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Abstract—Secrecy capacity is a fundamental information-
theoretic performance metric to predict the maximum data rate
of reliable communication, while the intended message is not
revealed to the eavesdropper. Motivated by this consideration in
this paper, a unified communication-theoretic framework for the
analysis of the probability of nonzero secrecy capacity, the secrecy
outage probability, and the secrecy capacity of multiple-antenna
systems over fading channels is proposed. Specifically, a power-
ful frequency-domain approach is first developed in which the
integrals involved in the evaluation of the probability of nonzero
secrecy capacity and secrecy outage probability are transformed
into the frequency domain, by employing Parseval’s theorem. A
generic approach for the evaluation of the asymptotic secrecy
outage probability at high signal-to-noise ratio (SNR) region is
also introduced, thus providing useful insight as to the parame-
ters affecting the secrecy performance. Finally, a unified numer-
ical approach for computing the average secrecy capacity of
multiple-antenna systems under arbitrary fading environments is
developed. The proposed framework is general enough to accom-
modate any well-known multiantenna transmission technique and
fading model. Finally, the secrecy performance of several multiple-
antenna system setups is assessed, in the presence of generalized
fading conditions and arbitrary antenna correlation, while var-
ious numerical and computer simulation results are shown and
compared to substantiate the proposed mathematical analysis.

Index Terms—Characteristic function approach, generalized
fading channels, moment generating-function, multiple-antenna
systems, physical layer security, secrecy capacity.

I. INTRODUCTION

HE RECENT rapid expansion and proliferation of

the wireless communication systems has prompted an
increasing demand for transmission security. Future communi-
cation systems will be decentralized and ad-hoc, thus rendering
the whole system vulnerable and susceptible to eavesdrop-
ping. Therefore, there has been a considerable recent attention
on studying the fundamental ability of the physical layer to
augment secrecy in wireless communications networks. The
seminal work on wiretap channel in [1] showed that perfect
secrecy can be achieved if the eavesdroppers channel is a
degraded version of the main channel. In a recent work [2],
it was suggested that it is possible to augment perfect secrecy
even when the main channel channel conditions are on average
worse compared to those of the eavesdroppers channel.
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Recently, considerable research efforts have been made
for investigating various transmission/reception scenarios for
secrecy enhancement. In this context, in [3]-[8] it was sug-
gested that multiple-input multiple-output (MIMO) techniques
can be employed as an effective means to improve secrecy
performance of wireless communication systems. In these
works, MIMO wiretap channels have been addressed from
an information-theoretic perspective and their secrecy capac-
ity was characterized. The secrecy performance of various
multiple-antenna schemes was addressed in a large number of
contributions for various system setups, including maximal-
ratio combining (MRC) and orthogonal space-time block codes
(OSTBC) with transmit antenna selection. Representative
examples can be found in [9]-[17] and references
therein.

Most of the aforementioned contributions employ the so-
called probability density function (PDF)-based approach to
compute performance metrics such as the average secrecy
capacity, the probability of non-zero secrecy capacity and the
secrecy outage probability. This approach requires the knowl-
edge of the PDFs of the received signal-to-noise ratio (SNR) for
the main channel and the eavesdropper channel. Such frame-
works have provided closed-form solutions for the aforemen-
tioned performance metrics assuming simple channel models,
namely Rayleigh, or Nakagami-m with integer fading param-
eters. Such closed form expressions, however, are attainable
in the cases where the PDF of the SNR for the main channel
and the eavesdropper channel can be expanded in a canonical
exponential form, i.e. when the aforementioned fading mod-
els are considered. However, the wireless applications in most
recent years have become increasingly sophisticated, thereby
requiring more complicated channel models and sophisticated
diversity techniques [18]. For several system setups and fad-
ing scenarios frequently encountered in practice, modeled by
generalized fading distributions (e.g, k-, n-u, generalized cor-
related Rice-Nakagami), the PDF of the SNR at the receiver
end is generally not available in a simple and canonical form.
Thus, the evaluation of these PDFs in terms of tabulated func-
tions can be a very cumbersome task. Specifically, in case of
a generalized fading scenario, the evaluation of the secrecy
performance of multiple-antenna systems involves the numer-
ical evaluation of a multi-fold integral. As the number of
diversity branches increases, this approach is rendered com-
putationally intractable and the corresponding results may not
converge.

On the other hand, the existing analytical frameworks
employ ad-hoc methods very different from each other.
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Consequently, the need of a unified framework for assessing
the secrecy performance of modern wireless communication
systems emerges. Recent advances on performance analysis
of digital communication systems over fading channels have
demonstrated the potential of employing either a moments-
generating function (MGF)- or a characteristic function (CHF)-
based approach for simplifying performance analysis in such
situations [19]-[21]. Such approaches allow for an efficient
computation of important performance indexes in those sce-
narios where the application of the PDF-based approach seems
impractical. It is also noted that so far such frameworks have
been extensively used for evaluating metrics such as average bit
error probability, outage probability and channel capacity [22].

However, the main motivation behind the introduction of
a novel MGF-based approach for secrecy performance anal-
ysis is the well-proven flexibility of employing this method,
due to the fact that an MGF-based method allows the quick
and simple evaluation of the secrecy performance in scenar-
ios where a PDF-based approach would either require very
cumbersome analytical derivations or where the method would
be too complicated to be used in practice. To prove and
appreciate the usefulness of an MGF-based approach for the
analysis of secrecy performance, in this work we propose sys-
tem setups (related to SIMO and MIMO systems) where using
an MGF-based approach is beneficial, if not the only practi-
cal way to keep the complexity of the analytical development
at a low level. For simpler system models and fading scenar-
ios, it is shown that the proposed MGF-based approach can
yield closed-form expressions for important performance met-
rics such as the secrecy outage probability and the probability of
non-zero secrecy capacity. Note that, to the best of the authors’
knowledge, these approaches have not yet been used in a sys-
tematic way for the assessment of the secrecy performance of
wireless systems.

