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Abstract—New results for the multichannel Nakagami-m fad-
ing model with an arbitrary correlation matrix are presented
in this paper. By using an efficient tridiagonalization method
based on Householder matrices, the inverse of the Gaussian
correlation matrix is transformed to tridiagonal, managing to
derive a closed-form union upper bound for the joint Nakagami-
m probability density function and an exact analytical expression
for the moment generating function of the sum of identically
distributed gamma random variables. Our analysis considers an
arbitrary correlation structure, which includes as special cases
the exponential, constant, circular, and linear correlation ones.
Based on the proposed mathematical analysis, we obtain a tight
union upper bound for the outage probability of multibranch
selection diversity receivers as well as exact analytical expressions
for the outage and the average error probability of multibranch
maximal-ratio diversity receivers. Our analysis is verified by com-
paring numerically evaluated with extensive computer simulation
performance evaluation results, showing the usefulness of the
proposed approach.

Index Terms—Bit error rate (BER), correlated fading, cor-
relation models, diversity, Householder matrix, maximal-ratio
combining (MRC), multichannel receivers, multivariate analysis,
Nakagami-m fading, outage probability, selection combining
(SO).

I. INTRODUCTION

HE THEORY of multivariate stochastic processes can
be used as an essential mathematical tool for modeling
and analyzing realistic wireless communications channels with
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correlated fading. Such fading channels are usually met in
digital contemporary communications systems which employ
diversity receivers with not sufficiently separated antennas and
where space or polarization diversity is applied (e.g. antenna
arrays, handheld mobile terminals, and indoor base-stations).
In those applications, the correlation between channels results
in a degradation of the diversity gain obtained [1]-[3]. A
versatile statistical distribution that accurately models a variety
of fading environments is the Nakagami-m distribution [4].
It describes multipath scattering with relatively large delay-
time spreads and with different clusters of reflected waves,
providing greater flexibility in matching experimental data
than the Rayleigh, Ricean, or lognormal distributions [5].
Also, it includes as special cases the Rayleigh and the one-
sided Gaussian distributions.

In past, numerous papers have been published in the open
technical literature dealing with multivariate fading chan-
nel models and/or systems performance analysis (see [1]-
[41] and references therein). A very generic expression for
the multivariate gamma-type distribution with an arbitrary
covariance matrix being in the form of a multiple series
of generalized Laguerre polynomials was presented back in
1951 [9]. That expression has been used for the derivation
of the outage probability (OP) of selection combining (SC)
receivers over arbitrarily correlated Nakagami-m fading chan-
nels [10]. However, the associated multivariate probability
density function (PDF) used in [10] for deriving the OP
becomes fairly complicated with poor convergence properties,
when the statistics of more than two random variables (RVs)
needs to be considered [39]. Hence, simpler formulas have
been introduced considering specific structures of the correla-
tion matrix. For example in [11], Mallik has presented exact
closed-form PDF expressions for the multivariate Rayleigh
distribution with exponential and constant correlation matri-
ces. In a parallel and independent work, Karagiannidis et al.
[12] have introduced the multivariate Nakagami-m PDF with
exponential correlation and identically distributed (i.d.) fading
channels. An infinite series approach for its corresponding
cumulative distribution function (CDF) and a bound of the
error resulting from the truncation of the infinite series have
been also included. By approximating the correlation matrix
with a Green’s matrix, the same authors have generalized
[12], presenting approximate expressions for the arbitrarily
correlated Nakagami-m distribution [13]. In [14], a PDF-
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based approach for the performance analysis of maximal-ratio
combining (MRC) and postdetection equal-gain combining
(EGC) receivers with arbitrary channel parameters has been
presented. By assuming correlated Nakagami-m fading with
positive integer-order values for the fading parameter, the
performance of SC, hybrid-selection/MRC (H-S/MRC), and
threshold-based H-S/MRC has been analyzed in [20], [21].
In [20], Green’s matrix approximations have been used for
studying arbitrary correlation structures, while in [21], a more
general model than the equal correlation one has been con-
sidered in the performance analysis of generalized SC (GSC)
receivers. Recently, based on [9], the performance analysis
of SC receivers over arbitrary correlated generalized gamma
fading channels has been presented [22]. Although the derived
formulas are very generic, they are computationally burden,
since they are in the form of a multiple series of generalized
Laguerre polynomials.

