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Abstract: Modern agriculture is increasingly challenged by the need for scalable, sustain-
able, and connectivity-resilient digital solutions. While existing smart farming platforms 
offer valuable insights, they often rely heavily on centralized cloud infrastructure, which 
can be impractical in rural or remote settings. To address this gap, this paper presents 
AGRARIAN, a hybrid AI-driven architecture that combines IoT sensor networks, UAV-
based monitoring, satellite connectivity, and edge-cloud computing to deliver real-time, 
adaptive agricultural intelligence. AGRARIAN supports a modular and interoperable ar-
chitecture structured across four layers—Sensor, Network, Data Processing, and Applica-
tion—enabling flexible deployment in diverse use cases such as precision irrigation, live-
stock monitoring, and pest forecasting. A key innovation lies in its localized edge pro-
cessing and federated AI models, which reduce reliance on continuous cloud access while 
maintaining analytical performance. Pilot scenarios demonstrate the system’s ability to 
provide timely, context-aware decision support, enhancing both operational efficiency 
and digital inclusion for farmers. AGRARIAN offers a robust and scalable pathway for 
advancing autonomous, sustainable, and connected farming systems. 
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1. Introduction 
The global agricultural sector is undergoing a fundamental transformation driven by 

rapid advancements in digital technologies, artificial intelligence (AI), and the Internet of 
Things (IoT). These innovations are reshaping traditional farming methods, optimizing 
resource efficiency, productivity, and sustainability in response to increasing food de-
mand and climate change challenges. The European Commission has emphasized that 
digitalization in agriculture is a critical component for improving competitiveness, foster-
ing sustainable practices, and ensuring food security in the European Union (EU) and 
beyond [1]. 

Modern agricultural systems are increasingly relying on connected infrastructures, 
including smart sensors, AI-driven decision-making tools, and cloud-based agricultural 
platforms, to enhance real-time monitoring, automated farm management, and precision 
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agriculture techniques. This transition aligns with the Agriculture 4.0 paradigm, which 
integrates big data analytics, robotics, and advanced network communication protocols 
to optimize agricultural operations [2]. 

The Common Agricultural Policy (CAP) has been a cornerstone of the EU’s agricul-
tural strategy, focusing on sustainability, productivity, and the socio-economic well-being 
of farmers [3]. Recent CAP Strategic Plans for 2023–2027 emphasize the role of digital 
tools, AI, and IoT in improving decision-making for farmers while promoting climate-
resilient agricultural practices [4]. Additionally, EU-backed initiatives on smart farming 
provide targeted support for the adoption of cloud computing, AI-driven analytics, and 
blockchain technologies to ensure traceable, transparent, and efficient agricultural supply 
chains [5]. Despite the potential benefits of precision farming technologies, many farmers 
still face economic and technical barriers to adoption. According to Eurostat, agricultural 
labor input in the EU has continued to decline, highlighting the need for automation and 
smart agricultural solutions to compensate for workforce shortages [6–8]. 

Several international research initiatives from countries like Israel and China have 
made substantial progress in smart agriculture. Israel has been a leader in sensor-based 
drip irrigation systems, leveraging local edge controllers to manage water efficiency in 
arid environments. Chinese efforts have advanced in areas such as UAV-enabled field 
monitoring, blockchain-integrated supply chains, and remote sensing for pest manage-
ment. These technologies are often domain-specific and vertically optimized, addressing 
critical challenges such as irrigation, crop health, and traceability. However, they tend to 
rely on centralized architectures, which can be constrained by connectivity gaps or lack of 
adaptability in remote rural contexts. 

AGRARIAN addresses a clear research and deployment gap by offering a modular, 
horizontally and vertically scalable architecture that unifies edge AI, federated learning, 
and hybrid connectivity (5G/LEO satellites) within a single framework. Unlike traditional 
siloed models, AGRARIAN is designed to support simultaneous, real-time operations 
across layers—from sensor data capture to AI-driven decision support—while optimizing 
for energy use, latency, and interoperability. This capability is particularly important for 
rural deployments with intermittent connectivity, making AGRARIAN adaptable where 
centralized models fall short. Its layered design also supports dynamic resource allocation 
via slicing, enabling precision agriculture to scale across varied operational environments 
with different infrastructure constraints. 