The main contributions of this paper are summarized as

follows:

e A unified numerical approach for computing the average
secrecy capacity of multiple antenna systems in arbi-
trary fading environments is introduced. The proposed
approach only requires the knowledge of the moment
generating functions of the receiving SNR for the main
channel and the eavesdropper channel, yields accurate
results despite its simplicity while being easy to program.

e A generic frequency-domain approach is developed for
the evaluation of the probability of non-zero secrecy
capacity and secrecy outage probability. The correspond-
ing integrals are transformed into the frequency domain,
by employing Parseval’s theorem. Such a transformation
only requires the knowledge of the CHFs of the receiving
SNR for the main channel and the eavesdropper channel,
that can be evaluated in a straightforward manner for a
variety of multiple-antenna transmission schemes.

e In order to provide useful insights as to the parame-
ters affecting secrecy performance of multiple antenna
systems, a comprehensive frequency-domain approach is
also developed to assess the secrecy outage probability
in the high SNR regime. The proposed approach only
requires the knowledge of the moment generating func-
tions of the receiving SNR for the main channel and the
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eavesdropper channel and can be employed to character-
ize the secrecy outage probability in terms of the secrecy
diversity order.

e The newly derived framework is employed to assess the
secrecy performance of several multiple-antenna wiretap
channels, namely:

1) MIMO wiretap channel employing OSTBC and
operating under generalized fading. The following
two distinct cases of interest are considered: In
the first case, a correlated MIMO Rayleigh wiretap
channel is considered. The second case addresses
the secrecy performance of a non-correlated MIMO
wiretap channel where the propagation in the legit-
imate link is dominated by a strong line-of-sight
(LOS) component, whereas for the other link, there
is no LOS signal present in its propagation chan-
nel. Fading in the legitimate channel is modeled by
the x — p distribution whereas in the eavesdropper
channel by the n — u distribution [23]. To the best
of the authors’ knowledge, the secrecy performance
of wiretap channels with OSTBC in the presence of
mixed generalized fading has not yet been addressed
in the open technical literature. This is because of
the fact that an exact analytical solution is very dif-
ficult, if not impossible, to be obtained, based on the
conventional PDF approach.

2) A Rayleigh single-input ~ multiple-output
(SIMO) channel with  generalized-selection
combining (GSC) at the legitimate receiver and the
eavesdropper.

3) A correlated SIMO channel subject to general-
ized Ricean fading with MRC at the legitimate
receiver and the eavesdropper, assuming arbitrary
fading parameters and arbitrary correlation. Again,
to the best of the authors’ knowledge, the secrecy
performance of such wiretap channels in the pres-
ence of generalized correlated fading with arbitrary
fading parameters has not yet been addressed in
the open technical literature, since the conventional
PDF-based approach is rendered mathematically
intractable. Note that a special case of this very
general problem has been addressed in [16], where
the secrecy performance of a wiretap channel with
OSTBC was addressed, assuming that the legitimate
and eavesdropper channels experience correlated
Rice and Rayleigh fading, respectively. The authors
employed the Moschopoulos’ method to provide
infinite series representations of the secrecy outage
probability [24].

The proposed analysis is presented and verified by numerically
evaluated results accompanied with Monte-Carlo simulations
results.

The remainder of this paper is structured as follows.
Section II outlines the problem under consideration. In
Section III the proposed MGF- and CHF-based approaches for
the evaluation of the probability of non-zero secrecy capacity
and secrecy outage are introduced. In Section IV the proposed
framework is employed to derive corresponding analytical
expressions for three different system scenarios that are MIMO
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wiretap channels with OSTBC under generalized fading, SIMO
Rayleigh wiretap channels with GSC and generalized Ricean
SIMO wiretap channels with arbitrary correlation and MRC. In
Section V the various performance results and their interpreta-
tions are presented. Finally, concluding remarks are presented
in Section VI.

Mathematical Notations: Throughout this paper, 1 = /—1,
C is the set of complex numbers, vec (-) is the vectorizing
operator that maps the elements of a given matrix into a col-
umn vector, ||- ||2F denotes the Frobenius norm of a matrix, (~)T
denotes the matrix transpose operator, (-)* denotes the matrix
hermitian transpose operator, I, denotes the M x M iden-
tity matrix, diag[-] denotes the diagonal matrix, ® denotes the
matrix Kronecker product, Tr (-) denotes the trace of a matrix,
[E(-) denotes the expectation operator and Pr (-) denotes proba-
bility. The PDF of a random variable X is denoted as fy (), its
cumulative distribution function (CDF) as Fy (-), its moment
generating function (MGF) as My (-), and its characteristic
function (CHF) as ¢x (). In terms of mathematical functions
used in this paper, sgn (-) denotes the signum function, 9i{-}
and J{-} are the real and imaginary parts of a complex number,
respectively, [-[17 = max{x, 0}, [x] is the smallest integer not
less than x, z* denotes the conjugate of the complex number z,
F{g(t); t; w} denotes the Fourier transform of the function g (),
L{g(t); t; s} denotes the Laplace transform of the function g (),
LY G(s); s; 1} denotes the inverse Laplace transform of the
function G(s), I' (-) is the Gamma function [25, eq. (8.310/1)],
and § (-) is the Dirac’s delta function.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A generic MIMO wiretap channel is considered which con-
sists of a transmitter A Alice, the legitimate receiver B Bob and
an eavesdropper Eve €. Throughout this analysis quasi-static
fading channels with generally distributed block fading in the
main channel from Alice to Bob (A — B), as well as in the
eavesdroppers channel from Alice to Eve (A — &) are consid-
ered. In both channels, it is assumed that the transmission block
length is less than or equal to the coherence time. Also, the
main channel and the eavesdroppers channel are assumed to be
independent of each other.

In this work, two eavesdropping scenarios are considered,
namely active eavesdropping and passive eavesdropping. Under
the active eavesdropping scenario, channel state information
(CSI) of the eavesdroppers channel is also known at Alice. In
such a scenario, a fundamental secrecy performance metric is
the achievable secrecy capacity of the MIMO wiretap channel,
defined as [2]

Cs = [logy (1 + y5) — log, (1 + yg)]+ , (1)

where yg and y¢ denote the receiving SNRs for the main and
the eavesdropper channels, respectively. The average secrecy
capacity is given by [17, eq. (15)]

- 1 © Fp, (x) B
CS_ln(Z)/o T 4x [1— Fy,(x)]dx. 2

Under the passive eavesdropping scenario, CSI of the eaves-
droppers channel is not available to either Alice or Bob. In such
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a scenario, Alice transmits at a constant code rate Rg. The trans-
mission from Alice guarantees perfect secrecy if Cg > Rg. On
the other hand, if Cg < Rg, the transmission is vulnerable to
eavesdropping and perfect secrecy is not guaranteed. A useful
and practical metric for assessing the secrecy performance of
the wiretap channel is the secrecy outage probability, Poy. It
is defined as the probability that the secrecy capacity does not
exceed a predefined secrecy rate, Rg. Specifically, the secrecy
outage probability is the probability that either there exists an
outage between Alice and Bob, or Eve can eavesdrop on data
such that perfect secrecy cannot be guaranteed. Mathematically
speaking, Py can be expressed as [9]-[12]

o]

Pouw = Pr{Cs < Rg} = / Fy, [29%' (1+x)— 1] Fye () dx.
0
3)
Another relevant metric is the probability of non-zero secrecy
capacity, [9]-[12] that can be expressed as

Pnz =Pr{Cs > 0} = 1 —Pr{Cs < Rs}rs—0

o0

=1 —/Fm(x) fye (x) dx. )

0

Note that (2), (3) and (4) provide a general and unified PDF-
based approach for the assessment of the secrecy performance
of every communication system, for which the CDF of yg and
the PDF of yg¢ are readily available. In a general multiple-
antenna scenario, the evaluation of (2), (3) and (4) involves
multi-fold integrals of PDFs or inverse Laplace transform
operations of the product of the corresponding MGFs. Such
approaches are certainly computationally inefficient, especially
for an increased number of antennas. Concerning this well-
recognized and cumbersome problem, it is more insightful to
transform the integrals appearing in (2), (3) and (4) in the
frequency domain, since simple and yet computationally inef-
ficient expressions for the MGFs or the CHFs of yp and yg
are readily available, for a variety of multiple-antenna systems
with or without correlation, and with the most of them being in
closed form.