In this paper, a new statistical approach for the multivariate
Nakagami-m fading channel model with arbitrary correlations
is presented. By using a computationally efficient tridiago-
nalization method based on Householder matrices, a set of
Gaussian RVs is transformed to another, with the latter one
having a tridiagonal inverse correlation matrix (see Fig. 1).
Next, correlated Nakagami-m RVs are generated having a
similar to the desired power correlation matrix, X/, for which
the exact joint PDF is obtained. By applying a standard RVs
transformation method, a closed-form union upper bound for
the PDF of the multivariate Nakagami-m distribution with a
power correlation matrix, 3, as well as an exact analytical
expression for the moment generating function (MGF) of the
sum of i.d. gamma RVs are derived. Our analysis is not only
limited to arbitrary average power and fading parameters, but
also considers arbitrary correlation structures, including the
exponential, constant, circular, and linear correlation ones as
special cases. Based on the proposed mathematical analysis,
we provide a significant theoretical tool that can be efficiently
used for the performance analysis of wireless communica-
tions systems operating over i.d. and arbitrarily correlated
Nakagami-m fading channels. More specifically, a tight union
upper bound for the OP of multibranch SC receivers is
derived, while exact analytical expressions for the OP and
average symbol error probability (ASEP) of multibranch MRC
receivers are obtained. The usefulness of the proposed analysis
is verified by comparing numerically evaluated with extensive
computer simulation performance evaluation results.

The remainder of this paper is organized as follows. Union
bounds for the multivariate Nakagami-m PDF and CDF are
provided in Section II. The performance of SC and MRC re-
ceivers is analyzed in Section III, while numerically evaluated
and computer simulation performance evaluation results are
presented and compared in Section IV. Section V concludes
providing useful remarks.

II. MULTIVARIATE NAKAGAMI-m FADE STATISTICS

In this section, first, arbitrarily correlated Nakagami-m
RVs are generated from Gaussian RVs. Moreover, the most
popular correlation models usually met in practical wireless
communications systems are reported. Next, using a new sta-
tistical approach based on the Householder tridiagonalization

Step 1 Step 2
= oT
Gaussian RVs, Yy Yi=QT Vi > Gaussian RVs, Yi

N(0, Z¢) Householder matrices N(O, 2&)
+ [8, Theorem ]

Step 4 Step 3
Nakagami-m RVs, R RVs transformation Nakagami-m RVs, R’
(correlation matrix: Z) (correlation matrix: ')

Fig. 1. The four-step procedure for generating Nakagami-m RVs with an
arbitrary correlation matrix. (X and X’ are the desired and its similar power
correlation matrices, respectively.)

method, union upper bound expressions for the PDF and CDF
of the multivariate Nakagami-m distribution with arbitrary
correlations are derived.

A. Preliminaries and Correlation Models

Let Yy = [YeiYio -+~ Yer]' (k=1,2,...,.2m and T
denotes the transpose operand) be 2m L-dimensional real
column vectors', which are i.d. and independent Gaussian
RVs with zero mean E(Y; ) = 0 and variance E(Y;?,) =
o (¢ = 1,2,...,L and E(-) denotes expectation). Their
correlation matrix, ¥g € RL*L s symmetric and posi-
tive definite>. Also, let R, = ||X,| = aY2, be
the Euclidean norm of the 2m-dimensional column vector
Xe=MY1,Y2s - ngl]T composed by the fth components
of Yy’s. Clearly, R,’s are correlated Nakagami-m RVs with
marginal PDFs given by [4]

