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ABSTRACT In this work, we introduce and evaluate the performance of a novel family of Nyquist
(intersymbol interference free) pulses that outperform several existing ones available in the open technical
literature. The proposed pulse design is based on a polynomial interpolation approach, which - to the best
of our knowledge - is applied for the first time for a Nyquist pulse. In particular, we propose a geometrical
approach in conjunction with the use of cubic spline functions for the construction of the transfer function
of the considered pulses. The proposed methodology is quite flexible, as it allows for the efficient design of
Nyquist pulses with improved performance, even after the choice of the roll-off factor. Four members of the
proposed family of pulses are studied in detail in terms of their frequency and time domain response, the
eye diagram and the achieved bit error rate. The proposed theoretical analysis is corroborated by extensive
numerically evaluated results. Our results have shown that for given values of the roll-off factor, the timing
jitter and the signal to noise ratio, certain members of the proposed family can achieve a lower bit error rate
as compared to several state-of-the-art pulses.

INDEX TERMS Intersymbol interference (ISI), Nyquist pulses, pulse shaping design, timing jitter.

I. INTRODUCTION
Next generation communication systems are expected to
provide new types of enhanced user connectivity services,
increased capacity, higher reliability, very high data rates,
reduced latency, increased quality of service and availability
as well as sophisticated applications, including high-fidelity
holograms, immersive reality and industrial Internet of
Things (IoT) [1], [2]. In order to support such applications,
novel physical layer techniques achieving better bandwidth
reuse and higher error-free data rates should be utilized.

Inter-symbol interference (ISI) is a major factor that
degrades the error rate performance of a digital communica-
tion system. As shown in the pioneering work of Nyquist [3],
a method to mitigate the deleterious impact of ISI on system
performance is the design of appropriate pulses that guarantee
transmission with minimum number of errors. Furthermore,
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the sensitivity of such pulse shaping filters to timing errors
should be as low as possible [4]. The most popular design
satisfying the above mentioned requirements is the so-
called raised-cosine (RC) pulse [3], which has been widely
employed in numerous practical digital communications
systems, e.g. see [5], [6], [7], [8], [9], [10], and [11] and
references therein.

For example, in [5], a linearly pulse modulation scheme
has been proposed improve the performance of visible light
communication (VLC) system. In [6], the impact of the roll-
off factor, the side band suppression ratio and the ripple of
sinc-shaped reconfigurable optical Nyquist pulse sequences
has been investigated. In [7], the impact of the optical filter
roll-off factor on Nyquist pulses generated by an on-chip
silicon Mach-Zehnder modulator, has been investigated.
In [8], a practical scheme to achieve reconfigurable optical
frequency comb (OFC) and Nyquist pulses generation has
been proposed. In [9], authors modeled a dual-parallel
silicon modulator for sinc-shaped Nyquist pulse generation.
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In [10] authors proposed a sinc-Lorentzian Nyquist pulse
shape for THz communications systems and experimentally
demonstrated its performance. In [11], authors proposed
and experimentally demonstrated a Nyquist pulse that
can improve the error rate of a 311 GHz photonic-THz
communications system.

On the other hand, the performance of digital receivers
is also affected by the presence of timing jitter. Timing
jitter results in deviations of the sampling points at the
matched filter output from their optimal positions, thus
further degrading error rate performance. In order to mitigate
the undesired effects of jitter, the pulse tails should decay as
quicky as possible outside the pulse interval.

The above mentioned considerations have motivated
research on the development of improved ISI-free pulses
that guarantee transmission with minimal number of errors
while efficiently addressing the impact of jitter on error rate
performance. Representative past examples can be found
in [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
and [23].
Specifically, in [12], the so-called better than raised-

cosine (BTRC) pulse has been proposed, which yields a
larger eye opening and smaller symbol error rate than the
conventional RC pulse. In [13], a parametric approach to
construct families of ISI-free pulses in the frequency domain,
has been presented. The pulses proposed in [12] and [13] have
an explicit time-domain formula. Other improved pulses, that
do not have an explicit time-domain expression are available
in [14]. In that work, a family of ISI-free pulse-shaping filters
with orwithoutmatched filtering have been proposed. In [15],
two modified Nyquist pulses, namely the so-called flipped
hyperbolic secant (fsech) and the flipped-inverse hyperbolic
secant (farcsech) pulses. In the same work it has been shown
that the farcsech pulse is systematically superior than the
BTRC pulse, since it outperforms it in terms of symbol
error rate and maximum distortion, in conjunction with an
enhanced eye opening.

In [16], three alternative Nyquist pulses were devised that
exploit the inherent flexibility of the concepts of inner and
outer functions. Specifically, the proposed design was based
on the use of the inverse cosine and the inverse hyperbolic
sine function, as outer and inner function, respectively.
In [17], improved parametric families of ISI-free pulses
using the same concept, have been proposed. In that work,
the proposed pulse design was based on the composition
of the functions inverse cosine (outer function) and natural
logarithm (inner function). In [18], an ISI-free pulse based
on inverse-hyperbolic functions has been presented, which
outperforms the ones proposed in [16] and [17].