III. FREQUENCY DOMAIN APPROACH

In this section, alternative expressions for (2), (3) and (4) in
the frequency domain, are derived.

A. Average Secrecy Capacity

Proposition 1: A numerically efficient method to evaluate
(2) in the frequency domain is deduced as

2 Ny Nk
(?5% ViXi Wk
nln(Z);kX:; I

.6
cj iy xt—cj—1y ©)

Xm{Myg(cj+lyk)l_MV3(x]2'_C/ =1 Vk)
J
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where Ny, Nk are the numbers of integration points, x;, v;
are abscissas and weights, computed using the methodology
presented in [26], yx, wy are abscissas and weights, defined
respectively as [27]

. T 2k —1 +7T

=tan | — cos b4 —

Yk 4 2Nk 4
72 sin(%n)

4 Ng cos? [% cos (%n) + Z]

(6a)

wi = (6b)

and c; are arbitrary constants that guarantee the convergence
of (5).

Proof: By employing the well-known identity (1 +
s)~ ! fo exp[—(s 4+ 1) t]dr and exploiting the definition of
the Laplace transform, (2) becomes

Cs =

/0 exp(—s) L {Fye (X)) = Fyp (x)); x; s} ds.
@)

Then by employing [28, eqs. (1.1.1.20), (1.1.5.2), (2.1.1.1)], as
well as the change of variables s = 12, (7) becomes

Gs=—=> /OO —*
=i ) o)

© IM, (cH+iu) 1 =M, (t2—c—1u)
m Ye YB d d[
X/(; { cH+iu t2—c—1u "
(3)

where ¢ is arbitrary constant. The integral with respect to
u can be evaluated by employing the change of variables
u = tan(6) and a Nk point Gauss-Chebyshev quadrature tech-
nique with abscissas y; and weights wy given by (6a) and
(6b), respectively. The integral with respect to ¢ can be evalu-
ated numerically using a Ny-point semi-infinite Gauss-Hermite
quadrature (SI-GHQ) rule [26]. In particular, integrals of the
form fooo exp(—t2) f(r) dr can be approximated as

In (2)

1) Ny
/(; exp(—t2) f(1)dr ~ ZV]‘ fx)), ©)
j=1

where the weights v; and the abscissas x; are given in [26,
Table II] for values of Ny up to 15. For Ny > 15, v; and x;
can be easily computed using the methodology presented in
[26]. Note that for a given value of j, different values of the
tuning parameter ¢ may be required to guarantee the conver-
gence of each integral with respect to ¢. Thus, in general, c is
also a function of j, i.e. ¢ =c;. In Section V, for the eval-
uation of the average secrecy capacity the parameters ¢ j are
selected as ¢; = sz. /4 to ensure convergence of the numerical
approximation. By combining both numerical approximations
for the corresponding integrals, Cyis finally deduced as (5) thus
concluding the proof. |

B. Secrecy Outage Probability and Probability of Non-Zero
Secrecy Capacity

In order to provide simpler, alternative expressions for (3)
and (4), it is first shown that the following generic result holds.

Proposition 2: Let define the integral

Jj& /OO fx(x) Fy(Tx + V) dx, (10)
0

with X, Y being two positive random variables and V, T two
positive real constants. An equivalent expression for J can be
expressed as

1 L[> (1 .
J=-—— 1 —¢x (T w) gy (w) exp(—1 V w) ¢ do.
2 ) 1)
(11
Proof: By employing the Parseval’s theorem [29], the
integral in (10) can be written as
1 (0.¢]
J= —f F{fx(x); x; 0} F{Fy (Tx + V) ; x; o} do.
21 J_ o
(12)

To this end, the two above Fourier transforms should be first
derived. The first Fourier transform, can be readily obtained as

Ffx () x: 0} = px(~0). (13)
By employing the following three identities [29]
?{/x g(r)dr; x; a)} = —l; Flg(x); x; w}
+ ?{g(x)' x; 0} é(w), (l4a)
1)
FleToiviol = 8 fsmin Z] 4w
and
Flg(x —a); x; o} = exp(—raw) F{gx); x; 0}, (l40)

yields the next expression for the second Fourier transform

FFy (Tx + V)11 0} = [—:—0 ox, (—7) +7 5(@)]

x exp(i V w) . (15)

By substituting (13) and (15) into (12), and by employing
the fundamental property of the Dirac’s delta function, i.e.
2o 8t — 10) g (1) dt = g(t0), yields
1 I (>
J=-+— — ¢y (wT) ¢y(w)exp(—1 V w)dow. (16)
2 2n ) o
In the above equation, by employing the hermitian property
of the characteristic functions and after some straightforward
manipulations, (11) is finally extracted, and this concludes the
proof. |

Proposition 2 can be readily employed for the evaluation of
Poyt and Pnz, as follows.

Corollary 1: Generic integral representations for the secrecy
outage probability and the probability of non-zero secrecy
capacity for the multiple-antenna wiretrap channels can be
expressed as

1
P out —

- _/ { Py ( 2% @) Gy (@) '@ 5_1)0)} do
A7)
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and

L1 [~ (1,
Pz =5+ ;/0 3 {;%(w)%(w)} do.  (8)
It is underlined that both (17) and (18) circumvent the need
for the PDF and CDF of the corresponding SNRs. Additionally,
the corresponding Fourier transforms can be obtained in a
relatively easy manner for a variety of system setups.

C. Asymptotic Secrecy Outage Probability Analysis

In order to provide further insights as to the parameters
affecting secrecy outage performance, a comprehensive fre-
quency domain approach for deducing the asymptotic outage
probability at high SNR region is hereafter presented.

