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A B S T R A C T

We present novel results for the uncoded and coded bit-error probability (BEP) of optically pre-amplified
pulse-position modulation (PPM) wireless systems. For uncoded systems, a novel analytic method for the
evaluation of the BEP is derived. The method takes into account the non-ideal optical filter response and
utilizes a finite Karhunen–Loève series expansion to calculate the BEP. Using the proposed approach, it is
possible to accurately evaluate the PPM BEP for arbitrarily shaped filters where the well-established 𝜒2 method
only provides approximate results. Considering a Lorentzian filter response, the discrepancy between the two
methods amounts to 0.5 dB in a variety of filter bandwidths and PPM modulation orders. The Lorentzian
filter response was chosen as an illustrative practical example whose series can be calculated analytically. The
proposed method is also valid for any type of optical filter for which the Karhunen–Loève series expansion
can be calculated analytically or numerically. Due to the finite number of terms that are required irrespective
of the signal energy level, the proposed method can also be applied without loss of accuracy to assess the
system performance under the effects of turbulence and adverse weather conditions. For coded systems with
Lorentzian filters, Monte-Carlo simulations are utilized to evaluate the BEP performance of the 5G LDPC codes,
and it is demonstrated that they impart an energy gain up to 3.3 dB for 4–PPM and 2.3 dB for 16–PPM at
a target BEP of 10−5. The optimal code rates are also discussed for several combinations of the optical filter
bandwidth and PPM modulation order and it is shown that in almost all of the cases the optimal code rate
is 11/13. Moreover, the sum-product and min-sum decoders perform within 0.1 dB from each other for the
best code rates, which points towards the utilization of the min-sum decoder in all settings, since its operation
does not require knowledge of the filter parameters. Finally, the comparison between the coded systems with
Lorentzian and ideal passband filters exhibits the same 0.5 dB discrepancy that was observed for uncoded
systems.
1. Introduction

Optical amplification and PPM have found applications in chal-
lenging optical wireless communication environments [1–12], such
as atmospheric and space communications, since the losses that are
introduced by the transmission of optical beams in long distances call
for highly sensitive receivers [13–16]. The accurate modeling of opti-
cally pre-amplified receivers has attracted attention and initial efforts
considered ideal passband optical filters [17], leading to the statistical
description of the signal and noise via the 𝜒2 distribution. The 𝜒2

distribution has been extensively utilized to assess the performance in
receivers with wide optical filters [15,18,19], although it proves less
accurate in systems where the filter response deviates from the ideal
passband one [20].
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To our knowledge, the BEP performance of pre-amplified PPM
receivers has not been previously evaluated for optical filters with arbi-
trary response. In this work, we perform this study for both the uncoded
and coded systems. With respect to the uncoded systems, we derive
a novel analytical method for the BEP evaluation. The method uses a
Karhunen–Loève (K–L) expansion of the filtered signal and noise, which
provides a highly accurate representation via a truncated sum with a
minimum number of terms [21]. The K-L expansion also decorrelates
the noise components and each term of the sum becomes a random vari-
able that is independent from the rest. This enables the calculation of
the Laplace transform of the total signal as a product of the individual
transforms of the respective random variables. Even though the exact
distribution that corresponds to the resulting Laplace transform is not
known, since it deviates from the 𝜒2 one, we demonstrate that the PPM
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Fig. 1. Setup for the optically pre-amplified PPM communication system. Fl: optical filter, PD: photodiode, Int: integrator.
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BEP can be calculated from the Laplace transform only, and we provide
exact analytical relations for binary PPM and accurate approximations
for higher modulation orders. Compared to the 𝜒2 statistics, our method
is more accurate since it makes no assumptions, such as identical noise
variances over the whole optical spectrum. The results show that the 𝜒2

approximation is inaccurate up to approximately 0.5 dB for Lorentzian
response filters, irrespective of the filter bandwidth and the modulation
order. For an ideal passband filter, the proposed method produces
results that are in perfect agreement with the 𝜒2 approximation [19].
Even though the presented results correspond to filters with analytically
available K-L expansions, the method is also applicable in scenarios
where the filter expansion can be calculated numerically.

Regarding the coded systems, we consider the LDPC codes of the
5G standard [22], since we have recently demonstrated their error-
correction capabilities in pre-amplified PPM receivers with ideal pass-
band filters [23]. A key differentiation of this current work stems
from the inability to analytically derive the received signal statistics,
which makes the calculation of the likelihood function impossible. The
likelihood function is required to calculate the PPM symbol proba-
bilities [24], and subsequently, the received bit likelihoods [23] that
constitute the inputs to the LDPC decoders for error-correction. In order
to bypass this difficulty, we approximate the unknown function and
assess the BEP performance of the sum–product and min-sum decoders
via simulations. The results show that a significant gain can be expected
in comparison with the uncoded systems, while both decoders exhibit
a similar performance irrespective of the optical filter width and the
modulation order. It is also shown that the best performance is expected
for code rates between 2∕3 and 11∕13.

The rest of the paper is organized as follows: Section 2 describes
the receiver model of the uncoded system and presents novel analytic
formulas for the BEP evaluation. The section also reports the results that
have been obtained using the analytic relations for the two optical filter
types. Section 3 briefly describes the structure of the 5G LDPC codes
and the implementation of the min-sum and sum–product decoders. It
then details the proposed approximations of the bit likelihoods, which
are required to perform the Monte-Carlo simulations and assess the BEP
performance of the coded system. Finally, Section 4 summarizes the
main findings of this work and concludes the paper.