A different pulse design approach has been adopted in [19],
[20], [21], [22], [23], [24], [25], and [26]. In these works,
additional design parameters have been included, whose
values has been obtained using optimization techniques.
Specifically, in [19] and [20], pulses with piece-wise
parabolic and linear characteristics, respectively, have been

proposed. In [24], two improved Nyquist filters with piece-
wise rectangular-polynomial frequency characteristics have
been presented and their performance has been analyzed.
In [21], a pulse obtained from the linear combination of the
RC and the BTRC pulses has been proposed. In [22], a family
of ISI-free and band-limited polynomial pulses has been
proposed. In [23], an ISI-free pulse has been proposed, whose
roll-off characteristic is tunable with one power parameter.
In [25], improved Nyquist pulses with transfer function that
approximates a staircase frequency characteristic using spline
functions have been proposed. In [26], an ISI-free pulse with
piece-wise exponential frequency characteristic has been
presented.

The performance of digital communication systems
employing improved Nyquist pulses has further been
addressed in several past research works, including [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37] Further
insights on the performance of several state-of-the-art pulses
are available in [27]. In [28], a method of improving the
error probability performance of various Nyquist pulses,
by multiplying them with a specific compactly supported
function, has been proposed. In [29], the concept of the
so-called complementary Nyquist pulse has been proposed.
In [30], a method to boost the performance of a Nyquist
pulse in the presence of a timing error have been proposed.
In [31], an approach using auxiliary factor has been proposed
to remove ISI of Nyquist filters. In [32], a frequency domain
design methodology for square-root Nyquist filters with low
group delay and high and fast decaying stopband attenuation
has been presented. In [33], the impact of improved Nyquist
pulse shaping filters on the symbol error rate performance of
generalized frequency division modulation (GFDM) systems
has been addressed. The same authors, in [34], analyzed
the impact of improved Nyquist pulse shaping filters on the
physical layer performance of GFDM systems with Long
Term Evolution-Advance (LTE-A) compatible frame struc-
ture. In [35], a real-time implementation of improved Nyquist
pulse shape filters in carrier-less amplitude and phase (CAP)
modulation in the context of a visible light communications
system has been presented. In [36], the impact of carrier
frequency offset on low latency-enabled unmanned aerial
vehicles (UAV) using BTRC pulse shaping and GFDM, has
been investigated. Finally, in [37], a comparison of most of
the ISI-free pulses available in the open technical literature is
performed, using a Pearson distance criterion.

Motivated by the above cited works, in this paper,
we derive a new family of ISI-free pulses whose Fourier
transform is obtained by employing a third degree polynomial
approximation. Contrary to the two-parametric pulse designs,
the proposed pulses invoke additional parameters obtained
using a geometric approach. These parameters can be
fine-tuned to improve the resulting error performance by
using trial-and-error techniques. Despite the use of more
than two-parameters, however, the resulting expressions for
the transfer function of the proposed pulses are relatively
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FIGURE 1. Geometric approach for the design of the first pulse: Basic concept.

FIGURE 2. Complete geometric design of the first pulse.

simple, thus allowing for their efficient implementation in
practical digital communication receivers. The performance
of the proposed pulses is further analyzed in terms of their
eye diagram and the achieved bit error rate. In particular, the
contributions of this work are summarized as follows.

• We propose the use of a geometric approach in
conjunction with a polynomial approximation using
cubic spline functions to express the Fourier transform
of the proposed family of pulses. The proposed design
approach is motivated by the fact that cubic spline
functions are smooth and do not exhibit the oscillatory

behavior that characterizes high degree polynomial
interpolation [38];

• We study in detail four representative members of the
proposed family of pulses in terms of their frequency and
time domain response and the eye diagram. The Fourier
transform of the first pulse of interest can be expressed
as a piece-wise linear function of the frequency, whereas
for the remaining pulses the cubic spline approximation
has been used;

• For given values of the roll-off factor, the time jitter and
the signal-to-noise ratio, we analyze the performance of
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FIGURE 3. Transfer function of the first proposed pulse (continuous black
line) and the RC pulse (dashed red line) for roll-off factor of 0.35.

FIGURE 4. Transfer function of the first proposed pulse (continuous black
line) and the RC pulse (dashed red line) for roll-off factor of 0.5.

FIGURE 5. Impulse response of the first proposed pulse (continuous
black line) and the RC pulse (dashed red line) for roll-off factor of 0.35.

the proposed pulses in terms of the achieved bit error rate
and we compare it to the performance of state-of-the-art
pulses;

FIGURE 6. Impulse response of the first proposed pulse (continuous
black line) and the RC pulse (dashed red line) for roll-off factor of 0.5.

FIGURE 7. Eye diagram of the first proposed pulse for roll-off factor of
0.35.

FIGURE 8. Eye diagram of the first proposed pulse for roll-off factor of
0.5.

Our numerical results have shown that the fourth member of
the proposed family of pulses outperforms several of the best
so far pulses available in the open technical literature, such as
those proposed in [18].
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FIGURE 9. BER as a function of SNR in the presence of timing errors for
RC, BTRC and the first proposed pulse for roll-off factor of 0.35.

II. MAIN RESULTS
In this section, we present in detail the geometrical con-
struction of the four proposed pulses and analyze their
performance in terms of the achieved bit error rate (BER).

