (M -DPSK),
single integrals with finite limits and integrands composed of
elementary (exponential and trigonometric) functions, have to
be readily evaluated via numerical integration [3].

2) Outage probability: Let γth be a certain specified outage
threshold. Then, the outage probability is defined as the prob-
ability that γgsc falls below γth, i.e., Pout(γth) = Pr(γgsc ≤
γth) = Fγgsc(γth), where Fγgsc (·) is the CDF of γgsc. The
outage probability can be extracted from Mγgsc(s) based on
the following Laplace transformation

Pout (γth) = L
−1

{Mγgsc(s)
s

; t
}∣∣∣∣

t=γth

. (19)
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Two important and generic cases are considered:
• ã1 �= ã2 �= ã3: By substituting (17) in (19) and due to

the linearity of the Laplace transform, we only have to
evaluate

g (γth; n1, a1; n2, a2; n3, a3)

= L
−1

{
1
s
G (s; n1, a1; n2, a2; n3, a3) ; t

}∣∣∣∣
t=γth

.

(20)

By invoking the theory of rational functions [30,
Section 2.102], the above complicated transformation
splits to several transformations of the form L

−1{(s +
B�)−q/s; t} (q integer), which using [30, Section 17.1],
can be extracted as L

−1{(s + B�)−q/s; t} = [1 −
exp(−B� t)

∑q−1
p=0 (B� t)p/p!]/Bq

� . Hence, after a lot of
algebraic manipulations, an analytical expression for the
outage probability of GSC(K ,3) receivers can be obtained
from (17), simply replacing G’s with

g (γth; n1, a1; n2, a2; n3, a3)

= n1!
n1∑

p1=0

n2+p1∑
p2=0

(p1)n2
(p2)n3

⎡⎣ 3∏
�=1

(
�∑

i=1

ξi

)−u�
⎤⎦

×
3∑

�=1

u�∑
q=1

βq

Bq
�

[
1 − exp (−γthB�)

q−1∑
p=0

1
p!

(γthB�)
p

]
(21)

where βq = Ψ�(s)(u�−q)|s=−B�
/(u� − q)! and Ψ�(s) =

(s + B�)u�
∏3

n=1(Bn + s)−un . This case (with distinct
ã�’s) is appropriate for studying the linearly arbitrary cor-
relation model with non id channel statistics (ρ1,2 = ρ2,3

and γ� �= γ�′ ∀� �= �′).
• ã� = ã (B� = B) ∀�: Similarly to the analysis of the

previous case

g (γth; n1, a1; n2, a2; n3, a3) =
n1!

B3+
∑ 3

�=1 n�

×
⎡⎣1 − exp (−B γth)

2+
∑ 3

�=1 n�∑
p=0

1
p!

(B γth)p

⎤⎦
×

n1∑
p1=0

n2+p1∑
p2=0

(p1)n2
(p2)n3

3∏
�=1

(
�∑

i=1

ξi

)−u�

.

(22)

This case (with identical ã�’s) is appropriate for studying
the constant correlation model with id channel statistics
(ρ�,�′ = ρ ∀� �= �′ and γ� = γ).

Note that for triple-branch SC receivers, a simple outage
probability expression can be easily extracted, setting γ� = γth

∀� in (15), i.e., Pout(γth) = Fγ1,γ2,γ3(γth, γth, γth).

IV. NUMERICAL AND COMPUTER SIMULATION RESULTS

In this section, in order to provide the applicability and
show the usefulness of the proposed analysis, numerical and
computer simulation results for GSC(K ,3) receivers operating
over arbitrary correlated and not necessarily id Nakagami-m
fading channels are provided.

Setting equal summation limits for the truncation of (17) to
all sums, Table II summarizes the number of terms needed so

TABLE II
NUMBER OF REQUIRED TERMS FOR CONVERGENCE OF (17) FOR THE

CONSTANT CORRELATION MODEL

ρ = 0.1 ρ = 0.5 ρ = 0.7
γ (dB) m = 2 m = 4 m = 2 m = 4 m = 2 m = 4

-5 4 6 7 10 10 19
0 3 6 6 8 7 13
5 2 4 4 6 5 8
10 1 3 3 4 4 7

Fig. 1. ABEP of Gray-encoded M -PSK with GSC(2,3) receivers for a
linearly arbitrary correlation model as a function of the first branch average
input SNR per bit.

as the ABEP of BDPSK to converge with relative error er ≤
5% comparing to accurate computer simulations. The constant
correlation model is considered with id channels (γ� = γ)
various values of ρ and m = 2, 4. Interestingly enough, only
a few terms are required in order the series in (17) to converge.
An increase on γ, results to a decrease of the required number
of terms, while for a fixed γ, the required number of terms
for convergence increases with increasing m and/or ρ.

Next, an exponential power delay profile (PDP) γ� =
γ1 exp[−δ (� − 1)] with power decaying factor δ = 0.1 is
considered. In Fig. 1, the ABEP for Gray-encodedM -ary PSK
scheme is plotted as a function of the first branch average
input SNR per bit γb = γ1/ log2(M). The linearly arbitrary
correlation model has been adopted with ρ12 = ρ23 = 0.795
and ρ13 = 0.605 [10]. As expected, the ABEP improves as M
decreases and/or m and/or γb increase. In Figs. 2 and 3, the
constant correlation model [3], [9] with ρ��′ = 0.1 ∀� �= �′ has
been considered. More specifically, in Fig. 2, a few curves are
illustrated for the ABEP of BDPSK modulation as a function
of γb, several values of m, and K = 1, 2, 3. Furthermore, in
Fig. 3, the outage probability is plotted as a function of the first
branch normalized outage threshold, γ1/γth. For comparison
purposes, in Figs. 2 and 3 a few curves for SC and MRC are
also included. As expected, it is clear that the MRC scheme
outperforms both GSC(2,3) and SC ones.

In all the above figures, i.e., Figs. 1–3, the numerically
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Fig. 2. ABEP of BDPSK with GSC(2,3), MRC, and SC receivers for a
constant correlation model as a function of the first branch average input
SNR per bit.

Fig. 3. Outage probability for GSC(2,3), MRC, and SC receivers for a
constant correlation model as a function of the first branch normalized outage
threshold.

evaluated results are compared to equivalent simulation ones.
These comparisons clearly show that the curves for the ABEP
coincide with square pattern signs obtained via simulations,
verifying the correctness of the proposed analysis.

V. CONCLUSIONS

A rapidly convergent infinite series representation of a
trivariate Nakagami-m PDF with arbitrary covariance matrix
was derived from the diagonal elements of the Wishart matrix.
Following the MGF-based approach and by extracting the
MGF of the GSC output SNR, the performance of GSC re-
ceivers was analyzed and compared to conventional ones such

as MRC and SC. Finally, extensive numerical and computer
simulation results were presented and compared, and a perfect
match was observed.
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