2. Uncoded BEP evaluation

We consider an optically pre-amplified receiver that is shown in
Fig. 1. The optical signal is amplified and filtered in the optical domain,
and a polarizer is employed to discard the orthogonally polarized noise
component. A photodiode converts the optical signal and the electrical
signal is integrated over the duration of each PPM slot. The PPM
demodulator monitors the recorded energy at each slot and decides
upon the received symbol based on the maximum received energy (soft
decision decoding).

2.1. Receiver model

We utilize a K-L expansion to express the filtered noise as [17]

𝑛(𝑡) =
∞
∑

𝑘=1
𝑛𝑘 𝜙𝑘(𝑡) =

∞
∑

𝑘=1

(

𝑛′𝑘 + 𝑖 𝑛′′𝑘
)

𝜙𝑘(𝑡), |𝑡| ≤
𝑇𝑠
2

, (1)

where 𝑇𝑠 is the PPM slot duration. 𝑛′𝑘 and 𝑛′′𝑘 are the real and imaginary
noise components, respectively, and are assumed to be independent
2 
zero-mean Gaussian random variables (RVs). The eigenfunctions 𝜙𝑘(𝑡)
form an orthonormal basis over the time interval

[

−𝑇𝑠∕2, 𝑇𝑠∕2
]

and
are calculated from the integral equation

∫

𝑇𝑠
2

− 𝑇𝑠
2

𝑅𝑛(𝑦 − 𝑥)𝜙𝑘(𝑥) 𝑑𝑥 = 𝜆𝑘 𝜙𝑘(𝑦) , (2)

where 𝑅𝑛(𝜏) is the autocorrelation function of the optical filter. The
appearing eigenvalues 𝜆𝑘 determine the variances of the noise compo-
nents 𝑛𝑘 which are given by 𝜆𝑘 𝑁0, assuming that the noise spectral
density at the output of the amplifier 𝑁0 = 𝑛𝑠𝑝 ℎ𝑓 (𝐺 − 1) remains
constant over the filter response. The optical signal at the filter output
may also be expanded over the basis that is formed by 𝜙𝑘(𝑡) following

𝑠(𝑡) =
√

𝐸𝑠

∞
∑

𝑘=1
𝑠𝑘 𝜙𝑘(𝑡), |𝑡| ≤

𝑇𝑠
2
, (3)

where 𝐸𝑠 is the signal energy within the PPM slot and relates to the
average energy per bit as 𝐸𝑠 = 𝐸𝑏 log2(𝑄), with 𝑄 denoting the
modulation order. The appearing expansion terms 𝑠𝑘 are calculated
either in the time or the frequency domain following

𝑠𝑘 = 1
√

𝐸𝑠
∫

𝑇𝑠
2

− 𝑇𝑠
2

𝑠(𝑡)𝜙𝑘(𝑡) 𝑑𝑡

= 1
√

𝐸𝑠
∫

𝑇𝑠
2

− 𝑇𝑠
2

[

∫

∞

−∞
𝑆𝑖𝑛(𝑓 )𝐻(𝑓 ) 𝑒𝚤2𝜋𝑓𝑡 𝑑𝑓

]

𝜙𝑘(𝑡) 𝑑𝑡

= 1
√

𝐸𝑠
∫

∞

−∞
𝑆𝑖𝑛(𝑓 )𝐻(𝑓 )𝛷𝑘(𝑓 ) 𝑑𝑓 ,

(4)

where 𝑆𝑖𝑛(𝑓 ) is the Fourier transform of the signal at the filter input,
𝐻(𝑓 ) is the transfer function of the filter and

𝛷𝑘(𝑓 ) = ∫

𝑇𝑠
2

− 𝑇𝑠
2

𝜙𝑘(𝑡) 𝑒𝚤2𝜋𝑓𝑡 𝑑𝑓 . (5)

It is then straightforward to obtain the signal at the output of the
integrator as [17, eq. (1)]

𝑥 = ∫

𝑇𝑠
2

− 𝑇𝑠
2

|𝑠(𝑡) + 𝑛(𝑡)|2 𝑑𝑡 =
∞
∑

𝑘=1

[

(

√

𝐸𝑠 𝑠𝑘 + 𝑛′𝑘
)2

+ 𝑛′′ 2𝑘

]

. (6)

2.2. Proposed BEP evaluation

The probability of erroneous demodulation and BEP in binary PPM
with soft decisions is given by

𝑃 𝑏𝑝𝑝𝑚
𝑒 = 1 − ∫

∞

0

[

∫

𝑥

0
𝑓0(𝑢) 𝑑𝑢

]

𝑓 (𝑥) 𝑑𝑥 , (7)

here 𝑓0(𝑥) and 𝑓 (𝑥) denote the probability density functions (pdfs)
f the electrical signal at the empty PPM slot and the slot that contains
he optical energy, respectively. The integral calculates the probability
f correct demodulation, where the measured signal value at the empty
lot is less than the corresponding value at the energy containing slot.
ollowing (6), the integrator output 𝑥 corresponds to the sum of inde-
endent 𝜒2 RVs and, assuming that a finite number of 𝑀 eigenvalues

contribute, the Laplace transform of its pdf 𝑓 (𝑥) is given by [20]