A. GEOMETRICAL CONSTRUCTION OF THE FIRST PULSE
Fig 1 depicts the proposed geometric approach for the design
of the first pulse. In this figure, it is assumed that point G
is fixed. Let us construct the line segment LL ′ which passes
through G. Obviously, points L and L ′ are variable. As it can
be observed from Fig 1, point L ′ can move towards either
M ′ or K ′ and thus, point L can move towards either M or K ,
respectively. It can be easily verified that the equation of the
line MM ′ is y = 1 − x/2.
Let also β ∈ [0, 1]. It can be verified that the coordinates

ofM areM (1+max{β}, 0). Similarly, the coordinates ofM ′

areM ′(1−max{β}, 1). Furthermore, the coordinates ofG are
G(1 + max{β}, 1/2). Let now L(x1, 0) be the coordinates of
L. Following a similar line of arguments, it can be deduced
that x1 = 1 + a, where 0 ≤ a ≤ max{β}, where a is the
roll-off factor. By observing that triangles LKG and LKG′ are
congruent, it can further be deduced that KL = K ′L ′

= a and
M ′L ′

= 1−a. Thus, the coordinates ofN and L areN (1−a, 0)
and L(1+a, 0), respectively. In Fig. 2 the complete geometric
design of the first pulse is depicted.

By inspecting Fig. 2, the transfer function of the first
proposed pulse can be expressed as

S1(f ) =



Tb, 0 ≤ |f | ≤ (1 − a)B

−
Tb
2a

(
|f |
B

− 1 + a
)

+ Tb,

(1 − a)B ≤ |f | ≤ (1 + a)B
0, |f | ≥ (1 + a)B

(1)

where B is the Nyquist frequency and Tb = 1/(2B) is the bit
interval.

Taking the inverse Fourier transform of (1) and after per-
forming some algebraic manipulations, the impulse response
of the first pulse can be expressed as in (2), shown at the
bottom of the next page.

Figs. 3 and 4 depict the transfer function of the first pro-
posed pulse (continuous black line) and the RC pulse (dashed
red line) for roll-off factor of 0.35 and 0.5, respectively.
The corresponding impulse responses are depicted in Figs. 5
and 6, respectively. It can be observed that –as expected– the
impulse response of the proposed pulse is zero for integer
multiples of t/Tb, thus satisfying the Nyquist criterion.

The achieved BER of the proposed pulse in the presence
of timing errors can be computed analytically as [39]

Pb =
1
2

−
2
π

M∑
m=1
m: odd

1
m

exp
(

−
1
2
mω2

)
sin(mω g0)

×

N2∏
k=N1
k ̸=0

cos(mω gk ). (3)

In (3),M is the number of coefficients, ω = 2π/Tf where Tf
is the period used in the series, N1 and N2 is the number of
interfering symbols before and after the transmitted symbol,
respectively, and gk = s (k Tb + ϵ) where s(t) is the pulse
shape. Moreover, the signal-to-noise ratio can be expressed
in terms of g0 as SNR = g20.
Fig. 9 depicts the achieved BER of the proposed first pulse,

the RC and the BTRC pulses as a function of the SNR, for
a = 0.35 and t/Tb of 0.1 and 0.2. As it can be observed, the
proposed pulse outperforms the RC pulse whereas it performs
slightly worse than the BTRC pulse for high SNRvalues. This
motivates the extension of the proposed approach to design
pulses with improved performance.

B. USING CUBIC POLYNOMIAL FUNCTIONS FOR THE
GEOMETRICAL CONSTRUCTION OF PULSES WITH
IMPROVED PERFORMANCE
The ideas behind the construction of pulses are based on
the ideas presented in Figs. 1 and 2. However, in the
geometric construction of the three new pulses, Sj(f ), j =

{2, 3, 4}, instead of using a linear function that passes through
points L ′, G and L, we propose the use of a piece-wise
cubic polynomial function, sj(x), that pass through newly
introduced points with coordinates (xij, yij), 2 ≤ i ≤ n, where
n is the number of the points.1 The polynomial functions sj(x)
can be expressed as (4), shown at the bottom page 9, where
Aij, Bij, Cij and Dij are constant real parameters.

1As it will become evident later on, the proposed design approach is
different to the approach proposed in [25]. Specifically, in [25], the so-called
staircase characteristic has been adopted, using rectangles of equal width.
The height of the rectangles has been determined by employing trial and
error techniques that minimize the resulting error probability. In this work,
the frequency characteristic design is based on a geometrical approach along
with the use of cubic splines.
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Since sj(x) and its first derivatives are continuous at x = xij,
the parameters Aij, Bij, Cij and Dij can be evaluated as [38]

Aij =
y′′i+1j − y′′ij

6hij
(5a)

Bij =
y′′ij
2

(5b)

Cij =
y′′i+1j − y′′ij

hij
−
y′′i+1j hij

6
−
y′′ij hij

3
(5c)

Dij = yij (5d)

where yij = sj(xij) and hij = xi+1,j−xij. Moreover, the second
derivatives y′′i can be obtained as the solution of the following
linear system of equations

b = Ey (6)

where y = [y′′1j, y
′′

2j, . . . y
′′
nj]

† is the vector of the unknown
derivatives y′′i and E is a tridiagonal matrix, whose main
diagonal elements are given by the vector

dm = [u1, 2 (h1j + h2j), 2 (h2j + h3j),

. . . , 2 (hn−2,j + hn−1,j), un]†,

the elements of subdiagonal/lower diagonal are given by the
vector

dl = [h1j, h2j h3j, . . . , hn−2,j, 0]†,

and the elements of subdiagonal/upper diagonal by the vector

du = [0, h2j, h3j, . . . , hn−2,j, hn−1,j]†.