Driven by the challenges of climate change, resource constraints, and the growing 
demand for sustainable food production, the AGRARIAN architecture introduces a hy-
brid AI-driven framework that seamlessly integrates IoT sensors, UAVs, satellite-based 
remote sensing, edge computing, and AI-powered decision support systems (DSS) to 
transform precision farming, livestock management, and agricultural sustainability. Un-
like conventional systems reliant on centralized cloud processing, AGRARIAN decentral-
izes data analysis through edge AI and federated learning, significantly reducing latency, 
bandwidth consumption, and dependency on continuous connectivity. Its four-layered 
structure—Sensor, Network, Data Processing, and Application Layers—ensures a scala-
ble and modular system where multimodal sensors capture real-time environmental, soil, 
and livestock data, processed through AI-driven analytics at the edge or in the cloud. 

The structure of this paper is organized as follows: Section 2 presents an overview of 
related technologies, focusing on IoT-based irrigation systems, AI-driven crop protection, 
decision support systems (DSS), and satellite-enabled precision agriculture. Section 3 in-
troduces the AGRARIAN system architecture, detailing its horizontal and vertical archi-
tectural models, along with the integration of edge computing, hybrid networking, and 
cloud-based AI analytics, an in-depth analysis of the four-layered structure of AGRAR-
IAN, comprising the sensor, network, data processing, and application layers, describing 
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their role, interaction, and impact on smart agriculture. Finally, Section 4 concludes with 
key findings, potential limitations, and future research directions in hybrid AI-driven ag-
ricultural frameworks. 

2. Related Technologies 
The integration of Internet of Things (IoT) devices and 5G networks is transforming 

smart irrigation management by enabling real-time monitoring and automated water con-
trol. IoT-based sensors, combined with cloud-based decision support systems (DSS), al-
low precise irrigation scheduling based on soil moisture levels, weather conditions, and 
crop water demand. The use of 5G connectivity enhances data transmission speed, ensur-
ing low-latency, AI-powered water management solutions that contribute to efficient wa-
ter resource allocation and climate resilience [9]. Beyond irrigation, DSS also plays a criti-
cal role in agrarian policy-making and economic planning, as seen in Ukraine, where data-
driven accounting tools are used to align agricultural strategies with European integration 
frameworks. These systems analyze farm productivity metrics, subsidy allocations, and 
rural development trends to optimize policy interventions [10]. 

2.1. AI for Crop Protection and Environmental Monitoring 

AI-based decision support technologies are also reshaping crop protection and dis-
ease management. Modern deep learning models, when combined with satellite imagery 
and IoT sensors, enable real-time disease prediction and early detection, reducing the de-
pendency on excessive pesticide use. AI-driven DSS can process historical weather data, 
pathogen distribution models, and soil health indicators to provide targeted, proactive 
recommendations for farmers [11]. Satellite technology, particularly CubeSats and GIS-
based remote sensing, is revolutionizing precision agriculture by offering high-resolution 
environmental monitoring. These small satellites provide frequent, real-time imaging, al-
lowing farmers to track crop health, soil moisture levels, and land-use changes, which are 
then integrated into DSS platforms to facilitate data-driven decision-making for sustaina-
ble farming [12]. 

2.2. DSS for Water Resource and Livestock Management 

Water management in agriculture remains a pressing challenge, and DSS frame-
works are being developed to guide groundwater resource allocation, especially in 
drought-prone regions. AI-powered decision tools enable multi-stakeholder collabora-
tion, integrating hydrological models, water demand forecasting, and climate impact as-
sessments to ensure sustainable irrigation practices [13]. In precision livestock farming, 
AI-driven DSS are being deployed to monitor animal welfare, detect diseases, and opti-
mize feed efficiency. Machine vision, biometric sensors, and predictive analytics allow for 
real-time tracking of livestock health, reducing operational costs and improving farm 
productivity [14]. These advancements are not only enhancing individual farm operations 
but are also influencing renewable energy production in agriculture. DSS frameworks are 
now used for biogas facility planning, optimizing locations based on geospatial data, 
waste production metrics, and sustainability indicators. This application supports circular 
bioeconomy models, where agricultural waste is converted into biofuels and organic fer-
tilizers, reducing carbon footprints and environmental impact [15]. 