𝐹 (𝑠) =
𝑀
∏

exp
(

−
𝑠 𝑘

1 + 𝑠 𝜆𝑘

)

, (8)

𝑘=1 1 + 𝑠 𝜆𝑘
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where 𝑘 = 𝑠2𝑘 𝐸𝑠∕𝑁0. If no signal is present (𝑘 = 0), the last equation
reduces to

𝐹0(𝑠) =
𝑀
∏

𝑘=1

1
1 + 𝑠 𝜆𝑘

. (9)

fter expressing the Laplace transform 𝐹0(𝑠) as the sum

0(𝑠) =
𝑀
∑

𝑘=1

𝑐𝑘
1 + 𝑠 𝜆𝑘

, (10)

with

𝑐𝑘 =

⎡

⎢

⎢

⎢

⎣

𝑀
∏

𝑗=1
𝑗≠𝑘

(

1 −
𝜆𝑗
𝜆𝑘

)

⎤

⎥

⎥

⎥

⎦

−1

, (11)

he pdf 𝑓0(𝑥) is calculated as

0(𝑥) =
𝑀
∑

𝑘=1

𝑐𝑘
𝜆𝑘

exp
(

− 𝑥
𝜆𝑘

)

. (12)

y combining (12) and (7), we arrive at

𝑏𝑝𝑝𝑚
𝑒 = ∫

∞

0

𝑀
∑

𝑘=1
𝑐𝑘 exp

(

− 𝑥
𝜆𝑘

)

𝑓 (𝑥) 𝑑𝑥 =
𝑀
∑

𝑘=1
𝑐𝑘 𝐹

(

1
𝜆𝑘

)

= 1
2

𝑀
∑

𝑘=1
exp

(

−
𝑘
2 𝜆𝑘

) 𝑀
∏

𝑗=1
𝑗≠𝑘

exp
(

−
𝑗

𝜆𝑘 + 𝜆𝑗

)

1 −
𝜆2𝑗
𝜆2𝑘

.
(13)

he BEPs for higher PPM orders 𝑄 are then approximated as [25]

𝑞𝑝𝑝𝑚
𝑒 ≤ 𝑄

2 (𝑄 − 1)

[

1 −
(

1 − 𝑃 𝑏𝑝𝑝𝑚
𝑒

)𝑄−1] . (14)

he advantage of (14) is that it does not require the knowledge of the
df of (8) that is challenging to calculate analytically.

It should be noted that the proposed model is also valid in systems
ith weather losses and atmospheric turbulence, although a full treat-
ent of these effects is beyond the scope of this work. In a typical
igh capacity system, the PPM slot duration amounts to ns [15], and
s significantly shorter than the average duration of fades and weather
hanges. As a result, the channel response is practically flat over the
uration of the PPM symbol, and its impact can be introduced by
ultiplying the symbol energy 𝐸𝑠 with the channel response ℎ. The
odel then correctly predicts that the BEP lowers when weather and

ading losses are introduced, due to its exponential dependence on the
eceived energy. Moreover, the model requires a fixed number of terms

and, as we demonstrate in the following sections, is valid for all
𝑠∕𝑁0. Consequently, the model can be used to assess the performance
f the system for any given weather and fading conditions.

.3. Results and discussion

We first consider an ideal passband optical filter with a flat fre-
uency response over

[

−𝐵𝑜∕2, 𝐵𝑜∕2
]

. The eigenfunctions and the
igenvalues of the filter are calculated from [26] and [27, eq. (30.15.1-
)]

𝑘(𝑡) =

√

2 𝑘 + 1
𝑇𝑠

𝑃𝑠0𝑘

(

2 𝑡
𝑇𝑠

, 𝛾2
)

, |𝑡| ≤
𝑇𝑠
2
,

𝜆𝑘 = 𝐵𝑜 𝑇𝑠
[

𝑆0(1)
𝑘 (1 , 𝛾)

]2
,

(15)

here 𝑃𝑠𝑚𝑘 (⋅, ⋅) is the angular spheroidal wave function of the first
ind [27, eq. (30.4.1)], 𝑆0(1)

𝑘 (⋅, ⋅) is the radial spheroidal function of
he first kind [27, eq. (30.11.8)] and 𝛾 = 𝜋 𝐵𝑜 𝑇𝑠∕2. With respect to the
ignal expansion terms 𝑠𝑘, we first use [27, eq. (30.15.5)] to evaluate
he Fourier transform of (5) as

𝑘(𝑓 ) = (−1)𝑘
√

𝑇𝑠 𝜆𝑘 𝜙𝑘

(

−
𝑇𝑠 𝑓

)

. (16)

𝐵𝑜 𝐵𝑜

3 
Fig. 2. BEP of the optically pre-amplified receiver with an ideal passband filter for
𝐵𝑜 𝑇𝑠 = 10, 20 and 𝑄 = 2, 4, 16.

or a square input pulse with amplitude
√

𝐸𝑠∕𝑇𝑠, (4) evaluates to

𝑠𝑘 = (−1)𝑘
√

𝜆𝑘
𝐵𝑜 ∫

𝐵𝑜
2

− 𝐵𝑜
2

sin
(

𝜋 𝑓 𝑇𝑠
)

𝜋 𝑓
𝜙𝑘

(

−
𝑇𝑠 𝑓
𝐵𝑜

)