Finally, b = 6 [u3, b3j, . . . , bn,j, u4]† where

bij =
yij − yi−1,j

hi−1,j
−
yi−1,j − yi−2,j

hi−2,j
, 2 ≤ i ≤ n. (7)

The coefficients u1, u2, u3 and u4 can be obtained using the
initial conditions y′′1j = 0 and y′′nj = 0 as u1 = u2 = 1 and
u3 = u4 = 0.
In the following sections, this concept will be applied to

the design of pulses with improved performance.

C. GEOMETRIC DESIGN OF THE SECOND PULSE
The concept behind the design of the second pulse (j = 2)
is depicted in Fig. 10. The main difference between the
proposed design and the one shown in Figs. 1 and 2 is
the addition of points with coordinates (x2, y2) and (x4, y4),
where x2, x4 are fixed and y2 and y4 can freely move on y-
axis to optimize error performance. Note that in Fig. 10 we

have omitted the dependence of the coordinates from index j
for brevity.

Hereafter, we select x2 = 1 − a/2 and x4 = 1 + a/2.
It can be observed that the proposed geometrical construction
exhibits odd symmetry about point (x3, y3), This is evident by
observing that the coordinates of points (x2, y2) and (x4, y4)
are (1 − a/2, c1) and (1 + a/2, 1 − c1), where c1 ∈ (1/2, 1).
The above definition of the coordinates guarantees that the
area of the proposed geometrical construction is a constant
and independent to the value of the parameter c1. It is
further assumed that c1 can be expressed using two decimal
digits in order to simplify numerical computations, namely
c1 = 0.51, 0.52, . . . , 0.99. Furthermore, it is assumed that
the transfer function of the second proposed pulse satisfies
the conditions S2((1 − a)B) = 1 and S(B) = 1/2.
Using the methodology described in the previous sub-

section, the proposed pulse will be designed by employing
piece-wise cubic polynomials that pass through points (xi, yi),
i ∈ {1, 2, 3, 4, 5}, with coordinates (x1, y1) = (1 − a, 1),
(x2, y2) = (1 − a/2, c1), (x3, y3) = (1, 1/2), (x4, y4) =

(1+a/2, 1−c1), (x5, y5) = (1+a, 0). Specifically, the matrix
E in (6) can be expressed as

E =


1 0 0 0 0
h1 2(h1 + h2) h2 0 0
0 h2 2(h2 + h3) h3 0
0 0 h3 2(h3 + h4) h4
0 0 0 0 1



=


1 0 0 0 0
a/2 2a a/2 0 0
0 a/2 2a a/2 0
0 0 a/2 2a a/2
0 0 0 0 1

 . (9)

Moreover, after performing some straightforward alge-
braic manipulations, vector b in (6) can be obtained as

b = (24/a2)


0

y3 − 2y2 + y1
y4 − 2y3 + y2
y5 − 2y4 + y3

0

 = (24/a2)


0

3/2 − 2c1
0

2c1 − 3/2
0


(10)

s1(t) =
T
π t

sin[2π t B (1 − a)] +
T

4 a Bπ2 t2
{cos[2π t B (1 − a)] − cos[2π t B (1 + a)]}

−
T

2 aπ t
{(1 + a) sin[2π t B (1 + a)] + (a− 1) sin[2π t B (1 − a)]}

+
T (a+ 1)
2 aπ t

{sin[2π t B (1 + a)] − sin[2π t B (1 − a)]} (2)
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FIGURE 10. Geometric design of the second pulse.

FIGURE 11. Transfer function of the second proposed pulse (continuous
black line) and the RC pulse (dashed red line) for roll-off factor of 0.5 and
c1 of 0.67.

The solution of (6) is

y =


y′′1
y′′2
y′′3
y′′4
y′′5

 =


0

(9 − 12c1)/a2

0
(12c1 − 9)/a2

0

 (11)

Let Ai2, Bi2, Ci2, Di2 be the coefficients of the cubic
polynomial in (4). Using (5), these parameters can be readily

FIGURE 12. Impulse response of the second proposed pulse (continuous
black line) and the RC pulse (dashed red line) for roll-off factor of 0.5 and
c1 of 0.67.

obtained, yielding


A12
B12
C12
D12

 =


(3 − 4 c1)/a3

0
(12 c1 − 11)/(4 a)

1

 (12a)


A22
B22
C22
D22

 =


(4 c1 − 3)/a3

(9 − 12 c1)/(2 a2)
−1/(2a)

c1

 (12b)
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FIGURE 13. Eye Diagram of the second proposed pulse for roll-off factor
of 0.5 and c1 of 0.67.

FIGURE 14. BER in the presence of timing errors for the second proposed
pulse for SNR = 15 dB and a = 0.25, as a function of c1 and the ratio t/Tb.


A32
B32
C32
D32

 =


(4c1 − 3)/a3

0
(7 − 12c1)/4a

1/2

 (12c)


A42
B42
C42
D42

 =


(3 − 4 c1)/a3

(12 c1 − 9)/(2 a2)
−1/(2 a)
1 − c1

 (12d)

The transfer function of the second pulse can finally be
expressed as (8), shown at the bottom of the next page.
As it can be observed, the transfer function of the second

pulse depends on the parameter c1. This parameter can be
suitably optimized so that the impact of jitter on the error
probability is minimal.

Fig. 22 depicts the BER performance in the presence of
timing errors for the second proposed pulse for SNR= 15 dB,
210 interfering symbols and a = 0.25, as a function of c1 and
the timing jitter parameter, t/Tb. Clearly, for given values of
t/Tb, BER attains a minimum value for a specific value of c1.
In Fig. 22, these values are depicted with red asterisks.