2.3. Circular Bioeconomy and Smart Supply Chains 

Decision support technologies also play a crucial role in circular bioeconomy strate-
gies, ensuring efficient resource recycling and sustainable food production systems. AI-
powered DSS facilitates agricultural waste management by optimizing the bioconversion 
of crop residues into bioenergy and minimizing resource wastage [16]. Recent 
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developments in digital agriculture and AI-driven decision systems show that fine-tuned 
natural language processing (NLP) models outperform traditional chatbot-based farm 
management solutions. These AI-powered DSS provide context-aware recommendations 
for crop management, pest control, and supply chain logistics, improving farm produc-
tivity and sustainability [17]. Additionally, digital technologies are increasingly being 
commercialized for nature conservation and ecosystem service provisioning in agricul-
ture. By integrating remote sensing, AI-based environmental modeling, and cloud-based 
analytics, these tools help farmers balance economic profitability with ecological preser-
vation, ensuring that agriculture remains both productive and environmentally responsi-
ble [18]. 

2.4. Convergence of Digital Agriculture Technologies 

As agriculture continues to evolve towards a data-driven, digitally connected eco-
system, the integration of AI, IoT, and DSS technologies is becoming essential. From smart 
irrigation management and CubeSat-based environmental monitoring to precision live-
stock farming and biogas facility optimization, DSS is empowering farmers and policy-
makers with real-time insights for sustainable decision-making. The convergence of edge 
computing, cloud-based AI analytics, and stakeholder collaboration is paving the way for 
a resilient, efficient, and sustainable agricultural future. 

Enhancing digital infrastructure and hybrid communication technologies is, there-
fore, a key priority in ensuring widespread accessibility to smart farming solutions across 
Europe. 

2.5. Challenges and Infrastructure Considerations 

While digital agriculture offers significant opportunities for growth and sustainabil-
ity, several challenges must be addressed: 

• Connectivity Gaps: Many rural farming areas suffer from limited broadband access, 
restricting the adoption of real-time IoT monitoring and AI-driven decision systems 
[19]. 

• Interoperability Issues: The diverse range of agricultural IoT devices, cloud plat-
forms, and AI models creates integration challenges, requiring standardized data ex-
change protocols [20]. 

• Data Privacy and Security: The sensitive nature of farm data necessitates robust cy-
bersecurity frameworks, including secure data transmission protocols like 
NETCONF and YANG [21,22]. 

Scalability and Computational Demand: AI-driven edge computing is increasingly 
being explored to reduce the burden on cloud infrastructure, enabling localized, real-time 
data processing for smart agriculture [23]. 

To address these challenges, next-generation networking protocols such as Recursive 
InterNetwork Architecture (RINA) are being explored to replace traditional IP-based ar-
chitectures, improving network scalability, data security, and real-time processing capa-
bilities for large-scale agricultural IoT systems [24]. 

2.6. Edge Computing and Federated AI for Real-Time Farming 

A critical technological enabler for precision farming is edge computing, which facil-
itates real-time data analysis at the farm level without the need for continuous cloud con-
nectivity [23]. By deploying localized AI models on edge devices, UAVs (drones), and 
satellite nodes, latency is minimized, bandwidth consumption is reduced, and real-time 
decision-making is enhanced. Recent studies suggest that federated learning and AI-
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driven edge computing can significantly improve agricultural supply chain efficiency, re-
ducing costs and optimizing farm management strategies [23]. 

3. AGRARIAN Architecture 
The AGRARIAN architecture, Figure 1, is designed to provide a robust, scalable, and 

intelligent agricultural technology ecosystem, integrating sensor networks, AI-driven de-
cision support, hybrid communication networks, and cloud-based analytics. This system 
is structured into multiple layers to ensure seamless functionality, interoperability, and 
efficient data flow between different components. The architecture is conceptualized 
through two complementary views: the horizontal and vertical architectures, each detail-
ing the organization of system elements and their interactions. 

 

Figure 1. AGRARIAN High-Level Architecture: Integrating IoT, Edge AI, and Hybrid 5G Connec-
tivity for Smart Agriculture. 

The AGRARIAN architecture is designed to support precision farming, livestock 
monitoring, vineyard management, and environmental sustainability. It is composed of 
multiple interconnected layers that facilitate sensor data acquisition, edge computing, sat-
ellite communications, and AI-driven analytics. The horizontal architecture provides an 
end-to-end view of how different components interact, while the vertical architecture fo-
cuses on the service-oriented structure of the system. The horizontal architecture empha-
sizes the interaction between the customer portal, decision support systems (ADSS), in-
frastructure, and external data sources. The vertical architecture, on the other hand, cate-
gorizes these functionalities into four major layers: Sensor Layer, Network Layer, Data 
Processing Layer, and Application Layer. 