2,,,2m—1 ,,,2

T omor P (‘5)
with T (-) being the Gamma function [42, eq. (8.310/1)], Q2 =
20% = E(R?)/m being a parameter related to the average
fading power, and m > 1/2 being the fading parameter. Their
power correlation matrix, ¥ € RE*L | is given by X, ; = 1 for
) :j (Z7j = 1,2,...,[/) and Ei,j = Ej,i = Pij for ¢ #],
with 0 < p; ; < 1 being the power correlation coefficient
(i.e., between R and R3) [1, eq. (9.195)]. It can be easily
proved that the correlation matrix of the underlying Gaussian
processes, Xq, is related to the power correlation matrix, 32,
as e = VI (VX stands for a matrix with elements the
square root ones of 3J).

For the readers’ convenience, next, we review the structure
of 3 for the most popular correlation models met in practical
wireless systems channels.

1) Exponential Model: The correlation matrix of this model
is defined as X;; = pl*=Jl, Vi # j, with 0 < p < 1 being
the correlation coefficient between adjacent channels [2]. This
model corresponds to the scenario of multichannel reception
by equispaced diversity antennas, in which the correlation

between pairs of combined signals decays as the spacing
between the antennas increases [1].

fr, (1) ey

ISimilarly to [13], positive integer or half-integer values for m are here
assumed.

2A set of Gaussian RVs with zero mean and correlation matrix M is
denoted as N (0, M).
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2L det (A) det (W)™ ., (<& " prr [
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D,k 2 Pk, k+1
X Z lqk,;| 7 exp -0 (Z |G, 7‘7;) L1 <T| Z Z \@hests Q10| 71 7‘12)
j=1 i—1

2l L1
H i
k=1

)

li=1lx=1

2) Constant Model: The correlation matrix of the constant
model, discussed in [1] and [2], is defined as 33; ; = p, Vi # j,
with 0 < p < 1 being the correlation coefficient between
any two channels. It corresponds to size-limited scenaria with
diversity reception by an array of three antennas placed on an
equilateral triangle or by closely placed antennas (other than
linear arrays).

3) Circular Model: The circulant correlation matrix, pre-
sented in [14], is a Toeplitz matrix, ie., 3;; = Pli—j|»
Vi # j, with an Lth order symmetry, which implies that
Pli—j| = P|L—i+j|- This model may apply to antennas lying
on a circle or four antennas placed on a square edges. It is
noted that the applicability of this model in practical situations
is questionable, since the signal’s incident angle has also an
impact on the branch correlation and it is never symmetrical
to all antennas.

4) Linearly Arbitrary Model: The correlation matrix of a
linearly arbitrary model has a Toeplitz structure. This corre-
lation model has a great practical value and corresponds to
the practical situation of linear arrays, with the antennas to be
placed evenly [26].

5) Arbitrary Model: The arbitrary correlation model is the
most general one and considers arbitrary values for 3J; ;’s
Vi # j [1]. This model corresponds to the scenario of multi-
channel reception with any diversity antennas configuration.

B. Joint PDF

In the proposed mathematical analysis, a class of orthogonal
and symmetric matrices, known as Householder matrices [43],
are used for the tridiagonal decomposition [44] of the inverse
of the Gaussian correlation matrix, W = EG_l.

Definition 1 (Householder matrix): Let a,b € RL¥1, [ >
3, be two nonzero vectors having equal norms, i.e., ||al| =
||bl|. There always exists an orthogonal and symmetric matrix
H € REXL of the form

H=I-2uu’ )

defined as Householder matrix, so that b = Ha, with I €
REXL being the identity matrix and

a—b
u= ——-:. 3)
la =Dl
By applying a similarity transformation
W =Q"WQ, )

W’ becomes real, symmetric, and tridiagonal, where Q =
[qi LJ] € REXL is an orthogonal matrix, given by Q =
k;f Hy, with H; being a Householder matrix which can

be obtained using (2) and a computationally efficient method

given in the Appendix A. Moreover, some properties concern-
ing Q are described in the Appendix B. By using (4) and the
analysis of [8], a closed-form union upper bound for the joint
Nakagami-m PDF can be derived by means of the following
theorem.