In Table 1, values of the BER for SNR = 15 dB and the
corresponding values of c1, are depicted, assuming different
values of a and the ratio τ = |t/Tb|. The values of c1 have
been obtained using a trial-and-error technique in order to
obtain a close-to-minimum value of the error probability

Figs. 11 and 12 depict the transfer function and the impulse
response of the proposed second pulse (continuous black
line), respectively for roll-off factor of 0.5 and c1 of 0.67.
In the same diagrams similar results for the RC pulse (dashed
red line) are also available. Clearly, the proposed pulse
satisfies the Nyquist criterion, as its impulse response is zero
for integer multiples of t/Tb. Moreover, as it can be observed,
the side lobes of the impulse response of the proposed pulse
are smaller that those of the RC pulse, thus revealing that
the second pulse results in a better error performance that the
RC pulse. For the same parameters a and c1, Fig. 13 depicts
the eye diagram of the second pulse. It is evident the eye is
‘‘open’’, and therefore the resulting bit error rate is small.

In the next section, the proposed geometrical construction
will be extended to obtain pulses with even better perfor-
mance.

D. GEOMETRIC DESIGN OF THE THIRD PULSE
Throughout the geometrical construction of the second pulse
in Fig. 10, the x-coordinates of points (x2, y2) and (x4, y4)
have been assumed fixed and the choice of their values
arbitrary. In the proposed third pulse construction, we set
x2 = k and x4 = 2 − k , i.e. x2 and x4 are symmetric
with respect to x3 = 1. The corresponding geometrical
construction is depicted in Fig. 15.

Let us define

k ≜ 1 − a+
1 − (1 − a)

p1
= 1 − a+

a
p1

. (15)

In (15), p1 is a step parameter with p1 ∈ [2, 64], to facilitate
implementation in a hardware based platform. Observe that
for p1 = 1, from (15) it holds that k = 1, i.e. point (x2, y2)
is identical to (x3, y3), a situation not acceptable in Fig. 15.
Moreover, for large values of p1, i.e. p1 → ∞, it holds that
k = 1 − a, i.e. i.e. point (x2, y2) is identical to (x1, y1). This
situation is also not acceptable because of the finite precision
of the hardware based platform. Thus, it always holds that
p1 ≤ 64 for the proposed design. The coordinates of points
(xi, yi) in Fig. 15 can be finally evaluated as (x1, y1) = (1 −

a.1), (x2, y2) = (k, c1), (x3, y3) = (1, 1/2), (x4, y4) = (2 −

k, 1− c1), (x5, y5) = (1+ a, 0). The matrix E and vector b in
the system of equations (6) can thus be written as

E =


1 0 0 0 0

a+ k − 1 2a 1 − k 0 0
0 1 − k 4 − 4k 1 − k 0
0 0 1 − k 2a a+ k − 1
0 0 0 0 1

 (16)
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and

b = 6


0
t1
0

−t1
0

 , (17)

respectively, where

t1 =
a− 2ac1 − k + 1
(2 − 2k)(a+ k − 1)

. (18)

The solution of (6) is

y =


y′′1
y′′2
y′′3
y′′4
y′′5

 =


0

3t1/a
0

−3t1/a
0

 (19)

Let Ai3, Bi3, Ci3, Di3 be the coefficients of the cubic
polynomial in (4). Using (5), these parameters can be readily
obtained, yielding

A13
B13
C13
D13

 =


t1

2a(a+k−1)
0

c1−1
a+k−1 +

t1(a+k−1)
2a

1

 (20a)


A23
B23
C23
D23

 =


t1

2a(k−1)
3t1
2a

1−2c1
2−2k +

t1(k−1)
a

c1

 (20b)


A33
B33
C33
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−

3t1
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t1(a+k−1)
a
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 (20d)

The transfer function of the third pulse can finally be
expressed as (13).

Figs. 16 and 17 depict the transfer function of the proposed
third pulse (continuous black line) assuming roll off factors
of 0.35 and 0.5, respectively. The corresponding transfer
functions of the traditional RC pulse are also depicted in the
same figures (dashed red line). For the same values of the roll
off factor, the impulse response of the third pulse is depicted
in Figs. 18 (a = 0.35) and 19 (a = 0.5). Again, the side lobes
of the impulse response are smaller than the corresponding
ones of the second pulse, thus revealing that the proposed
third pulse indeed performs better than the second one.
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TABLE 1. BER in the presence of timing errors for the second proposed pulse for SNR = 15 dB and the corresponding values of c1, for different values of
a and the ratio τ = |t/Tb|.

Finally, the eye diagrams are depicted in Figs. 20 (a =

0.35) and 21 (a = 0.5). It can be observed that the eye
opening is larger than the one of the second pulse, thus further
verifying that the third pulse yields better error performance
than the second one.

Fig. 22 depicts the achieved BER of the third pulse in
the presence of timing errors, assuming SNR of 15 dB, roll-
off factor of 0.5, 210 interfering symbols, t/Tb of 0.2, as a
function of parameters c1 and p1. As it is evident, BER

attains a minimum value, depicted with an asterisk. Table 2
depicts the achieved BER of the third proposed pulse and
the corresponding values of c1 and p1 for which BER attains
its specific value, for various values of τ ≜ |t/Tb| and a.
Again, c1 and p1 have been deduced by employing trial-
and-error techniques to in order to get a close-to-optimal
value of the error probability. In what follows an even better
pulse will be designed and its performance will be analyzed
in detail.
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FIGURE 15. Geometric design of the third pulse.