AGRARIAN is currently being evaluated in pilot deployments across vineyard eco-
systems and livestock farms, where real-world feedback has helped fine-tune energy man-
agement, model accuracy, and connectivity handling. These pilots validate AGRARIAN’s 
layered operation: sensor layer (uRLLC) for fast data capture, network layer for hybrid 
5G-satellite backhaul, processing layer (eMBB slicing) for model inference, and applica-
tion layer for user interaction and alerts. The system also includes API interfaces for future 
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integration with farm machinery, supporting ISOBUS and OPC UA standards. This en-
sures that AGRARIAN is not only a theoretical model but a deployable, extensible solu-
tion for autonomous, sustainable agriculture. 

Application Layer 
The Application Layer, Figure 2, provides user-facing tools that allow farmers, poli-

cymakers, and researchers to interact with the AGRARIAN system, offering AI-powered 
agricultural insights, decision support, and precision farming applications. 

• Agricultural Decision Support System (ADSS): Analyzes sensor, satellite, and UAV 
data to provide actionable insights on crop health, livestock management, and irri-
gation scheduling. 

• Livestock Monitoring and Anomaly Detection: Uses AI-driven video analytics and 
GPS tracking to identify anomalous animal behavior, potential health risks, and miss-
ing livestock. 

• Crop Growth and Yield Forecasting: Predicts crop productivity, pest risks, and opti-
mal harvesting times based on machine learning algorithms and real-time environ-
mental data. 

• Smart Irrigation and Water Management: Uses soil moisture analytics, weather fore-
casts, and AI-based optimization to ensure efficient water usage and minimize waste. 

• Disease and Pest Alert Systems: AI models process multispectral and SAR data to 
predict disease outbreaks and recommend timely interventions. 

• Supply Chain Traceability and Food Safety: Blockchain-enabled traceability solutions 
ensure transparent farm-to-market logistics, improving food safety and regulatory 
compliance. 

By integrating advanced analytics, real-time alerts, and predictive modeling, this 
layer empowers users with intelligent decision-making tools for sustainable and efficient 
farming. 

 

Figure 2. Application layer. 

Data Processing and Orchestration Layer 
The Data Processing Layer, Figure 3, acts as the computational hub of the AGRAR-

IAN system, processing, analyzing, and distributing agricultural data across the network. 
This layer leverages edge computing, cloud processing, and AI-based analytics to extract 
meaningful insights from raw sensor data. 



Agriculture 2025, 15, 904 7 of 16 
 

 

• Edge AI and Federated Learning: Distributed AI models are deployed on satellites, 
UAVs, and farm-based edge nodes, allowing real-time inference for disease detec-
tion, irrigation control, and crop monitoring. 

• CI/CD Pipelines for AI Model Deployment: Continuous integration and deployment 
pipelines ensure real-time AI model updates for improved analytics and decision-
making. 

• Cloud-Native Orchestration (Kubernetes, KubeEdge, and K3s): Supports scalable, 
fault-tolerant, and distributed AI computing for precision farming applications. 

• Satellite AI Processing: Enables onboard AI inference on CubeSats, reducing latency 
and bandwidth consumption while providing actionable insights directly from 
space-based monitoring. 

• Data Storage and Integration with External Sources: Ensures secure, efficient storage 
and retrieval of environmental, livestock, and field data, integrating external climate 
databases, weather APIs, and agricultural knowledge repositories. 

By leveraging advanced AI and edge computing technologies, this layer enhances 
decision-making efficiency and scalability. 

 

Figure 3. Data Processing and Orchestration layer. 

The AGRARIAN architecture incorporates various methodological approaches—
such as real-time edge AI, federated learning, and satellite-based inference—not as iso-
lated innovations but as components selected and positioned according to specific agri-
cultural use cases and their corresponding feasibility and problem-solving impact. It is 
acknowledged that not all agricultural operations require real-time decision-making. For 
example, strategic planning tasks like yield forecasting or soil nutrient mapping are typi-
cally tolerant of batch processing and delayed analytics. However, certain scenarios do 
benefit from real-time or near-real-time responsiveness. These include livestock anomaly 
detection (e.g., animal distress or escape), localized irrigation control during heatwaves, 
and pest outbreak alerts, where immediate data-driven insights can significantly reduce 
risks or losses. In such contexts, AGRARIAN’s edge computing and low-latency satellite 
links offer value by enabling timely interventions without reliance on centralized cloud 
infrastructures. The architecture supports hybrid deployment models that allow stake-
holders to scale computational resources and analytical intensity according to operational 
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context and economic viability. By not assuming a one-size-fits-all requirement for real-
time processing, AGRARIAN is designed with a flexible orchestration layer that balances 
real-time capability with practical feasibility and cost-effectiveness across scales and farm-
ing profiles. 