𝑑𝑓

= (−1)𝑘
√

2 𝑘 + 1
𝐵𝑜 𝑇𝑠

𝜆3∕2𝑘 𝑃𝑠0𝑘
(

0, 𝛾2
)

,

(17)

where we have used [27, eq. (30.15.3)].
Eq. (14) is plotted for the obtained noise and signal expansions in

Fig. 2. The summation included the first 𝑀 = 𝐵𝑜 𝑇𝑠 eigenvalues, which
proved adequate to achieve convergence. The figure also compares
the proposed method with the results that are obtained using a 𝜒2

approximation from previous works [19]. The results are in perfect
agreement for 𝑀 = 10, 20 and 𝑄 = 2, 4, 16, which verifies both the
ccuracy of the proposed method and the validity of the 𝜒2 approxima-
ion. Wider optical filters can also be modeled and assessed in a similar
ashion, however the calculations become more challenging since the
ost significant eigenvalues are practically equal and the denominator

f (13) requires a very high number of significant digits to evaluate
ithout error. In this case, the 𝜒2 approximation is preferable since it

s both accurate and easier to evaluate. It should also be noted that
he application of the proposed method in narrower filters may lead
o inaccurate results, since the pulse is broadened and energy starts
o leak in the neighboring slots. According to our calculations, a time-
andwidth product of 𝐵𝑜 𝑇𝑠 ≥ 10 ensures that over 97% of the signal
nergy is contained within the correct slot.

A second filter with known eigenfunctions and eigenvalues is the
orentzian response filter, which approximates the response of etalons
hat are used in pre-amplified PPM systems [28]. The filter has the
ollowing frequency response and autocorrelation functions

(𝑓 ) = 1
1 + 𝑖 2 𝑓

𝐵𝑜

(18)

and

𝑅 (𝜏) =
𝜋 𝐵𝑜 exp

(

−𝜋 𝐵 |𝜏|
)

, (19)
𝑛 2 𝑜
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Fig. 3. BEP of the optically pre-amplified receiver with a Lorentzian response filter for
𝐵𝑜 𝑇𝑠 = 20, 50, 100 and 𝑄 = 2, 4, 16.

respectively, where 𝐵𝑜∕2 is the 3 dB bandwidth. The eigenfunctions and
eigenvalues are given by [29]

𝜙𝑘(𝑡) =
𝐴𝑘
√

𝑇𝑠

[

𝜋 𝐵𝑜 𝑇𝑠
2 𝑧𝑘

sin
(

𝑧𝑘 (2 𝑡 + 𝑇𝑠)
𝑇𝑠

)

+ cos
(

𝑧𝑘 (2 𝑡 + 𝑇𝑠)
𝑇𝑠

)]

, (20)

and

𝜆𝑘 =

[

1 +
(

2 𝑧𝑘
𝜋 𝐵𝑜 𝑇𝑠

)2
]−1

. (21)

n the previous equations, 𝐴𝑘 are normalization constants and 𝑧𝑘 are
he solutions to the following equations
tan(𝑧𝑘)
𝑧𝑘

= − 2
𝜋 𝐵𝑜 𝑇𝑠

, (22a)

nd
cot(𝑧𝑘)
𝑧𝑘

= 2
𝜋 𝐵𝑜 𝑇𝑠

. (22b)

he signal at the filter output equals

(𝑡) =

√

𝐸𝑠
𝑇𝑠

[

1 − exp
(

−𝜋 𝐵𝑜

(

𝑡 +
𝑇𝑠
2

))]

(23)

nd (4) evaluates to

𝑘 = 1
√

𝑇𝑠 ∫

𝑇𝑠
2

− 𝑇𝑠
2

[

1 − 𝑒−𝜋 𝐵𝑜

(

𝑡+ 𝑇𝑠
2

)]

𝜙𝑘(𝑡) 𝑑𝑡

=
𝐴𝑘 sin

(

𝑧𝑘
)

𝑧𝑘

[

𝜋 𝐵𝑜 𝑇𝑠
2 𝑧𝑘

sin
(

𝑧𝑘
)

+ cos
(

𝑧𝑘
)

]

−
2 𝜆𝑘 𝐴𝑘
𝜋 𝐵𝑜 𝑇𝑠

,

(24)

here we have utilized (2) at 𝑦 = −𝑇𝑠∕2 to arrive at

∫

𝑇𝑠
2

− 𝑇𝑠
2

𝑒−𝜋 𝐵𝑜

(

𝑡+ 𝑇𝑠
2

)

𝜙𝑘(𝑡) 𝑑𝑡 =
2 𝜆𝑘
𝜋 𝐵𝑜

𝜙𝑘

(

−
𝑇𝑠
2

)

. (25)

Eq. (14) is plotted in Fig. 3, after keeping the first 𝑀 = 2𝐵𝑜 𝑇𝑠
eigenvalues since the response of the Lorentzian filter is non-zero
outside the 3 dB bandwidth. Similarly to the ideal passband filter, we
only consider wide optical filters, otherwise the filter output starts to
leak into the adjacent slot according to (23). However, the calculations

are numerically more stable due to the fact that the eigenvalues are

4 
distinct and Lorentzian response filters with wider bandwidths can
be assessed. To be consistent with previous works on optically pre-
amplified systems that employ a time bandwidth product equal to
𝐵𝑜 𝑇𝑠 = 55 [15], we have considered similar values in our calculations.
As expected, the BEP improves when the modulation order is increased
and worsens when the optical bandwidth is increased. The results also
show that the 𝜒2 distribution overestimates the BEP by an almost
constant factor of less than 0.5 dB, irrespective of the filter bandwidth
and modulation order. This observation can also be interpreted as a
comparison between the ideal passband and Lorentzian filter responses.
In effect, the ideal passband filter introduces a 0.5 dB penalty that can
be explained by the fact that more noise is allowed to pass within the
signal bandwidth. The Lorentzian response, on the other hand, starts
to reject noise at lower frequencies and exhibits better performance, as
it has been previously reported for a smaller time bandwidth product
and on-off-keying [20].