Proposition 3: Let us assume that the MGF of yg can be
expressed for s — oo as M, (s) = Cs™ +o(s~%) with d
being the secrecy diversity gain. Then, an asymptotic expres-
sion for P,y can be deduced as

C d d k v d—k : .
Py = :l‘(d+1)12k=0 (h,}w) T V" ay, if d integer 19)
ut — Ccve d
T@EDTG) 2-k=0 (( W) by, if d non-integer
where T =2%Rs, Vv =2Rs — 1,1 = [d] — d and
M
ar = (—pt L (20a)
dsk
s=0
o0 M T/V
by = (—1)k/ exp(—s) s*! # ds. (20b)
0 as
Proof: Assuming  that M, (s) = Cs~¢ + o(s™%)
for s— 00, Fy,(y) can be deduced as Fy,(y)=

L1 {J\/[),B (s)/s;s; y} yielding Fp; (y) =~ Cy?/T(d +1).
Then, for high values of 3 3, (3) can be written as
POllt

f (Tx + V) fe(x)dx. (21

F(d +1
If d is integer, then by employing the binomial identity
as well as the well known relationship between the nth
moment of a random variable X and its MGF, i.e. E(X") =

(=1 P My (s) , the first branch of (19) is readily deduced.

Tasn
Ifdisa posmve real number, then d = [d] — A, and (T'x +

V)4 = (Tx + V)[?1=* By employing the well-known identity
[25, eq. (17.13/3)]
—A (T2 11)s
(Tx + V)™ = ror ) (W +1)s ot gy 3 >0, (22)

the binomial identity along with the definition of the MGF of y¢
as well as the relationship between the nth moment of a random
variable X and its MGF, the second branch of (19) is deduced
thus completing the proof. |

IV. APPLICATIONS FOR THE PHYSICAL LAYER SECURITY

In this section we present three important applications for
which we derive the secrecy outage probability and the prob-
ability of non-zero secrecy capacity. In all three scenarios we
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consider a MIMO wiretap channel, in which Alice, Bob and
Eve are equipped with N4, Ny and N¢ antennas, respectively.
When generalized fading models are considered, the secrecy
outage probability and probability of non-zero secrecy capac-
ity are expressed in terms of a single integral that can be
easily evaluated numerically by employing standard numerical
integration algorithms or symbolic integration. When simpler
system models and fading scenarios are considered, it is also
shown that the secrecy outage probability and the probability
of non-zero secrecy capacity can be expressed in closed form.

A. MIMO Wiretap Channels With OSTBC

We assume that both (A) — (B) and (A) — (&) links
experience slow fading. Alice selects L transmit symbols,
51,52, ..., 50, with E(s?) = 1, Yk € {1,2,..., L}. The sym-
bols are encoded according to an OSTBC matrix Q € CNAxT
and transmitted during 7 time slots. The received signal at Bob
can be written as

Y =vPH/3Q+ Nj, (23)

where P is the transmitted power, Ng € CN8xT ig the additive
white Gaussian noise (AWGN) matrix, with elements having
zero mean and variance o, Hqs € CV5*N4 s the channel
gain matrix.

Since OSTBC is employed, the MIMO channels are reduced
to rank{H 4 } parallel single-input single-output (SISO) chan-
nels [16]. These channels are combined using MRC and,
therefore, the k-th signal at Bob can be expressed as

vk =~Psp [Hagll% +ng (24)

where npj is the filtered zero-mean Gaussian noise with
H 2 2

variance o, ||HA'B %
The received signal at Eve can be expressed as

ZZﬁHAgQ-I—NE, (25)

where Ng¢ € CNe*T is the AWGN matrix with elements having
zero mean and variance 022 and Hy e € CNeXNa js the channel
gain matrix.

Following a similar line of arguments as in the case of
the (A) — (B) link, the k-th combined signal at Eve can be
expressed as

2 =~Psi [Haeld + v (26)

where v is zero-mean filtered Gaussian noise with variance
of Has |17

In order to assess the secrecy performance of the consid-
ered system the MGFs/CHFs of the instantaneous SNR at
Bob and Eve should be deduced. The instantaneous SNRs at
Bob and Eve can be written as yp =y g ||HArB||2 and ye =
VelHae 112, respectively, with y ¢ = P/a}? andy e = P/ae2.

1) Correlated Rayleigh MIMO Wiretap Channels: In this
case, it is assumed that both Hy5 and H 4¢ have mutually
correlated Rayleigh fading entries. Specifically, the elements
of H g are characterized by a Ng Ny x N4 Ng correlation
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matrix Rgp = E(hgp hfL‘B> where h g5 = vec{H43} [30],
[31]. Similarly, the elements of H 4 ¢ are characterized by cor-
relation matrix Rqe = E(hqe hl o) andhye = vec{Hue ).

Let wus further assume that the correlation matri-
ces Ryp and Rye are eigen-decomposed — as
Ran =UasAas U, and  Ryue=Uge Age U,
where Aap =diag[h; 4B, 2248, s ANg Ne ABs
Ape =M ae.lome, .- Ang Ny ae]l and Ajas, Ajae
are the non-zero eigenvalues of R 45 and R 4¢, respectively,
Vi={1,2,...,Ng Ny}, j={1,2,..., Ne Ng}. Then, the
CHFs of yg and y¢ are given as [32, eq. (11)]

By (@) = [det (Iyy v, —1 075 Ran)] !

Ny Na !

=| [[ t—10vprias) (27a)
i=1
and
by (@) = [det (INE Ny —1 wVERﬂg)]il
Ne Ny -1
=| [] -10verjae)| . @b
j=1

respectively. The corresponding MGFs can be readily obtained
as My, (s) = ¢yy 15) and M, (s) = ¢, (15). Therefore,
assuming active eavesdropping, the average secrecy capacity
can be readily obtained by employing Proposition 3.

Assuming passive eavesdropping, an integral representation
for the secrecy outage probability of the considered MIMO
wiretap channel can be deduced as in (28), shown at the bottom
of the page, where

Ny Ny
sin[ Y arctan(Yp oriaB)
i=1

05 (w) = 2 arctan
Ny Ny
1 + cos ( > arctan(Y g w)»i,AB))

i=1

(29a)
and
Ne Ng
sin| Y arctan(Yg wAj ac)
j=1
e (w) arctan Ne Na
l4+cos| > arctan(Vewh; a¢)
j=1
(29b)
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The proof of (28) is given in the Appendix A.

Note that by employing the proposed CHF-based approach,
a numerically equivalent simple closed-form expression for the
secrecy outage probability of the considered MIMO wiretap
channel can be deduced. Specifically, in Appendix B it is shown
that the secrecy outage probability can be obtained as

Ny Ng R
. 28 — 1
pOSTBC _ | 4 _L exp| ——— ], 30)
out ; YR )hi,flﬁ YB )\i,AB
where
~1
1 Ny Ny
o == =107k
P=- H ( L0V g M AB)
k=1,k#i
Ne Ng -
X (1+l2RSw75 )\j,Ac‘l)
Jj=1 o=—1
VB AN AB
(31

The probability of non-zero secrecy capacity can be readily
obtained by employing (28). Specifically, an integral represen-
tation for the probability of non-zero secrecy capacity of the
considered MIMO wiretap channel can be deduced as in (32),
shown at the bottom of the page.