Network Layer 
The Network Layer, Figure 4, enables seamless connectivity across all AGRARIAN 

components, ensuring reliable communication between sensors, computing nodes, and 
cloud-based systems. It integrates terrestrial and satellite communication networks to pro-
vide uninterrupted connectivity in remote agricultural areas. 

• 5G-Based Communication: Provides high-speed, low-latency connectivity for real-
time sensor data transmission and remote farm monitoring. 

• Hybrid Satellite Communications (LEO and GEO): LEO satellites facilitate low-la-
tency broadband access, while GEO satellites provide continuous global coverage. 

• Edge Network Infrastructure: Supports real-time AI model deployment and infer-
ence at the farm level, reducing dependency on centralized cloud computing. 

• Delay-Tolerant Networking (DTN) and IoT Protocols: Allow efficient data transmis-
sion in rural and disconnected environments, ensuring that time-sensitive agricul-
tural data is not lost. 

• Ground Network Infrastructure: Includes 5G base stations, ground terminals, and 
IoT gateways, allowing seamless integration of AGRARIAN’s sensor networks with 
cloud-based decision support systems. 

This layer ensures uninterrupted connectivity, which is essential for real-time agri-
cultural monitoring and automated farming solutions. 

 

Figure 4. Network layer. 

Sensor Layer 
The Sensor Layer, Figure 5, is the foundation of the AGRARIAN system, comprising 

various data acquisition technologies that capture environmental, soil, and livestock data. 
These sensors are deployed in situ, on UAVs, and in satellite-based observation systems, 
ensuring continuous real-time monitoring of agricultural parameters. 

• IoT and Ground Sensors: Measure soil moisture, temperature, air humidity, and pre-
cipitation, providing critical data for precision irrigation and crop health analysis. 
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• UAV-Based Sensors: Equipped with multispectral cameras, RGB cameras, and real-
time kinematic (RTK) sensors to provide high-resolution field images and topograph-
ical mapping. 

• Weather and Climate Stations: Monitor meteorological parameters such as wind 
speed, temperature, solar radiation, and frost prediction, supporting weather-based 
agricultural decision-making. 

• Satellite Earth Observation (EO) Systems: Utilize Sentinel-based multispectral imag-
ing and Synthetic Aperture Radar (SAR) to provide wide-area, high-resolution mon-
itoring for crop health, soil moisture levels, and yield estimation. 

• Livestock Tracking Devices: Sensors embedded in wearables and drones to track an-
imal movement, health status, and anomaly detection. 

This layer ensures real-time, accurate data collection for informed decision-making 
within the AGRARIAN ecosystem. 

 

Figure 5. Sensors layer. 

This layer ensures real-time, accurate data collection for informed decision-making 
within the AGRARIAN ecosystem by integrating a diverse range of sensors deployed 
across agricultural fields, UAVs, and satellites. Ground-based IoT sensors continuously 
monitor soil moisture, temperature, humidity, and nutrient levels, providing granular in-
sights into crop health and water needs. UAV-mounted multispectral and thermal sensors 
capture high-resolution imagery, detecting early signs of crop stress, pest infestations, and 
irrigation inefficiencies. Weather and climate stations collect atmospheric data, including 
wind speed, solar radiation, precipitation, and frost risk, enabling microclimate analysis 
for precision farming. Satellite Earth Observation (EO) systems, leveraging multispectral 
imaging (Sentinel) and Synthetic Aperture Radar (SAR), offer wide-area crop monitoring, 
soil moisture assessments, and predictive yield modeling, even under cloud cover and 
adverse weather conditions. For livestock applications, wearable biometric sensors track 
movement patterns, body temperature, and feeding behavior, facilitating real-time animal 
health monitoring and anomaly detection. By ensuring seamless integration of these di-
verse sensing technologies, the AGRARIAN architecture enables data-driven, AI-
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enhanced decision-making, fostering sustainable resource management and improved 
farm productivity. 