Theorem 1 (Upper Bound): A closed-form union upper
bound for the joint PDF of R = [Ry; Rz --- Ry] with an
arbitrary power correlation matrix is given by? (5) (top of this
page) wherer = [r1 79 -+ rp], I,—1 () is the (m—1)th-order
modified Bessel function of the first kind [42, eq. (8.406/1)],
det (W) denotes the determinant of W, p; ; € R are the
elements of W/, and A = [|¢; j|] € RE*E, with |-| denoting
absolute value.

Proof: The four steps shown in Fig. 1 are followed.

Step 1: Let us consider a set of Gaussian RVs such as
N(0,2¢q).

Step 2: Let us also consider an orthogonal transformation
of RVs

r=QlY, (©6)

with Q so as (4) to hold. Then, Y}’s form another set of
Gaussian RVs, N (07 EG/), with correlation matrix [45]

e =Q' =g Q. 7

Step 3: Let R, = [|X}|| = />3, Y{2 be the Eu-

clidean norm of the 2m-dimensional column vector Xj =
T
! / U
[YI,Z You - }/Qm,€:|
Y}.’s. Clearly, R}’s are correlated Nakagami-m RVs with sym-
metric and positive-definite power correlation matrix, denoted

by ¥’ € RE*L. Since Y},’s are independent, their joint PDF
can be expressed as a product of marginal PDFs [46], i.e.,

composed by the ¢th components of

fe(y) =[] fv; (vx)
k=1

det (W)™ 32 1 .
= _—— /
@m)mL k|:|1 exXp D) yi o W'yk

®)

with Y = [Y7Y5--- Yo, |y = [y1y2 -+ y2m], and
W = (Eg’)fl given by (4). Equation (8) has a respective
form to [8, eq. (2.3)] with W' being tridiagonal, and hence,
following a similar procedure such that in [8, Theorem I], the

3Equation (5) holds for any m > 1/2, except for the proof of the
Theorem 1 where m > 1/2 is considered as a positive integer or half-integer.
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2
2L det (A) det (W)™ - S 3 frm=
fa () < ng)l“ (m() ) exp prar? +ij,j (ZVIM m) Z p2lkr+m)=1
j=2 j— k1,k2,....,kL —1=0
_ /Q 2(kp—1+m)—1 4 2(kj—1+kj+m)—1 (1
p j+1
s 'jli <Z|QLZ z) H (Zq], 1)

joint PDF of R’ = [R| R} - - -

L,
2 rL

R } can be easily obtained as

/(1) =det (W)™
fR ( ) ( ) ( )L+m 1 F(m)
PL,L
xexp( ) H \Pkk+1\
2
X exp (—pk’,k ri) A (% Tk rk+1>
)
with Q' = E(R?)/m = Q.
Step 4: Based on (B-1), (6) can be rewritten as
Yk'71 =Y. (10a)
L
Vi = aniYei, n=23,... L (10b)
i=1

while starting from the definition of Rz, Ry, and after some
algebraic manipulations, we obtain

R, =R,

L
Z qn,i X
i=1

By applying the generalization of the triangle inequality in
(11b), yields

(11a)

(11b)

L
R, <> |gni| R (12)
=1

while following a standard method for RVs transformation, an
upper bound for the joint PDF of R can be easily obtained as

L L
fr(r) < det(A) fr/ <T1,ZQ2,i| 7":'7~-~,Z|QL,¢\ Ti)
i=1 i=1

13)
resulting to (5), with A being the Jacobian matrix of the RVs
transformations of (11a) and (12). [ |

The equality in (5) occurs when W is tridiagonal, i.e., for
the exponential correlation model. At that special case, Q = I,
and hence, R’ = R, which agrees with [12, eq. (3)]. Also,

for L = 2, since Zz Laiil) =1 =1,2), (5) reduces
to the bivariate Nakagami-m PDF [6, eq. (1)].