FIGURE 16. Transfer function of the third proposed pulse (continuous
black line) and the RC pulse (dashed red line) for roll-off factor of 0.35,
p1 of 56 and c1 of 0.98.

E. GEOMETRIC DESIGN OF THE FOURTH PULSE
Hereafter, we further elaborate on the proposed geometrical
construction to design a fourth pulse yielding an even better
performance than the previously proposed ones. The concept
behind the geometrical design of the proposed fourth pulse is
depicted in Fig. 23.

As shown in Fig. 23, we define (x3, y3) = (d, c2) with
1/2 < c2 < c1 and (x5, y5) = (2 − d, 1 − c2).
Parameter d is defined as d = k + (1 − k)/p2 where
P2 is positive integer. Observe that if p2 = 1 then d1 =

1 and therefore, points (x3, y3), (x5, y5) and (x4, y4) would
be identical, a contradiction. Again, it holds that S4(B) =

1/2 and S4((1− a)B) = 1. Moreover, the area of the graph of
the transfer function is again a constant and equal to one.

FIGURE 17. Transfer function of the third proposed pulse (continuous
black line) and the RC pulse (dashed red line) for roll-off factor of 0.5,
p1 of 47 and c1 of 0.98.

Based on Fig. 23, the coordinates of points (xi, yi), i ∈

{1, 2, . . . , 7}, can be obtained as (x1, y1) = (1 − a, 1),
(x2y2) = (k, c1), (x3, y3) = (d, c2), (x4, y4) = (1, 1/2),
(x5, y5) = (2 − d, 1 − c2), (x6, y6) = (2 − k, 1 − c1) and
(x7, y7) = (1 + a, 0). Let us define the parameters.

r1 =
kc2 + ac2 − ac1 − c2 + c1 − dc1 + d − k

(d − k)(a+ k − 1)
(21)

and

r2 =
d − k + 2kc2 + 2c1 − 2c2 − 2dc1

(2 − 2d)(d − k)
. (22)

After performing some tedious, yet straightforward algebraic
manipulations, the coefficients of the piece-wise cubic
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FIGURE 18. Impulse response of the third proposed pulse (continuous
black line) and the RC pulse (dashed red line) for roll-off factor of 0.35,
p1 of 56 and c1 of 0.98.

FIGURE 19. Impulse response of the third proposed pulse (continuous
black line) and the RC pulse (dashed red line) for roll-off factor of 0.5,
p1 of 47 and c1 of 0.98.

polynomial given by the solution of the system in (6) can be
deduced as

A14
B14
C14
D14

 =
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1

 (23a)
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FIGURE 20. Eye Diagram of the third proposed pulse for roll-off factor of
0.35, p1 of 56 and c1 of 0.98.

FIGURE 21. Eye Diagram of the third proposed pulse for roll-off factor of
0.5, p1 of 47 and c1 of 0.98.
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The transfer function of the fourth proposed pulse can finally
be expressed as (14).
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TABLE 2. BER in the presence of timing errors for the third proposed pulse for SNR = 15 dB, 210 interfering symbols and the corresponding values of
c1 and p1, for different values of a and the ratio τ = |t/Tb|.

FIGURE 22. BER in the presence of timing errors for the third proposed
pulse for SNR = 15 dB, 210 interfering symbols, t/Tb = ±0.2 and a = 0.5,
as a function of c1 and p1.

Figs. 24, 26 and 28 depict the transfer function, the impulse
response and the eye diagram, respectively, of the proposed
fourth pulse (continuous black line) assuming roll off factor
of 0.35, p1 of 60, c1 of 0.85, c2 of 0.79 and p2 of 38. The
corresponding transfer functions of the traditional RC pulse
are also depicted in the same figures (dashed red line).

Moreover, Figs. 25 and 27 and 29 depict the transfer
function, the impulse response and the eye diagramm,
respectively, of the proposed fourth pulse (continuous black
line) assuming roll off factor of 0.5, p1 of 60, c1 of 0.85, c2 of
0.82 and p2 of 64. The corresponding transfer functions of
the traditional RC pulse are also depicted in the same figures
(dashed red line).

By the observation of Figs. 26 and 27, it becomes evident
that, once again, the side lobes of the impulse response of the
fourth pulse are again smaller than the corresponding ones of
the third pulse, thus, verifying the performance enhancements
provided by the proposed fourth design. Similar findings can
be verified by the observation of the eye diagrams in Figs. 28

and 29, i.e. the eye opening is larger than the one of the third
pulse.

Table 3 presents BER performance results for the fourth
pulse in the presence of timing errors, assuming fixed values
of c1 and p1 and variable c2 and p2, for SNR of 15 dB, 210

interfering symbols and various values of τ . For the specific
test case it is assumed that p1 = 60 and c1 = 0.85. Again, the
values of c2 and p2 have been obtained using a trial-and-error
approach. This pulse achieves an improved BER performance
as compared to the previously proposed ones with reasonable
implementation complexity.

In an effort to further improve the performance of the
fourth pulse at the cost of implementation complexity,
variable values of ci and pi are assumed, ∀i ∈ {1, 2}. The
resulting BER values and the corresponding values of of
ci and pi are available in Table 4. As it is obvious, the
fourth pulse outperforms the proposed third pulse in terms
of the achieved BER, even in the case of fixed c1 and p1.
In what follows we compare the error performance of the
proposed pulses with the one provided by several state-of-
the-art pulses, available in the open technical literature.