While the AGRARIAN architecture provides a comprehensive and modular frame-
work for smart agriculture, it is important to critically reflect on its current scope and fu-
ture integration opportunities. One notable area of expansion involves the direct interfac-
ing of AGRARIAN with agricultural machinery, such as autonomous tractors, robotic 
sprayers, and harvesters. Although the present architecture primarily focuses on sensor 
networks, edge/cloud analytics, and decision support, its design is intentionally modular, 
with API-based interoperability layers that support future integration with smart machin-
ery systems. Technologies such as ISOBUS, MQTT, and OPC UA are being considered for 
implementing bidirectional communication between the decision support system (ADSS) 
and farm equipment, enabling automated actuation based on AI-driven recommenda-
tions. Furthermore, AGRARIAN’s architecture supports future expansion through con-
trol-layer protocols and real-time machine interfaces, establishing the foundation for in-
telligent automation. Implementation-wise, the architecture is already being validated in 
pilot environments—including livestock farms, vineyards, and field crop settings—where 
sensor deployment, satellite connectivity, and edge AI models are tested for latency, scala-
bility, and usability. These real-world testbeds are key to evaluating AGRARIAN’s read-
iness for broader deployment and demonstrating its potential to connect directly with au-
tonomous agricultural machinery, enhancing operational efficiency and promoting end-
to-end automation in modern farming. 

The AGRARIAN architecture leverages a diverse set of AI-driven technologies, IoT 
connectivity, and hybrid networking to transform modern agricultural practices. The ta-
ble below highlights how different components of AGRARIAN align with key advance-
ments in smart agriculture, mapping each technology to its impact on various domains 
such as precision irrigation, crop protection, livestock monitoring, and sustainable re-
source management. By associating AGRARIAN’s sensor, network, data processing, and 
application layers with emerging decision support systems (DSS), AI models, and satel-
lite-based remote sensing, this comparison demonstrates how AGRARIAN enhances effi-
ciency, sustainability, and productivity across the agricultural sector. 

Table 1 illustrates AGRARIAN’s role in improving precision farming by integrating 
IoT and 5G for irrigation, AI-based disease detection, and satellite-powered monitoring. 
Through real-time sensor data collection, AI-powered decision-making, and seamless 
connectivity, AGRARIAN enhances resource management, reduces operational costs, and 
promotes environmental sustainability. Key findings indicate that edge AI and federated 
learning enable more localized and responsive agricultural intelligence, reducing reliance 
on centralized cloud computing while improving latency-sensitive applications like live-
stock health monitoring and irrigation control. By combining AI-enhanced DSS, machine 
learning-driven crop management, and satellite-based remote sensing, AGRARIAN pro-
vides a scalable, modular, and resilient digital agriculture platform that supports data-
driven farming, climate adaptation, and food security initiatives. 

Table 1. AGRARIAN related works table and how they are mapped to AGRARIAN layers. 

AGRARIAN Compo-
nent 

Author, Year, Ref. 
No. 

How AGRARIAN Benefits 
the Field 

Mapped AGRAR-
IAN Layer(s) 

Benefit to Agriculture 

IoT and 5G for Smart 
Irrigation 

Oppong, R.A. 
(2025) [9] 

Enhances precision irriga-
tion by leveraging real-

time sensor data. 

Sensor Layer, Net-
work Layer 

Enhances irrigation effi-
ciency, prevents overwater-

ing, and improves water 
conservation. 
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Decision Support Sys-
tems (DSS) for Agrar-

ian Policy 

Vasylishyn, S. 
(2025) [10] 

Provides AI-driven policy 
recommendations based on 
real-time agricultural data. 

Application Layer, 
Data Processing 

Layer 

Optimizes agricultural re-
source allocation, policy ef-
fectiveness, and economic 

sustainability. 

AI-Based Crop Protec-
tion and DSS 

Jensen, A. et al. 
(2025) [11] 

Enables early disease de-
tection and pest manage-

ment through AI-powered 
analytics. 

Data Processing 
Layer, Sensor Layer 

Reduces pesticide use, in-
creases farm productivity, 

and enhances sustainability. 

CubeSats for Agricul-
tural Monitoring 

Calka, B.; Szostak, 
M. (2025) [12] 

Offers high-resolution en-
vironmental monitoring for 

precision farming. 