Regarding the accuracy of the proposed approach for the Lorentzian
filter, it is not possible to directly compare the presented BEP results
with an existing model. To address this issue and verify the validity
of Eq. (14), we performed Monte-Carlo simulations. The simulations
involved the generation of 𝑀 = 2𝐵𝑜 𝑇𝑠 𝜒2 RVs with two degrees of
freedom and unequal variances 𝜆𝑘, as dictated by (6). The 𝜒2 RVs were
then added to generate the received signals at the empty PPM slots.
Similarly, the PPM slot that contained the signal energy was generated
by adding an equal number of non-central 𝜒2 RVs with different non-
centrality parameters 𝑘. The slot signals were then compared and the
maximum value was considered as the most probable (soft decision
decoding), leading to the introduction of errors whenever an empty
slot was incorrectly selected. The results of the simulation are shown
in Fig. 4, where they are compared with the analytical ones for 𝑄 = 16
that is expected to introduce the biggest inaccuracy. It can be verified
that the discrepancy is very limited at low 𝐸𝑏∕𝑁0 values, while both
approaches are in very good agreement with each other at higher
𝐸𝑏∕𝑁0. For comparison purposes, we also present results for the widely
used union bound, which is obtained by keeping only the first term of
the expression inside the power in Eq. (14). The figure verifies that the
proposed model is significantly more accurate than the union-bound
at low 𝐸𝑏∕𝑁0, while all three methods (proposed, simulation, union-
bound) coincide at high 𝐸𝑏∕𝑁0, thus demonstrating the accuracy of the
proposed model.

3. Coded BEP evaluation

For the coded system we consider a conventional forward error
correction scheme, as presented in Fig. 1. The LDPC encoder appends
parity check bits to the bit stream to construct codewords, which are
mapped into PPM symbols by the modulator. At the receiver side, opti-
cal noise is added to the PPM symbols and the resulting electrical signal
is integrated over the slot duration following Eq. (6). The demodulator
calculates the PPM symbol likelihoods from the integrator outputs, and
then converts them to bit likelihoods using the methodology that is
presented in the following paragraphs. The bit likelihoods are finally
fed to the LDPC decoder that attempts to restore the original bit stream.

3.1. LDPC encoder and decoder

Our implementation of error-correction is based on the LDPC codes
of the 5G standard [22]. These codes utilize a quasi-cyclic parity-
check matrix structure, which is constructed from the permutations of
smaller matrices of size 𝑍𝑐 × 𝑍𝑐 and an appropriate number of block
rows and columns. The smaller matrices are either zero matrices or
cyclic permutations of the identity matrix and their positions on the
block rows and columns are determined using the set index 𝑖𝐿𝑆 , which
contains 𝑍𝑐 . In this work, we only utilize the Base Graph 1 (BG1),
which is oriented towards larger data lengths, and we use 𝑍𝑐 = 384 to
achieve a data length of 8448 bits, since 𝐾 = 22 columns are always
𝑏
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Fig. 4. Comparison between analytical and simulation results for a Lorentzian response
filter with 𝐵𝑜 𝑇𝑠 = 20, 50, 100 and 𝑄 = 16.

assigned to the data in BG1. The parity-check matrix for the desired
code rate  is attained by selecting the first 𝐾𝑏∕ block columns and
𝐾𝑏 (1 −)∕ block rows of the corresponding base matrix. The parity-
check matrix also entails a double-diagonal structure at block columns
(𝐾𝑏+1, 𝐾𝑏+2, … , 𝐾𝑏∕), which is utilized by the encoder to efficiently
alculate the parity bits and construct the codewords.

The codes are capable of correcting short bursts of errors that are
ntroduced by the PPM receiver provided that the parity checks are
enerated from bits that do not belong to the same symbol. The error
urst that is caused by a PPM symbol error, and may lead up to log2(𝑄)

consecutive erroneous bits, can then be corrected since each bit belongs
to different parity checks and can be corrected independently. Since the
parity checks are selected according to the value of 𝑍𝑐 , it is sufficient
o require that 𝑍𝑐 ≫ log2(𝑄), which is true for practical systems that

utilize low PPM orders. In particular, this work considers 𝑍𝑐 = 384 and
log2(𝑄) = {3, 4} and it is therefore expected that the utilized LDPCs
will have a high error correction effectiveness [23].