Table 5 depicts the error performance of the proposed
third and fourth pulses and compares their performance with
state-of-the-art two-parametric pulses proposed in [16], [17],
and [18], for SNR of 15 dB, roll-off factor of 0.2 and various
values of τ . Note that the motivation behind the selection
of a small value of a is that such a value is preferable for
forthcoming communication systems, because of the fact that
a small value of a results in lower bandwidth. As it can be
observed, the third pulse yields a better error performance
than the pulses acos[log] and acos[sinh] proposed in [16] and
[17], however, its performance is worse than the best so far
two-parameter pulse available in the open technical literature,
acsch[asech], proposed in [18]. Nevertheless, the proposed
fourth pulse s4(t), with p1 = 60 and c1 = 0.85 outperforms
the acsch[asech] pulse for all considered values of τ . The
superior performance of the proposed pulse stems from the
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FIGURE 23. Geometric design of the fourth pulse.

FIGURE 24. Transfer function of the fourth proposed pulse (continuous
black line) and the RC pulse (dashed red line) for roll-off factor of 0.35,
p1 of 60, c1 of 0.85, c2 of 0.79 and p2 of 38.

fact that the proposed geometrical approach using piece-wise
cubic polynomials allows for better control of the dominant
side lobes than the compared pulses, which in turn have
adopted the approach of inner-outer functions. Even better
BER results have been reported for the improved fourth pulse
with variable values of c1, p1, c2 and p2.

In what follows, we compare the proposed ISI-free pulses
with both two-parametric pulses as well as with pulses
employing more than two parameters. Tables 6 and 7
compare the performance of several two-parametric ISI-free
pulses available in the open technical literature, namely the
RC, BTRC (also known as fexp [15]), fsech [15], farc-
sech [15], Poly [21], acos [17], acos[acos] [17], acos[asech]
[17], acos[log] [17], asech[acos] [17], asech[asech] [17],
asech[log] [17], asech [exp] [17], acos[exp] [17] acos[asinh]
[16], acos[atan] [16], sin[acosh] [16], as well as of pulses

FIGURE 25. Transfer function of the fourth proposed pulse (continuous
black line) and the RC pulse (dashed red line) for roll-off factor of 0.5,
p1 of 60, c1 of 0.85, c2 of 0.82 and p2 of 64.

employing more than two parameters, namely the Power [23]
and the Poly [22], with the fourth and the improved fourth
proposed pulse. In Table 6, it is assumed that α =

0.25 whereas in Table 7, α = 0.35. BER results for the pulses
with which comparison is carried out are available in [27,
Table 5] and [27, Table 6], for α = 0.25 and α = 0.35,
respectively. Note that the Poly and Power pulses, as well
as the proposed pulses do not not have a fixed form for a
given value of α but depend on one, three, or four parameters,
respectively. As it can be observed, both the standard as well
as the improved fourth proposed pulse, outperform all the
considered pulses in terms of BER performance.

Next, we compare the propose pulse designs with ones
employing multiple parameters, namely those proposed
in [25] and [22]. In Table 8, the BER performance of the
standard and the improved fourth pulses is comparedwith that
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TABLE 3. BER in the presence of timing errors for the fourth proposed pulse for SNR = 15 dB, 210 interfering symbols, p1 = 60, c1 = 0.85 and the
corresponding values of c2 and p2, for different values of a and the ratio τ = |t/Tb|.

TABLE 4. BER in the presence of timing errors for the improved fourth proposed pulse for SNR = 15 dB, 210 interfering symbols, for different values of a
and the ratio τ = |t/Tb|.

of the spline (Spline 3) and staircase pulses (X3(f ) and X4(f )),
proposed in [25]. In the same table, results for the polynomial
pulse (Poly), proposed in [22], are also presented. As it can
be observed, the fourth pulse outperforms the spline pulse in
terms of the achieved BER for all considered cases. As far as
the comparison of the fourth pulse with the staircase pulse,
X3(f ), is concerned, it can be observed that for α = 0.25,
the fourth pulse performs slightly worse than X3(f ) for all
values of τ . Specifically, for τ = 0.05, bit error probabilities
of 4.58 × 10−8 and 4.55 × 10−8 have been reported for the

standard and the improved fourth pulse, respectively. For the
same test case, X3(f ) achieves a BER of 4.52 × 10−8. For
the same α and τ of 0.1, the error probabilities obtained by
the standard and improved fourth pulses are 8.21× 10−7 and
8.10 × 10−7, respectively, whereas X3(f ) achieves a BER of
8.07 × 10−7.

For α = 0.35 and τ = 0.05, the BER performance gap
between the fourth pulse and X3(f ) is even smaller. For the
specific test scenario, bit error probabilities of 3.07 × 10−8

and 3.04 × 10−8 have been reported for the standard and the
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TABLE 5. Comparative BER performance of the third pulse, s3(t), the fourth pulse, s4(t) (p1 = 60, c1 = 0.85) and the improved fourth pulse, with those
proposed in [16], [17], and [18], for various values of τ ≜ |t/Tb|, SNR = 15dB and a = 0.2.