Sensor Layer, Net-
work Layer 

Provides real-time insights 
into soil health, crop growth, 

and environmental condi-
tions. 

Smart Agriculture 
and DSS for Water 
Resource Manage-

ment 

Firoozzare, A. et 
al. (2025) [13] 

Improves sustainable wa-
ter resource management 
using AI-driven climate 

data. 

Application Layer, 
Data Processing 

Layer 

Ensures sustainable water 
allocation, mitigates drought 

impacts, and supports cli-
mate resilience. 

AI for Precision Live-
stock Farming 

Distante, D. et al. 
(2025) [14] 

Enhances livestock welfare 
via real-time biometric 

monitoring and disease de-
tection. 

Sensor Layer, Data 
Processing Layer 

Reduces livestock mortality, 
increases efficiency, and im-

proves farm profitability. 

Sustainable Agricul-
tural Planning using 

DSS 

Kaynak, T.; 
Gümüş, M.G. 

(2025) [15] 

Supports energy-efficient 
agriculture through AI-

driven biogas plant plan-
ning. 

Application Layer, 
Network Layer 

Supports renewable energy 
integration and reduces the 
carbon footprint in agricul-

ture. 

Circular Bioeconomy 
and DSS in Agricul-

ture 

Nguyen, T.H. et al. 
(2025) [16] 

Facilitates circular agricul-
ture by optimizing waste 

recycling. 

Application Layer, 
Data Processing 

Layer 

Promotes waste reduction, 
circular economy strategies, 
and resource-efficient food 

production. 

Digital Agriculture 
and AI Decision Sys-

tems 

De, S.; Sanyal, 
D.K.; Mukherjee, I. 

(2025) [17] 

Improves real-time farm 
management with AI-en-
hanced automation tools. 

Application Layer, 
Data Processing 

Layer 

Enhances farm decision-
making with AI-driven in-
sights and real-time analyt-

ics. 

Digital Technologies 
for Sustainable Agri-

culture 

Krachunova, T. et 
al. (2025) [18] 

Enables sustainable farm-
ing through AI-integrated 
remote sensing and DSS 

tools. 

Application Layer, 
Sensor Layer, Net-

work Layer 

Encourages climate-smart 
farming through AI, IoT, 

and sustainable land man-
agement practices. 

4. Preliminary Validation of AGRARIAN over 5G Network Slicing for 
Data Processing and Sensor Layers 

To validate the AGRARIAN architecture in terms of its integration with modern com-
munication technologies, we conducted a series of experiments focusing on 5G network 
slicing and its implications on energy consumption and latency performance across sys-
tem layers. These trials were designed to explore how eMBB (enhanced Mobile Broad-
band) slices align with AGRARIAN’s Data Processing Layer, while uRLLC (ultra-Reliable 
Low Latency Communication) slices support the responsiveness required by the Sensor 
Layer. Experiments were executed on an experimental 5G system that was deployed in 
Standalone Mode (SA) using Amarisoft 5GC with Huawei P40 Pro UEs and OpenStack-
based virtualized services running on a Dell R730xd. The slicing mechanism leveraged 
RAN numerology manipulation to enforce low-latency configurations via tuning of srPer-
iod and slot duration. 
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In the context of 5G network slicing, particularly at the RAN (Radio Access Network) 
level, srPeriod and slot are two key parameters that directly influence latency and sched-
uling responsiveness. The srPeriod (Scheduling Request Period) defines how frequently a 
user equipment (UE) can request uplink transmission resources, with lower values ena-
bling faster response times, Table 2 provides a representative analysis of different config-
urations and corresponding latency metrics. The slot parameter represents the transmis-
sion duration within a time frame, affecting how quickly data can be scheduled and pro-
cessed. Reducing both parameters leads to lower end-to-end latency, a critical factor for 
uRLLC (ultra-Reliable Low Latency Communication) performance in applications such as 
real-time sensor feedback and UAV coordination in smart agriculture. These parameters 
were varied across several configurations to examine their impact on latency and energy 
consumption under different slicing conditions. 

Table 2. 5G network slicing configuration information and corresponding expected latency. 