The BEP performance of the LDPC-coded system is evaluated for
two popular decoder architectures, the min-sum and the sum–product
decoder. The two decoders were implemented using iterative mes-
sage passing algorithms [30, eq. (22)], which utilize messages 𝛼𝑚,𝑛
(variable-to-check) and 𝛽𝑚,𝑛 (check-to-variable) to calculate the intrin-
sic log-likelihood ration (LLR) of each bit 𝛾𝑛 [31]. The sum–product
decoder updates messages 𝛽𝑚,𝑛 following

𝑚,𝑛 = 2 tanh−1
⎡

⎢

⎢

⎣

∏

𝑛′∈𝑃𝑚⧵{𝑛}
tanh

(𝛼𝑚,𝑛′
2

)

⎤

⎥

⎥

⎦

, (26)

nd the min-sum utilizes the approximation

𝑚,𝑛 =
∏

𝑛′∈𝑃𝑚⧵{𝑛}
sgn

(

𝛼𝑚,𝑛′
)

min
𝑛′∈𝑃𝑚⧵{𝑛}

|𝛼𝑚,𝑛′ | , (27)

espectively, with 𝑃𝑚⧵{𝑛} denoting the positions of the non-zero entries
f the parity-check matrix at row 𝑚, except for column 𝑛 itself. The new
alues for 𝛼𝑚,𝑛 and the intrinsic LLR are calculated from

𝑚,𝑛 = 𝛾𝑛 − 𝛽𝑚,𝑛 (28)

nd

𝑛 = 𝜌(𝑏𝑛) +
∑

𝛽𝑚,𝑛 , (29)

𝑚∈𝑃𝑛

5 
here 𝑃𝑛 contains the positions of the non-zero entries of the parity-
heck matrix at column 𝑛. 𝜌(𝑏𝑛) is the extrinsic LLR of each bit and

is obtained from the PPM signal values, as it is described in the next
paragraph. After each update of the intrinsic LLR values, the decoder
translates them into bits and checks if a valid codeword has been found.
If the codeword is not valid, the process repeats for a maximum number
of 10 iterations in our implementation of both decoders.

3.2. Derivation of the extrinsic LLR

The extrinsic LLR of each bit is calculated from the PPM symbol
that contains it. To this end, we first observe that a bit is ‘0’ when the
PPM pulse is located in half of the symbol slots, or ‘1’ when the PPM
pulse is located in the remaining slots. Two disjoint slot sets are then
formed for the 𝓁th bit: 𝐵0

𝓁 is the set that contains the slots in which the
bit is ‘0’ and 𝐵1

𝓁 is the set that contains the slots in which the bit is ‘1’.
The sets are fixed and different for each bit, for example in 4-PPM the
slots correspond to the bit combinations {𝑠1, 𝑠2, 𝑠3, 𝑠4} 𝛥

= {00, 01, 10, 11}
nd we find that 𝐵0

1 = {𝑠1, 𝑠2}, 𝐵1
1 = {𝑠3, 𝑠4}, 𝐵0

2 = {𝑠1, 𝑠3} and
1
2 = {𝑠2, 𝑠4}. The extrinsic LLR 𝜌(𝑏𝓁), 𝓁 = 1, 2,… , log2(𝑄) of the 𝓁th
it is then calculated from [23, eq. (9)-(12)]

(𝑏𝓁) = log
⎡

⎢

⎢

⎣

∑

𝑖∈𝐵0
𝓁
𝛬(𝑥𝑖)

∑

𝑖∈𝐵1
𝓁
𝛬(𝑥𝑖)

⎤

⎥

⎥

⎦

, (30)

here 𝑥𝑖, 𝑖 = 1, 2,… , 𝑄 is the received optical signal at the 𝑖th PPM
lot and 𝛬 (𝑥) is the likelihood function

(𝑥) =
𝑓 (𝑥)
𝑓0(𝑥)

. (31)

The likelihood function is not known for an arbitrary optical filter
shape, since an analytic expression for 𝑓 (𝑥) is not generally available.
However, it was previously shown [23] that the individual pdfs can be
efficiently approximated by Gaussian functions

𝑓0(𝑥) ≈
1

√

2𝜋 𝜎20

exp

[

−
(𝑥 − 𝜇0)2

2 𝜎20

]

, (32a)

and

𝑓 (𝑥) ≈
1

√

2𝜋 𝜎2

exp

[

−
(𝑥 − 𝜇 )2

2 𝜎2

]

, (32b)

sing the first two moments of the distributions 𝑓0(𝑥) and 𝑓 (𝑥)

𝜇0 =
𝑀
∑

𝑘=1
𝜆𝑘 , 𝜎20 =

𝑀
∑

𝑘=1
𝜆2𝑘 ,

 =
𝑀
∑

𝑘=1

(

𝑘 + 𝜆𝑘
)

, 𝜎2 =
𝑀
∑

𝑘=1

(

2 𝑘 𝜆𝑘 + 𝜆2𝑘
)

.

(33)

his leads to a similar Gaussian approximation for the likelihood func-
ion, and after some algebra the extrinsic LLR of each bit is calculated
ollowing

(𝑏𝓁) ≈ log

[

max
𝑖∈𝐵0

𝓁

𝛬(𝑥𝑖)

]

− log

[

max
𝑖∈𝐵1

𝓁

𝛬(𝑥𝑖)

]

≈
𝜎2 − 𝜎20
2 𝜎2 𝜎

2
0

(

max
𝑖∈𝐵0

𝓁

𝑥𝑖 − max
𝑖∈𝐵1

𝓁

𝑥𝑖

)

×

(

max
𝑖∈𝐵0

𝓁

𝑥𝑖 + max
𝑖∈𝐵1

𝓁

𝑥𝑖 − 2
𝜇0 𝜎2 − 𝜇 𝜎20

𝜎2 − 𝜎20

)

.