TABLE 6. Comparative BER performance of the fourth pulse, s4(t) (p1 = 60, c1 = 0.85) and the improved fourth pulse, with those available in [27,
Table 5], for various values of τ ≜ |t/Tb|, SNR = 15dB and α = 0.25.

improved fourth pulse, respectively. The corresponding BER
achieved by X3(f ) is 3.03 × 10−8, i.e. X3(f ) performs very
close to the improved fourth pulse. For the same value of α

and τ of 0.1, both the standard and the improved fourth pulses
slightly outperform X3(f ).
Finally, for α = 0.5 and τ = 0.05, the standard

fourth pulse performs almost identically to X3(f ) whereas
the improved fourth pulse slightly outperforms X3(f ). For
τ = 0.05, both the standard and the improved pulses yield
a better error performance than X3(f ).
Finally, comparisons of the proposed pulse designs with

the multi-parameter pulses proposed in [19], [22], [26],
and [23] will be presented. Comparisons with several two-
parameter pulses, namely those available in [16] and [17] are
also included. In Table 9, comparative BER performance of
the fourth pulse, s4(t) (p1 = 60, c1 = 0.85) and the improved

fourth pulse, with those available in [26, Table 6] are
presented, for various values of τ ≜ |t/Tb| and α with SNR =
15dB. The following pulses are considered: piecewise flipped
exponential (PFE) [26], optimized PFE [26], poly [22],
power [23], acos[asinh] [16], asech[asech] [17], and CC3 [19]
pulses. Firstly, it is evident that both the standard as well
the improved fourth pulse outperform the poly, the power,
the acos[asinh], the asech[asech] and the CC3 pulses. As far
as the PFE pulse is concerned, it can be observed that the
standard PFE pulse performs slightly better than the standard
fourth pulse for τ of 0.05 and all considered values of α.
Nevertheless the performance gap between both considered
pulses is very small. For larger values of τ , the standard
fourth pulse performs better than the standard PFE pulse for
all considered values of α. Moreover, as α increases, the
performance gap between both considered pulses increase.
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TABLE 7. Comparative BER performance of the fourth pulse, s4(t) (p1 = 60, c1 = 0.85) and the improved fourth pulse, with those available in [27,
Table 6], for various values of τ ≜ |t/Tb|, SNR = 15dB and a = 0.35.

TABLE 8. Comparative BER performance of the fourth pulse, s4(t) (p1 = 60, c1 = 0.85), and the improved fourth pulse with those available in [25], for
various values of τ ≜ |t/Tb|, SNR = 15dB.

As far as the optimized PFE pulse is concerned, it achieves
a slightly better performance than the improved fourth pulse
for α of 0.25, α of 0.35 and all considered values of τ . For
α of 0.5 and τ of 0.05 and 0.1, the performance gap between
the improved fourth pulse and the optimized PFE is small.
For larger values of τ the improved fourth pulse achieves an
almost identical performance for τ of 0.2 and even slightly
outperforms the optimized PFE pulse for τ of 0.3.

III. CONCLUSION
In this paper, we have proposed a new family of improved
ISI-free pulses, the design of which is based on a geometric
approach employing piece-wise cubic polynomials. The
characteristics of the proposed pulses have been studied in
terms of their frequency and time domain characteristics
and their performance, in terms of BER and eye-diagram
width has been analyzed. The proposed pulses have been
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TABLE 9. Comparative BER performance of the fourth pulse, s4(t) (p1 = 60, c1 = 0.85) and the improved fourth pulse, with those available in [26,
Table 6], for various values of τ ≜ |t/Tb| and α with SNR = 15dB.

FIGURE 26. Impulse response of the fourth proposed pulse (continuous
black line) and the RC pulse (dashed red line) for roll-off factor of 0.35,
p1 of 60, c1 of 0.85, c2 of 0.79 and p2 of 38.

compared with the best so far two-parametric pulses reported
in the open technical literature, namely the acsch[asech] [18],
the acos[log] [16], [16] and the acos[asinh] [16], [16] as

FIGURE 27. Impulse response of the fourth proposed pulse (continuous
black line) and the RC pulse (dashed red line) for roll-off factor of 0.5,
p1 of 60, c1 of 0.85, c2 of 0.82 and p2 of 64.

well as with more complicated pulse designs such as the
polynomial [22], the power [23]. the parabolic (CC3) [19],
the staircase and spline pulses [25] and the piecewise flipped

VOLUME 11, 2023 144693



K. D. Gazouleas et al.: New Family of Nyquist Pulses With Improved Performance

FIGURE 28. Eye diagram of the fourth proposed pulse for roll-off factor of
0.35, p1 of 60, c1 of 0.85, c2 of 0.79 and p2 of 38.

FIGURE 29. Eye diagram of the fourth proposed pulse for roll-off factor of
0.5, p1 of 60, c1 of 0.85, c2 of 0.82 and p2 of 64.

exponential (PFE) [26]. Note that two-parametric pulses
achieve a reasonable tradeoff between error performance
and implementation complexity whereas multi-parameter
pulses achieve a better error performance at the cost of their
implementation complexity, because optimization of their
parameters may be required to yield the best performance.
Our results have shown that the proposed pulses achieve
an improved error rate performance in many cases and that
the fourth member of the proposed family of pulses yields
the best performance results. Specifically, the performance
of this pulse is always better than the best so-far two-
parametric pulses and comparable, or even better that the
performance of best multi-parametric pulses, such as those
proposed in [26]. Moreover, although the proposed family
of pulses belongs to the category of multi-parameter pulses,
their complexity is relatively low, thus rendering them
suitable for efficient implementation and deployment in a
hardware-based platform. The hardware implementation of
the proposed pulses as well as their deployment on practical
next generation communication systems are interesting and
challenging topics which are left to a future research
contribution.
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