Configuration srPeriod Slot Duration Expected Latency 
Config 1 (Min Latency) 1 2.5 ~10 ms 
Config 2 1 5.0 ~15–18 ms 
Config 3 10 2.5 ~20–25 ms 
Config 4 10 5.0 ~30 ms 
Config 5 40 2.5 ~35 ms 
Config 6 (Max Latency) 40 5.0 ~40 ms 

The first set of experiments evaluated energy consumption under varying eMBB slice 
bitrates (100 to 300 Mbps) and latency configurations (10 ms and 40 ms). Results (Figure 
6) revealed that smaller packet sizes significantly increase energy usage due to higher 
transmission frequency, and lower latency configurations consistently consume more en-
ergy, confirming a trade-off between latency and energy performance at the data pro-
cessing level. To evaluate uRLLC slicing for the sensor layer, latency measurements were 
collected under diverse configurations. With an eMBB slice allocated for backhaul, multi-
ple uRLLC slices were imposed (srPeriod = {1, 10, 40}, slot = {2.5, 5}). As illustrated in 
Figures 6 and 7, these settings significantly affected system latency, with the best result 
(~12 ms) observed under the most aggressive uRLLC configuration (sr = 1, slot = 2.5). 
These findings support AGRARIAN’s capacity to provide low-latency edge responsive-
ness for sensor-triggered alerts and UAV communications. 

To understand the impact of 5G slicing on energy efficiency in AGRARIAN’s Data 
Processing Layer, we analyzed the energy consumption of downlink transmissions across 
different latency configurations and bitrate levels. These configurations, defined by the 
slicing parameters srPeriod and slot, were mapped to typical eMBB profiles. Figure 6 pre-
sents a 3D surface plot illustrating energy usage (in mA) as a function of both bitrate and 
latency configuration, offering a visual overview of the trade-offs involved. 
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Figure 6. A 3D Surface Plot of Downlink Energy Consumption across Bitrate and Latency Configu-
rations. 

From the surface plot, it becomes evident that energy consumption increases with 
both higher bitrates and more aggressive low-latency configurations. This validates the 
architectural decision to employ edge computing in AGRARIAN’s data processing layer, 
where compute-intensive tasks can be selectively handled based on energy budgets. The 
visualization confirms that while high throughput improves data processing responsive-
ness, it should be balanced against energy constraints—especially for deployments in en-
ergy-limited environments such as remote or sensor-heavy agricultural fields. 

Complementing the downlink analysis, Figure 7 visualizes uplink energy consump-
tion, which is particularly relevant to the Sensor Layer in AGRARIAN. This layer fre-
quently transmits real-time data from IoT sensors and UAVs back to the system. The 3D 
surface plot represents energy consumption across the same set of latency configurations 
and bitrates, this time focusing on the energy demand of uplink transmissions under dif-
ferent uRLLC slice conditions. 
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Figure 7. A 3D Surface Plot of Uplink Energy Consumption across Bitrate and Latency Configura-
tions. 

The plot reveals a similar trend to the downlink case—energy usage escalates under 
low-latency configurations and higher data rates, reinforcing the known latency-energy 
trade-off. However, because the sensor layer often operates with small, frequent packets 
rather than continuous streams, the relative energy cost becomes a critical design param-
eter. These findings support AGRARIAN’s conservative approach to using uRLLC slices 
only where real-time sensing is essential while deferring less critical transmissions to en-
ergy-optimized configurations. This balance allows for both performance and energy ef-
ficiency in field deployments. 

5. Conclusions 
The AGRARIAN architecture offers a modular and intelligent framework for modern 

agriculture, combining IoT sensors, UAVs, satellite connectivity, edge computing, and AI-
based analytics to enhance precision farming and sustainability. By decentralizing data 
processing and enabling real-time insights through edge AI, AGRARIAN supports effi-
cient, scalable, and resilient agricultural operations. Its layered design ensures adaptabil-
ity across various farming environments and levels of digital maturity. 

In contrast to conventional cloud-centric systems, AGRARIAN supports hybrid de-
ployment models that reduce connectivity constraints and promote real-time decision-
making where it is contextually valuable. Pilot implementations demonstrate its relevance 
for applications such as irrigation control, crop disease alerts, and livestock monitoring. 
Future work will focus on expanding AGRARIAN’s integration with agricultural machin-
ery, enhancing interoperability, and validating its performance across broader agro-eco-
logical zones. 
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UAV Unmanned Aerial Vehicle 
LEO Low Earth Orbit 
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5G NTN 5G Non-Terrestrial Network 
RINA Recursive InterNetwork Architecture 
NETCONF Network Configuration Protocol 
YANG Yet Another Next Generation 
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GIS Geographic Information System 
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