Finally, an expression for the asymptotic Py, will be
deduced. The MGF of y3 can be expressed as M, (s) =
1/ det(yg Ny + 5V Ras), which for s — oo can be simpli-
fied as My, (s) ~ [det(s Y 3 Ry5)]~L. Thus, M, (s) can be
approximated as

My (5) & s~ VA2 37, ~NAND [detRaz)] ™!, (33)
wherefrom it is readily deduced that the secrecy diver-
sity gain of the proposed scheme is d = Ng Ny and C =
VB ~NaNB [det(R45)]~!. Since d is always integer, an asymp-
totic expression for Py, assuming high values of 75 can be
readily deduced using Proposition 3.

2) Generalized MIMO Wiretap Channels: In this case, we
consider mixed fading conditions for A — B, and A — &
links: The A — B link is subject to n — u fading, and the A —
€ link is subject to k — . Note that these two distributions fit
well experimental data and include as special cases well-known
fading channel models, such as the Nakagami-m, Rice, and
Hoyt models. On one hand, the k — u distribution is a generic

NagNgp

POSTBC=l+l/.ool
0

out 2 T w
i=1

X sin [93(—@ — s (—2%5 @) + 2% — 1) w] do

1
— —2
[T (1475732 45 )

Na Ne

1—[ (1 +22RS782)‘5,A8 wz)
Jj=1

D=

OSTBC _
Pz 7=

1 1 > 1
- 5| 11

(28)
N Ne 1
I1 <1+y(g /\Mng) 2| sin[05 (—w) — Oe (—w)] dew
j=1

(32)
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distribution for modeling a great variety of LOS channels. On
the other hand, the n — p distribution accurately models small-
scale fading for various NLOS conditions. Assuming that the
entries of H4 g and H 4 ¢ are independent but non-identically
distributed (i.n.i.d) ¥k — p and n — p random variables, respec-
tively, the CHFs of yg and yg are given as [33]

nsi(l+Kks ;)

Nt MB i
Gy (@) =H { [(1 +KkB.i) WBi —173,1']

i=1

LUB i KB OV R ;
X exp — (34a)
(I+kpi)us;i —10ys;

and
Ne 1
¢yg (w) = l_[ | LoTe e j
= [V = )
! 34b
" | G4
[ T 2ue (hs.j+He,j)]

respectively, where w3 ; and pe ; are related to the fading
severity, he j = Q2+ng!; +ne )/4 H= (g —ne j)/4
with 0 < ng ; <00,k3,; > 0 designates the ratio Between the
total power of the dominant propagation components and that
of the scattered waves.

Assuming active eavesdropping, the average secrecy capac-
ity of the considered system can be evaluated numerically
by employing Proposition 1, with M, (s) = ¢, (1s) and
My (5) = ¢y, (15).

Assuming passive eavesdropping, by following a similar line
of arguments as in the proof of (28), i.e. by substituting (34)
into (17) and employing (A-1) and (A-2), an integral repre-
sentation for the secrecy outage probability of the considered
SIMO wiretap channel can be deduced, after some straightfor-
ward manipulations, as in (35), shown at the bottom of the page,
where

Ne

Op ¢(w) = Z { Mg, j arctan [

j=1

a)T?E’j :|
2ue j(he j— He j)

122 arctan yg’j |}
E,j H
! Me,j (h((:»]. E,j)
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U =2Rs — 1 and T = 2%s. To the best of our knowledge, the
result in (35) is new.

Next, an asymptotic expression for Py, will be deduced. The
MGEF of y3 can be expressed as

Ny M (1 +x ) KB,

B,i B,i

M, (s) = : :
e E {[(1 +KB.i) LB +8793,i]

—s S K - Ve -
UB.i KB,i yBi ] . (37)
I+ i) s +sys;

xexp|:

For s — o0, it can be observed that the product of exponen-
tials in (37) can be approximated as exp(— Zlel B iKB.i)
whereas the product of the remaining terms as ]_LNZB1 [ws,i(1+
ks.i)/V s 1%, Thus, My, (s) can be expressed in the form

My (5) & Cs™%, withd = Y g ; and

N .
ﬁ [ug,i(l +x93,,~>]“?3"

Ng
C=exp| =) UBiKB, —
; o i=1 VB.i
(38)

As it is evident, the secrecy diversity gain depends on both the
number of antennas Ng as well as the fading parameters g ;.
Finally, an asymptotic expression for Py, assuming high values
of Y can be readily deduced using Proposition 3.

B. SIMO Wiretap Channels With GSC

According to this scenario, both the main and the eavesdrop-
pers channels are assumed to undergo quasi-static Rayleigh
fading, while N4 = 1. In the main channel, Bob com-
bines the Ly strongest receive antennas with | < Ly < N3y.
In the eavesdroppers channel, Eve combines the Lg (1 <
Lg < Ng) strongest receive channels. Let |h43,93|2, |th’5|2
denote the channel power gain from the single transmit to
the ¢th receive antenna at Bob and Eve, respectively, with
E(lhe, 51°) = Qu, Yes =1,2,..., N5, and E(lhe, ¢]?) =
Qe,Vle =1,2,..., Ne.

Since both Bob end Eve employ GSC, channel coeffi-
cients |h¢, 5 1> and |hey e |> are arranged in descending order
as |haysl? = ho)sl* = -+ = |hvg) s> and |hq) el =
|h(2),g|2 >0 > |h(N€)’g|2, respectively.

The instantaneous received SNR in the main and the eaves-

Ng —
_ Z (1B, arctan [L} dropper channels can be expressed as
— ug,i (1 +Ks,i)
i=1 Ly
2 p—
o1 +«kp;) Ky KB,i VB, (36) yB = Z |h((3)y3|2 . (39a)
(I + k8,2 1l ; + Vg ; tn=1
pOSTBC, mixed _ 1 i/o" sin[O3 ¢ (0) + Uw]
out - _ . _ ; — i/2
Pomhe e [(1p e rre VP e VP g (e Y
i=1 4#3,-(}’8.1‘—1'18,1‘)2 4Méi(hg.i+Hg,i)2 Jj=1 “gB.j(l"'K'B,j)z
Nz LB KB iV
xexp|— ) 2,] 5 = 3’2]72 dw (35)
(A +kp, )y ; + oYy

j=1
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and

Ly

ve = Y lhueel®

le=1

(39b)

respectively. The characteristic functions of yg and yg can be
expressed as [34, eq. (B.3)]

and
sin ( leLg arctan(Q2¢e cuLg/i))
1 4+ cos ( zN:ng arctan(Q2¢ a)Lg/i)>

sin (arctan(Q¢ )) i|
1 + cos (arctan(Qe w)) |
(42b)