The proposed closed-form union bound for the joint
Nakagami-m PDF with an arbitrary correlation matrix, given
by (5), is expressed as a product of elementary functions.
As compared to the joint Nakagami-m PDF which can be
derived using [9, eq. (3.7)], it is much simpler, since it involves
Bessel functions as opposed to the use of the very complicated
generalized Laguerre polynomials in [22, eq. (10)]. It must

also be mentioned that det (W) can be recursively computed
using (C-1) of the Appendix C. Note that the tridiagonalization
of W, needed in (5) for the computation of g;;’s, can be
performed using the built-in function TridiagonalForm
of the MAPLE mathematical software package.

In order to demonstrate the simplicity of (5), based on the
similarity transformation in (4), we consider a typical example
of an antennas configuration consisted of four arbitrarily
spaced and placed antennas. Let us consider a 4 x 4 power
correlation matrix being arbitrary, symmetric, and positive
definite

1 0.618 0.384 0.203
0.618 1 0.563 0.348

B= 0384 0563 1 0.640 (14
0.203 0.348 0.640 1
-1
The inverse matrix of X is W:(\/i) , yielding

4.796 —3.909 —0.996 0.676

—-3.909 7.189 —2.772 —-0.421
W= —0.996 —-2.772 8414 —4.729 (1s)

0.676 —0.421 —4.729 5.099

By applying an efficient algorithmic computation of (4) (see
Appendix A), W is decomposed to tridiagonal form after two
Householder transformations, resulting to

4.796  4.090 0 0
, | 4090 6.428 —1.926 0
W= 0 —1.926 2403 2.596 (16)
0 0 2.596 11.871

Note that for demonstration purposes the elements of matrices
given by (15) and (16) have been rounded to the third decimal
digit.

C. Joint CDF

By using an infinite series representation for Bessel func-
tions [42, eq. (8.445)], a union upper bound for the joint
Nakagami-m PDF of R can be reexpressed as (17) (top of
this page). After L integrations of (17), a union upper bound
for the joint Nakagami-m CDF of R can be derived as (18)
(top of the next page) where v (+,-) is the lower incomplete
Gamma function [42, eq. (8.350)] and

by =k1+m (19a)
bj:kj,1+kj+m7Vj:2,37...7L—1 (19b)
by, = ki1 +m. (19¢)

It is useful to note that for integer m, y (-, -) can be simplified
to standard functions using [42, eq. (8.352/1)]. For the special
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m e’} L—-1
det (W) ILi p121:+1 [Fi! T (ki +m)] P11 o
FR (I’) = W Z ki+m L-1_ ki_1+ki+m kr—1+m v (bh ? Tl)
ki,ka,...k—1=0 P11 (Hi:2 P ) Pr L 18
L—1 ) L 2 ) L 2 (18)
3,3 L,L
x H el Uiron (Z%,i| Ti) 7|0 =g <Z|QL,2' Ti)
j=2 i=1 i=1
m oo L—-1
Pout (7in) <det(W) Hl 1 p7,2]:+1/[k'r(k +m)] <b Pllmvh)
out t L m ki kitm kr_ m 1, t
r (m) ki,k2,....kL—1=0 pllﬁl—i_ (HiL:21 P e ) pLLL1Jr Vs 23)

L—-1
P7 pL,.Lm
xS T (b =2 (Zlqm) Y| ¢ Y b, = <Z|qu
j=2

2
> Yth

case of exponential correlations, the equality in (18) occurs,
which agrees 2with [12, eq. (6)]. Moreover, for L = 2, since

(Zle \qﬂ\) =1 = 1,2), (18) reduces to the bivariate
Nakagami-m CDF [6, eq. (3)].