(34)

In the last expression, we have only kept the contribution of the
maximum signal in each of the two sets, assuming that the rest of
the signals do not contribute significantly to the sum of (30) due
to the rapidly increasing likelihood function [32, eq. (8)]. A further
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simplification can be made for the min-sum decoder by ignoring the
constant terms to arrive at

𝜌(𝑏𝓁) ≈

(

max
𝑖∈𝐵0

𝓁

𝑥𝑖

)2

−

(

max
𝑖∈𝐵1

𝓁

𝑥𝑖

)2

. (35)

3.3. Code rate optimization

The coded BEP of the two decoders was evaluated with Monte-Carlo
simulations for a Lorentzian response filter, while the ideal passband
filter has been studied in a previous work [23]. Random streams that
contained 8448 bits were encoded using the double-diagonal structure
of the LDPC parity check matrix, and the generated codewords were
partitioned into PPM symbols. In each symbol, the empty slot signals
were generated by summing 𝑀 = 2𝐵𝑜 𝑇𝑠 central 𝜒2 RVs with two
degrees of freedom and unequal variances 𝜆𝑘, as it has been detailed
in the analysis of the uncoded system. The signal at the slot that
contained the symbol energy was generated in a similar manner by
summing an equal number of non-central 𝜒2 RVs with different non-
centrality parameters 𝑘, where  denotes the code-rate. The slot
signals 𝑥𝑖 were then utilized to approximate the extrinsic LLRs and
decode the received bit sequences via message-passing. The simulations
were performed for a confidence level of 99% for the BEP and 90% for
the Frame Error Probability (FEP), using the confidence interval upper
and lower limits given by [33, eq. (11.2.11)]. The simulations repeated
until the width of the confidence intervals was less than 10% of the
measured BEP and FEP, resulting in the accurate estimation of their
actual values.

Fig. 5 presents the simulation results for the min-sum decoder and
ode rates equal to  = 1∕2, 2∕3, 11∕13. The results show that the code

rate is an important design parameter and the optimal performance is
expected for code rates between 2/3 and 11/13. The unanimously best
selection for the code rates that are presented in the figure is 11/13.
The 2/3 rate performs equally well for 𝑄 = 4 and 𝐵𝑜 𝑇𝑠 = 20, but it
introduces a small energy penalty of up to 0.1 dB for wider filters.
Similar observations can be made for 𝑄 = 16, where the energy penalty
of the 2∕3 rate is somewhat increased to over 0.2 dB. Finally, the 1/2
rate introduces a more significant penalty that increases with the filter
bandwidth and ranges between 0.2–0.4 dB for 𝑄 = 4, and 0.5–0.7 dB
for 𝑄 = 16. The sum–product decoder results are presented in Fig. 6.
Again, the optimal performance is expected for code rates between 2/3
and 11/13, but the best selection depends on the modulation order.
The 2/3 rate is the best selection for 𝑄 = 4 and the 11/13 rate is the
best selection for 𝑄 = 16, with their penalty difference being less than
.2 dB in all cases. The 1/2 rate performs worse than the other two
n all cases, and introduces a penalty of up to 0.6 dB for 𝑄 = 16 and
𝐵𝑜 𝑇𝑠 = 100.

3.4. Performance comparison

The optimization of the code rate enables the assessment of the
effectiveness of the LDPC codes in the pre-amplified system. Using
the optimal code rates and the results of Figs. 3 and 6, it can be
verified that the coded system provides a very significant performance
improvement that depends on the target BEP. If for example a target
BEP of 10−5 is considered, then the maximum energy gain of the coded
system can exceed 3 dB for 𝑄 = 4 with a narrow filter. It can also
be observed that the increase in the modulation order from 𝑄 = 4
o 𝑄 = 16 reduces the effectiveness of the LDPC error correction by
pproximately 0.5 dB. Similarly, wider optical filters also reduce the
ffectiveness and approximately 0.2 dB are lost when the optical filter
andwidth doubles. Table 1 summarizes the effectiveness of the LDPC
rror correction for both modulation orders and all time bandwidth
roducts.

By comparing Figs. 5 and 6, it can also be seen that the min-

um decoder does not introduce a significant performance degradation

6 
Fig. 5. BEP of the min-sum decoder for a Lorentzian response filter with 𝐵𝑜 𝑇𝑠 =
20, 50, 100.

Table 1
𝐸𝑏∕𝑁0 that is required to attain a target BEP of 10−5.