O¢ (w) = 2 arctan

+2(Le — 1) arctan[

By employing the proposed CHF-based approach, closed-

1 11‘@[ 1 form expressions for the secrecy outage probability can be
Gy (@) = F— deduced in a similar fashion as in the OSTBC MIMO wiretap
(I—1w0Qgp)ts re=Ls 1—-1w0QpLg/rp) channel as
(40a) )
PSSC =1 4 LXB: U e, exp (— v )
and out =) Q3
Ny
—Ur
X Ne | + Y brory exp ( o LB) . @3
¢V€ (w) = = l_[ , r=Lg+1
(I —1wQe)ke (1 —1wQeLe/re)
re=Lg where
(40b)
Np—Ng (TQ )l—Lng_N’B dLgfr
_ ! € B 2
respectively. ar = (L —r)! dols—r w(a) +1/Qs)
Assuming active eavesdropping, the average secrecy capac- N
ity of the considered system can be evaluated numerically _1 I-Lg 5 ri /(s Lp)
. > . . X(@—1T""/Qe) l—[
by employing Proposition 1, with M, (s) = ¢, (1s) and h w+rii/(QLeLg)
ri=1L1
My, () = ¢y, (15). Ne =3
Assuming passive eavesdropping, by following a similar line " l—[ r2/(T Qele) (44a)
of arguments as in the proof of (28), i.e. by substituting (40) w—11/(Qe LeT)
into (17) and employing (A-1) and (A-2), an integral repre- r=Le o=—g
sentation for the secrecy outage probability of the considered and
SIMO wiretap channel can be deduced, after some straightfor-
ward manipulations, as in (41), shown at the bottom of the page, _ Ng—Ne 1-Le o1-Nsg l I—Lg
WhereU=2RS—1,T=2U, br =1 (T Q¢) QB w(w+l/Q'B)
Np
. r Qg L
sin (Zf\fLB arctan(Qg wLB/i)> x(w—1T ' Qe Le l_[ +B(/( ?Q BZ )
O3 (w) = 2arctan - roely @ rpt/(QpLlep
1 + cos ( 2B arctan(Qe wL g i)) Ne
i=Ls / ) <w+lr + LB) l—“I re/(TQeLe)
sin (arctan(€2
2Ly — 1) arctan | L @rean(Es ©) QpNs/, o mret/QeleD ||y
1 + cos (arctan(Qp w)) =" Qplp
(42a) (44b)
1 1 0 ] _Lyp-l _Le-1l Np L2 —1/2
POSC —+—/ - (1 +a)2§223> 2 (1 +w2T2s2§) T (1veted =2
2 T Jyg @ rp=Lg ry
Ne 12\ 1?2
< ] (1 + o T? Q% —25> $in[O5 (—w) — O (=T ») + U 0] do 41)
re=Leg e
1o — e I 3\
PIE'ZSC:___/ = (1+e?0}) T (1+e?t) T | [ (14?02
2 T Jo w rp=Lop }qB
Ne 12\ 1?2
< | T1 (1 + o Q% —§> sin[O3 (—w) — O (—w)] dw (45)
e

re=Lg
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Note that relevant results for wiretap channels with antenna
selection are available in [15]-[17].

An integral representation for probability of non-zero secrecy
capacity of the considered SIMO wiretap channel can be
deduced as in (45), shown at the bottom of the previous page.

Finally, an asymptotic expression for Py, will be deduced.
The MGF of yg can be expressed as

N3

My (8) = (46)

1 1—[ 1
(145 Qp)Le-! (I4+sQpLp/rp)
re=L3

For s — oo, it can be observed that (1+4s Qp)ls—1 ~
(sQp)ts~! and (1 +s5sQpLy/rp) ~sQpLy/rs. Thus,
M, (s) can be approximated as M, (s) ~ C s~ with d =
Ng g and C = Q%NQ‘ ]_[f;B:LB [r8/Ls]. As it is evident,
the secrecy diversity gain depends only on the number of anten-
nas Ng. An asymptotic expression for Py, assuming high

values of 7 i can be readily deduced using Proposition 3.

C. Correlated SIMO Wiretap Channels With MRC

According to this scenario, a SIMO wiretap channel model
is considered where Ny = 1. Let rg and re be Ny x 1 and
Ne x 1 complex Gaussian random vectors, denoting the com-
plex channel gains from the single transmit antenna to the
receive antennas at Bob and Eve, respectively. It is assumed
that rg and rg have mean values 5 and 5¢, respectively, and
covariance matrices Cg4p = E((rg — ng) (rg — ng)H) and
Cae =E((re —ng) (re —ng)™), respectively.

In the main and the eavesdroppers channel, Bob and Eve
combine the Ny and N¢ receive antennas, respectively, using
MRC. The instantaneous SNR in the main channel can be
expressed as

YR = 7 25 rg ry (47a)
ms (ki ng + Tr{Cas})
and in the eavesdropper’s channel as
Q¢
ve = rfre (47b)

me (n¥ e + Tr{Cac})

The parameters Q2 and Q¢ correspond to the average SNR at
the output of the MRC receiver at Bob and Eve, respectively
and the parameters mg and mg denote the diversity order of
the signal recovered by each branch at the legitimate receiver
and the eavesdropper, respectively. Based on (47), their CHFs
are given as [35, eq. (18)]

H Qp -1
exp |t wQp Ay (IN%—lw@QAB> A

Gy (0) = [det (IN% o %QA’B)]WB

(48a)
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and

H Q¢ -1
exXp la)QgXe (IN(% — lw%QAg> Xg

Pre () = [det (IN§ —la)fz—iQAS)]ma
(48b)

respectively, where Q 45 and Q 4 ¢ are the normalized covari-
ance matrices defined as Q 45 = CA@/()]%I ng + Tr(Canp)),
Que = CAg/(ﬂg ne +Tr(Cye)) and L3, A g are the normal-

ized mean vectors defined as A = ﬂg/\/ﬂ% ng +Tr(Cyp)

and Ae = 778/\/7715{’78 + Tr(C4¢), respectively. Given (48),
generic integral representations for Py, and Pnz can be read-
ily deduced using (17) and (18). In the special case of ¢ =0
and mp = mg = 1, an alternative methodology for the perfor-
mance evaluation of the wiretap channel has been proposed in
[16].

In the special case of correlated Nakagami-m fading, i.e.
when g = g = 0, the CHFs of y3 and y¢ can be expressed
as

Ny s
by @) = | [[(1 =10 piam) (49a)
i=1
and
Ng —me
bye (@) = | [[(1 -1 0uine) . (49b)

i=1

respectively, where u; 45 and w; 4¢ are the eigenvalues of
’Sj—i Q5 and fj—i Q4¢, respectively.