III. PERFORMANCE ANALYSIS OF MULTIBRANCH
RECEIVERS

We consider an L-branch diversity receiver operating over
i.d. and arbitrarily correlated Nakagami-m fading channels.
Let a signal transmission over the /th flat Nakagami-m fading
channel corrupted by additive white Gaussian noise (AWGN),
with E; being the transmitted symbols’ energy and N; the
single-sided noise power spectral density of the AWGN. The
instantaneous signal-to-noise ratio (SNR) per symbol of the /th
diversity channel can be expressed by v, = R? E/Ny, with
its corresponding average value being 7, = E(R2) E,/Ny =
mQ Es/Ng =7, V £. Union bound expressions for the joint
PDF and CDF of 4 = [y1y2 - -+ 71] can be easily obtained,
through (5) and (18), as

(\/m_ﬂ,y \/nLQ,yP“’\/nLSQ,yL)

fy () (20)
! 2L 7,/ (m ) T, Ve
and
FR<\/mQ m ) . TT;Q >
(21

respectively. The above expressions can be used in the study
of several performance criteria of diversity receivers such as
the OP and average symbol error probability (ASEP).

A. Multibranch SC Receivers

The instantaneous SNR per symbol at the output of an
L-branch SC receiver will be the one with the highest
instantaneous value among the L branches, i.e., V5 =
max {y1,7%2,.-.,7r}. The OP, Py, is defined as the prob-
ability that the SC output SNR falls below a given outage
threshold, ~¢. This probability can be easily obtained as

Pout (rYth) = F"/ (rYtha Yths - - - 77th) (22)

where using (21) yields (23) (top of this page).

B. Multibranch MRC Receivers

An exact performance analysis of multibranch MRC re-
ceivers operating over i.d. and arbitrarily correlated Nakagami-
m fading channels can be carried out using the generic
expression derived for R/, due to the following theorem.

Theorem 2 (Equal norms): Both groups of Nakagami-m
RVs, R’ and R, have the same norm, i.e.,

IR'[| = [R]|. (24)

Proof: Since Yk is an orthogonal transformation of Yy,
as shown in (6), they both have the same norm [44], i.e.,

I3l = 1Yk (25)

By square raising both sides of (25), adding by parts the
associated 2m equations, and using the definition of R; and
Ry, (24) is extracted. [ |

Consequently, it directly follows from (24) that 25:1 RP =
Zle RZ, which implies that the instantaneous MRC output
SNR per symbol can be expressed as

L
)
mrc — . R/2-
g N, ;71 ¢

The advantage of (26) is the following: In a standard treatment,
in order to evaluate the performance of MRC, the joint PDF
of R is needed, which is given in the form of a multiple
series of generalized Laguerre polynomials [9, eq. (3.7)], and
hence, is very complicated to be used for the performance
analysis of MRC. Thus, based on (26), we avoid employing
the distribution of R, managing to use the distribution of R’
given by (9), which is significantly simpler. Also, for i.d.
fading parameters, the proposed approach seems to be less
complicated than the PDF-based one presented in [14].

1) Error Probability: By using (9), Theorem 2, and the
definition of the MGF of the output SNR per symbol of
an L-branch MRC, ie., M, (s) = E{exp(—svy.c))s
M., (s) can be obtained as (27) (top of the next page).

Based on the above MGF expression, the ASEP, P,., at the
output of an L-branch MRC receiver, for non-coherent binary
frequency shift keying (NBFSK) and differential binary phase
shift keying (DBPSK) modulation schemes can be directly cal-
culated (e.g. the average bit error rate probability (ABEP) for

(26)
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det (W)m m Lm o L—1 (mpl 7]4_1/7 )Qki L mpe e —by
Mo (8) = —7— (_—) e s+ — I (be) 27
¥ I'(m) R khk%_gklzo 21;[1 k'L (ki +m) El Vs
det (W)™ (m\ "™ - T mpiie /7)™ -
Pout (Ven) :m (_—) Z m H (be —1)!
Vs k1,ka,....k_1=0 Li=1 """ v =1 1
Lo By Vth Caiey | Yen '\ G2
3 B[ () £ (i 29)
; Z (mpee/7,)"? [ PATTPeE ) 2 P 5]
=1q= n=
TABLE 1 TABLE II

NUMBER OF REQUIRED TERMS FOR CONVERGENCE TO THE SIXTH
SIGNIFICANT DIGIT OF THE UNION UPPER BOUND OF THE OP OF SC
RECEIVERS WITH A LINEARLY ARBITRARY MODEL (L = 3).