𝑄 = 4

𝐵𝑜 𝑇𝑠 = 20 𝐵𝑜 𝑇𝑠 = 50 𝐵𝑜 𝑇𝑠 = 100

Uncoded 13.2 dB 14.5 dB 15.6 dB
Coded 9.9 dB 11.5 dB 12.8 dB
Gain 3.3 dB 3.0 dB 2.8 dB

𝑄 = 16

𝐵𝑜 𝑇𝑠 = 20 𝐵𝑜 𝑇𝑠 = 50 𝐵𝑜 𝑇𝑠 = 100

Uncoded 10.6 dB 11.9 dB 12.9 dB
Coded 7.9 dB 9.4 dB 10.6 dB
Gain 2.7 dB 2.5 dB 2.3 dB
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Fig. 6. BEP of the sum–product decoder for a Lorentzian response filter with 𝐵𝑜 𝑇𝑠 =
0, 50, 100.

espite its simplified LLR expression, provided that the best possible
ode rate is used. The maximum difference between the two decoders
s slightly over 0.1 dB and is observed for 𝑄 = 4 and 𝐵𝑜 𝑇𝑠 = 20. This
ain may only be achieved provided that the sum–product decoder
as knowledge or an accurate estimation of the parameters of (33).
ollowing previous works [34], imperfect knowledge of the parameters
hat leads to the overestimation of 𝐸𝑏∕𝑁0 degrades the performance of
he sum–product decoder, which becomes identical to that of the min-
um one. However, the underestimation of 𝐸𝑏∕𝑁0 introduces a more
ignificant degradation, and the sum–product BEP reverts to that of the
ncoded system.

Both cases are quantified in Fig. 7, where 𝐸𝑏∕𝑁0 is overestimated
nd underestimated by 6 and 9 dB in a system with 𝐵𝑜 𝑇𝑠 = 20 and

= 11∕13. It can be verified that the overestimation results in a
enalty of at most 0.1 dB and therefore has a limited effect. In contrast,
7 
Fig. 7. Impact of imperfect 𝐸𝑏∕𝑁0 knowledge on the BEP performance. The code rate
is equal to  = 11∕13 and the time-bandwidth product is 𝐵𝑜 𝑇𝑠 = 20.

the underestimation gradually renders the sum–product decoder BEP
worse than the min-sum one. The system with 𝑄 = 4 is more sensitive to
the imperfect knowledge and an underestimation of approximately 6 dB
is required before the sum–product decoder begins to underperform.
When the modulation order is increased to 𝑄 = 16, the allowable
underestimation increases and must attain a value between 6–9 dB
before the sum–product decoder performance is worse than the min-
sum one. This analysis shows that perfect knowledge is not required,
but even partial knowledge may not justify the cost and complexity of
the estimation subsystem given the limited performance gain that is
expected. As a result, the min-sum decoder may prove particularly ap-
pealing in practical systems, since it does not require the knowledge or
estimation of any of the parameters. Moreover, both the present results
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Fig. 8. BEP comparison of coded systems with Lorentzian and ideal passband filters.
The code rate is equal to  = 11∕13.

and the results of a previous work on ideal passband filters [23] verify
the validity of (35). It is then reasonable to conjecture that the min-sum
decoder can be utilized without alteration in all systems irrespective of
their optical filter response, as long as their time-bandwidth product
is high. This is typically a requirement in practical systems, where the
time bandwidth product exceeds 𝐵𝑜 𝑇𝑠 = 50 [15].

Finally, Fig. 8 provides a comparative analysis between coded sys-
ems with Lorentzian and ideal passband filters. The code rate equals

= 11∕13 so as to perform a fair comparison between optimized
ystems [23]. It can be verified that the ideal passband filter introduces
penalty of 0.5 dB compared to a Lorentzian filter with the same time-
andwidth product. This holds true for all time-bandwidth products
nd both modulation orders, in agreement with what has been observed
or the uncoded system.
8 
4. Conclusion

We presented novel analytical expressions for the BEP of optically
pre-amplified PPM receivers with arbitrary optical filter response. The
analytical expressions utilized the K-L expansion of the signal and noise,
and calculate the BEP via the Laplace transform of the signal and noise
distributions. The proposed model was applied to analytically evaluate
the BEP of the practically used ideal passband and Lorentzian response
filters with high optical bandwidths. The results verified that the 𝜒2

approximation provides accurate results for the ideal passband filter,
while it overestimates the BEP for the Lorentzian response filter by
0.5 dB. The method is also applicable for any type of optical filter and
can be used to explore the system performance with different filters in
future works. Moreover, the method is valid for all signal energy levels
and can be applied to accurately assesses the impact of adverse weather
and turbulence conditions in separate studies.

We also simulated the performance of the system when LDPC codes
are introduced for error-correction. To this end, we first proposed an
approximate expression for the bit likelihoods that are required for de-
coding. We then demonstrated via simulations that the introduction of
LDPC error correction imparts a significant energy gain that depends on
the modulation order and the filter bandwidth. The maximum expected
gain of 3.3 dB was observed for 4-PPM and a time-bandwidth product
𝐵𝑜 𝑇𝑠 = 20, while the utilization of 16-PPM reduces the gain by approx-
imately 0.5 dB. Additionally, wider optical filters introduce a further
loss and approximately 0.2 dB are lost each time the optical bandwidth
doubles. The simulations also revealed that the sum–product and min-
sum decoders perform within approximately 0.1 dB difference for the
most efficient code rates, which range between 2∕3 and 11∕13. How-
ver, the sum–product decoder is sensitive to the imperfect knowledge
f the system parameters. Our simulations verify that the overestima-
ion of the 𝐸𝑏∕𝑁0 results in an identical performance between the two

decoders, while its underestimation leads to a more severe performance
degradation and the sum–product decoder may perform worse than
the min-sum one. The exact underestimation level depends on the
modulation order, with 4-PPM being more sensitive, however up to
6 dB can be tolerated without a significant performance loss. Finally,
a comparison between the coded performance of Lorentzian and ideal
passband filters yields the same 0.5 dB improvement of the former that
was observed in the uncoded systems.
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