Assuming active eavesdropping, the average secrecy capac-
ity of the considered system can be evaluated numerically
by employing Proposition 1, with M, (s) = ¢, (1s) and
M, (s) = ¢, (15). Assuming passive eavesdropping, by fol-
lowing a similar line of arguments as that in Section IV-A1, an
integral representation for the secrecy outage probability of the
considered SIMO wiretap channel can be deduced as in (50),
shown at the bottom of the page, where U = 2Rs 1, T =2Y,

i=1

Ng
sin [ Y arctan(w p; 43)

®p(w) = mp arctan N
B
1 + cos (Z arctan(w Hi,AB))
i=1
(51a)

pSIMO _

Ng Ng
1 1 (1
ST 53+ ;/ - ]_[(1 + o? pf gp) B2 ]_[(1 + & T2 p? 4 o)™/ | sin[@g(—w) — @e(—T w) + U 0] do
0 .
i=1

i=1

(50)
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and

Ne
sin (Z arctan( Mi,As))

i=1

Oe(w) = me arctan

i=1

Ne
1 4 cos (Z arctan(w i A¢)
(51b)

Finally, using (18) along with (49) the probability of non-zero
secrecy capacity of the considered SIMO wiretap channel can
be deduced as in (52), shown at the bottom of the page.

Next, an asymptotic expression for Py, will be deduced. The
MGEF of y3 can be expressed as

H Q -1
exp | —s Qp Az (IN;B +Sﬁ QAB) Ap

My (s) = o ma
[det (Isz3 + s ﬁ QA‘B)]

(53)
For s — o0, it can be observed that IN% +5s(Qp/mzs)Qan
can be approximated as s (Qp/m3) Q5. Therefore, the
denominator in (53) can be written as [det (s fnz—g Q AB)]mB =
(s Qp/ms)VB"% [det (Qu5)]™® and the numerator as
exp (—mg ng;llg lg). Thus, M, (s) can be expressed in
the compact form M, (s) ~ C s~ withd = Ng mg and

me Ngmp exp (—mgng;llﬁ)\B>
(=)

Qp [det (Qas)]™®

As it is evident, the secrecy diversity gain depends on both the
number of antennas Ny as well as the fading parameter m3.
Finally, an asymptotic expression for P,y assuming high values
of Y g can be readily deduced using Proposition 3.

V. FRAMEWORK VALIDATION

Using the analytical results derived in the preceding sections,
some representative numerical results are provided herein to
demonstrate the secrecy performance of the considered MIMO
and SIMO wiretap channels. All results are substantiated by
employing semi-analytical Monte-Carlo simulations. Note that
in a semi-analytic framework, the knowledge of the system
under analysis is exploited to reduce the computational load and
complexity that full Monte Carlo simulations would require.
In this way, the strengths of both analytical and Monte Carlo
methods are effectively combined. Moreover, it is assumed that
Nj € {15,30} and Ng > 100 for sufficient numerical accu-
racy. For the evaluation of the secrecy outage probability, it is
assumed that Rg = 2 for all considered scenarios. Furthermore,
all results are derived assuming y ¢ € {0, 5}dB.
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Fig. 1. Average Secrecy Capacity of OSTBC, assuming exponential correlation
at both the transmitter and the receiver sides.
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=
T
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Bob's Average SNR (dB)

Fig. 2. Secrecy Outage Probability of OSTBC, assuming exponential correla-
tion at both the transmitter and the receiver sides.

A. MIMO OSTBC Wiretap Channel in a Rayleigh Fading
Environment

Figs. 1 and 2 depict the average secrecy capacity and
the secrecy outage probability of the MIMO OSTBC wire-
tap channel, respectively, with N4y =2, Ng =2 and N¢ =
2. Throughout this analysis, the Kronecker correlation model
is assumed for both the main and the eavesdropper’s chan-
nels, where Ry53 = R4 ® R, Rge = R4 ® Re with R g,
Rg and Rg denoting the antenna correlation at Alice, Bob
and Eve, respectively. An exponential correlation model is

assumed, thatis R 4 = <p

1 pa (1 pB _
| 1>,RB—<pB | and Rg =

Np

1 1 1
smo_ 1 1 1 2 2 \—mp)2
Pyz =3 77/0 > H(1+w Hias) "

Ne
[T+ @ T2} ge) e/ | sin[@p(—w) — Pe(—w)] do  (52)
i=1 i=1
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Fig. 3. Average Secrecy Capacity of OSTBC, assuming i.n.i.d «x-p and n-
o fading conditions at the legitimate receiver and the eavesdropper channels,
respectively, for ue = 0.6, ne = 0.1716, u = 0.75, k3 = 8.47, and various
values of §.

<p1 p lE ) and various values of pa, pp and pg. The correlation
E

matrix of such a model is described by and corresponds to the
scenario of multichannel reception from equispaced diversity
antennas, since the correlation between the pairs of combined
signals decays as the spacing between the antennas increases
[22]. In all cases, the comparison among Monte Carlo simula-
tions, (5) (28) and (30) confirms the validity of the proposed
analytical framework. Moreover, the asymptotic secrecy outage
probability results correctly predict the secrecy diversity gain
for high SNR values.

B. MIMO OSTBC Wiretap Channel in a Mixed Generalized
Fading Environment

In this case, the eavesdropper channel is subject to n — u
fading with pe ; = weg = 0.6 and ne ; = ne =0.1716, Vi =
{1,..., Ne}. Fading in the legitimate channel is modeled by
the k — w distribution with fading parameters obtained from the
following test cases: Test Case I: up j = up = 0.875, k5 j =
kp = 1.5798, Test Case 2: pup j=pp = 1.1685, kg ;j =
kp =2, Test Case 3: up j = up = 0.75, k5 j = kg = 8.47,
Vj={l,..., Ng}. It is noted that the above mentioned val-
ues of fading parameters for both channels have been obtained
by field measurements carried out in [23] for different prop-
agation environments. An exponentially decayed power pro-
file is assumed, ie. Y j =V exp[—d(j — )] and Y¢ ; =
Ve exp[—6 (i — 1)] with § being the decaying factor.

Fig. 3 depicts the secrecy outage probability for the consid-
ered wiretap channel assuming Test Case 3 and various values
of §. As it can be observed, analytical results and Monte-
Carlo simulations are in excellent agreement. Figs. 4 depicts
the secrecy outage probability for the considered wiretap chan-
nel and, again analytical results and Monte-Carlo simulations
are practically indistinguishable to each other. Moreover, the
asymptotic expressions for high SNR values correctly predict
secrecy performance. However, it should be pointed out that for

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 1, JANUARY 2016

F Test Case 1 .
[ ----Test Case2 L
g Test Case 3 B

Asymptotic ".. \
= Monte Carlo E

Secrecy Outage Probability
S
T

10>5 1 L 1 L 1 L 1 . L L
0 5 10 15 20 25 30

Bob's Average SNR (dB)

Fig. 4. Secrecy Outage Probability of OSTBC, assuming i.n.i.d - and n-
1 fading conditions at the legitimate receiver and the eavesdropper channels,
respectively, withé = 0.1, ueg = 0.6, ne = 0.1716 for the following test cases:
Test Case 1:pup = 0.875, kg = 1.5798, Test Case 2:ug = 1.1685, kp =2,
Test Case 3:;up = 0.75, kg = 8.47,.

large values of k5, i.e. when a strong LOS hop exists, a large
coding gain can be achieved from this LOS component. This is
evident from the presence of the factor exp(—«gpug) in C of
(38). Thus, large SNR values are required so that the asymptotic
behavior of the secrecy outage probability will show up. To this
end, no asymptotic curves for Test Case 3 are presented.

C. SIMO Wiretap Channel With GSC in a Rayleigh Fading
Environment

Figs. 5 and 6 depict the average secrecy capacity and the
secrecy outage probability of the SIMO wiretap channel, with
GSC at both the legitimate receiver and the eavesdropper, for
various configurations of N4, Ng and Ng. Once again, the
results obtained by employing the proposed analytical frame-
work agree well with the corresponding ones obtained with
Monte Carlo simulations.

D. SIMO Wiretap Channel in an Arbitrary Correlated
Generalized Fading Environment

Figs. 7 and 8 depict the average secrecy capacity and the
secrecy outage probability of SIMO 1 x 3 wiretap channels in
arbitrarily correlated generalized fading environments, respec-
tively, assuming mg = 2, various values of mg, ng = e =
[0.25 e /0.5 /0 ¢! ”/S]T and covariance matrices given by
[35]

1 05¢7 0257
Cap=Cpue=| 057 2 0.125¢%
025¢ 7 0.125¢ % 3
(55)

Again, analytical and simulation results are in very good
agreement for all considered test cases. Finally, Fig. 9 por-
trays the probability of non-zero secrecy capacity of the
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GSC at the legitimate receiver and the eavesdropper.

Nakagami-m SIMO wiretap channel, with MRC diversity
reception at both the legitimate receiver and the eaves-
dropper, for various values of me, assuming mg = 1.5,
Np = Ng =4. An exponentially decayed power profile is
assumed, i.e. Qq, 3 =Vg exp[—6 (s —1)] and Q. ¢ =
Ve exp[—=8 (e —1)] with § being the decaying factor,
assumed to be equal to 0.5. The channel gains are character-
ized by the envelope correlation matrices R 4 and R 4 ¢ whose
elements can be obtained in terms of the elements of C 45 and
C 4 e by using the methodology presented in [36]. The enve-
lope correlation matrix for both channels is assumed to be [36,

eq. (55)]
1 0.795 0.604 0.372
Raum — Rae— | 0795 1 0795 0.604
AB = RAE =1 0604 0795 1 0.795

0.372 0.604 0.795

1

Secrecy Capacity (bits/s/Hz)
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Fig. 7. Average Secrecy Capacity of SIMO 1 x 3 wiretap channels in arbitrar-
ily correlated generalized fading environments with m ¢ = 2 and various values

of mp.
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Fig. 8. Secrecy Outage Probability of SIMO 1 x 3 wiretap channels in arbitrar-
ily correlated generalized fading environments with m ¢ = 2 and various values

of mp.
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Fig. 9. Probability of Non-Zero Secrecy Capacity of SIMO 1 x 4 wiretap
channels in arbitrarily correlated Nakagami-m fading environment.
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As it is evident, the proposed framework provides an efficient
means for the secrecy performance evaluation of the wire-
tap SIMO Nakagami-m channel with arbitrary correlation and
arbitrary fading parameters.

VI. CONCLUDING REMARKS

In this paper, a new concise, frequency-domain approach for
evaluating the secrecy performance of a broad class of SIMO
and MIMO wiretap channels has been introduced. The frame-
work enables a simple computation of the average secrecy
capacity, the secrecy outage probability and the probability of
non-zero secrecy capacity of wiretap channels in a variety of
fading environments, provided that the MGF or the CHF of the
instantaneous SNR at the legitimate receiver and the eavesdrop-
per is readily available. A unified frequency domain approach
for assessing the asymptotic secrecy performance of SIMO and
MIMO wiretap channels is also introduced, thus providing use-
ful insights as to the parameters affecting secrecy performance.
The generality and computational efficiency of the proposed
framework renders it a potentially useful tool to the system
engineer for performance evaluation purposes.

APPENDIX A
PROOF OF (28)
Proof: By substituting (27) in (17) and by employing the
following identities

(a + bl)c+dz — (az + bZ)(c+l d)/2 el(c‘-‘rl d) arg(a+1 h)’ (A—l)
with a, b, ¢, d being real, and
b
arg(a +1 b) = 2 arctan (—) , (A-2)
Var+b%+a
(28) can be obtained after some straightforward algebraic
manipulations. |
APPENDIX B
PROOF OF (30)
Proof: By substituting (27) into (16), yields
Ny Ny
OSTBC _ 1
Pout Py /oow 1_[ l_leB)‘lAB)]
i=1
Ne Na -
X 1_[ (1 +12R5a)73 Aj,Ag) dw. (B-1)
j=1

By employing a partial fraction decomposition, (B-1) can be
written as

pOSTBC _ 1 1 * A exp( 11U a))
out 2 27_[
N%’l / exp( 1 U w) d
w
P l—1oygiias
Ne Nﬂ

exp(—t U w)
I1+:Twye )\.j"AS

dow,

NN

(B-2)
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where U =2%s — 1 and T = 2®s. Using the Fourier trans-
form pair J{1/x;x; w} = wsgn(w)/1, the integral J; =
ffooo A exp(—1 U w)/w dw can be readily evaluated yielding

nU
J=—.

1

(B-3)

The remaining integrals can be evaluated by employing [25,
eq. (3.382/6)] and [25, eq. (3.382/7)]. The integrals J, =

o) exp(—t U w) .,
f_ oo (1 T avs iy ag) dw are zero Vj; therefore, Py, can be

deduced as in (30), with @; given by (31), thus concluding the
proof. |

APPENDIX C
PROOF OF (43)

Proof: By substituting (40) into (16), yields

GSC _ 1 1 [ 1 exp (—1 U w)
Pout Y _ Ly—1 Le—1
T2 2 oo W(1—1 0w Qp) I+ Twe)
Ne

1_[ ! dw
L. (I+:TwLg/re)
(C-D

]
x 1—[ (I—twln/ry)

VBL

By performing partial fraction decomposition, (C-1) can be
written as

o= L [T ASRCU),,
out L w
exp(—t1 U w
+—Z / Ll )l dw
oo (@+1/8p)
NB 00
-1 U
L D S L
2 4 oo 0 +17/(25Ln)
+z_§:c./‘°° exp(—t U w) do
Ne o
-1 U
L D Ty B e
2 oo W —11[(QBLpT)
re=Lg+1

(C-2)

while using [25, eq. (3.382/6)] and [25, eq. (3.382/7)], Poy: can
be deduced as in (43), with a;, b; given by (44a) and (44b),

respectively, thus concluding the proof. |
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