(/7. @B) [ m=1m=2] m=4 |

5 14 21 37
0 11 19 30
-5 7 14 21
-10 5 7 12
-15 2 2 5
-20 1 1 1

DBPSK is given by Py = 0.5 M., (1)). For other schemes,
including binary phase shift keying (BPSK), M-ary phase
shift keying (M -PSK), quadrature amplitude modulation (M -
QAM), amplitude modulation (M -AM), and differential phase
shift keying (M-DPSK), single integrals with finite limits
and integrands composed of elementary functions (exponential
and trigonometric) have to be readily evaluated via numerical
integration [1]. For example, the ASEP for M-PSK is given

by
. 1 w—m /M
PSE = - / M'Ymrc (g.PEK > ng
™ 0 sm- @

where gpsk = sin® (m/M), while for square M-QAM, the
ASEP can be derived as

4 1 /2 gaAM
Peoe=——[1— — M d
() L e () 0
1 /4 QQAM)
(1 — M d
( /—M) /O ~Ymrc (sin2 ” ®

with gqan = 3/ [2 (M — 1)].

2) Outage Probability: The OP at the output of MRC can
be obtained as [1]

(28)

(29)

M s
Pout (’Yth) = F’Ymrc (’Yth) =1L 1 {%%()

) '7mrcj|
Ymrc="7th

30

Mee () 18 the CDF of 4y and L™1[+;+] denotes the
inverse Laplace transform. Due to the complicated form of
M. (8) /s in (30), the so-called Euler summation-based
algorithm for the inversion of the CDFs may be applied
[42, Appendix 9B.1], [47]. For m integer, the integration
theory of rational functions [42, Section 2.102] can be ap-
plied. Moreover, inverse Laplace transformations of the form
L= [(s +mpee/7,)" 7 /s;t] (g integer) need to be performed,

where F.

NUMBER OF REQUIRED TERMS FOR CONVERGENCE TO THE SIXTH
SIGNIFICANT DIGIT OF THE ABEP OF MRC RECEIVERS WITH DBPSK
SIGNALLING AND A LINEARLY ARBITRARY MODEL (L = 5).

[7,@B) [m=1]m=2] m=4

-5 18 24 35
0 13 20 29
5 9 11 17
10 6 7 9
15 3 4 6

as [42, Section 17.1]
(s + mpee/7,)"" Y (¢:tmpee/7s)
’ (=D (mpee/7,)"

(3D
Hence, for distinct values of py ¢’s, occurring in most practical
cases in which p; ; # 0, an analytical expression for the OP
at the output of MRC can be derived as in (32) (top of this
page) with

L71

S

1

Bra =,

Wy(s)Pm9) | (33a)

s=—mpe,e/Vs

and

be
We(s) = (s + _m_pe,e)

S

L muov; ; —bi
[T(s+™2) . o)
v

i=1 S

IV. NUMERICAL AND COMPUTER SIMULATION RESULTS

In this section, by using the previous mathematical analysis,
numerically evaluated results are presented for the OP of SC as
well as the OP and ABEP of MRC receivers operating over
i.d. and arbitrarily correlated Nakagami-m fading channels.
In order to verify the tightness of the proposed bound for
the OP of SC and the validity of the exact outage and error
performance of MRC receivers, curves obtained by extensive
computer simulations are also presented for comparison pur-
poses.

The numerical evaluation of several expressions in Sec-
tion III requires the summation of an infinite number of
terms. As indicative examples, Tables I and II summarize the
number of terms needed for SC and MRC receivers, so as the
expressions for the OP using (23) and the ABEP using (27) to
converge after the truncation of the infinite series, respectively.
Note that in Table II as well as in the examples for the error
performance that follow, when the modulation order M > 2,
Gray encoding is assumed, resulting to Py = P,/ logy(M).
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Fig. 2. Upper bound for the OP of a triple-branch SC with a linearly arbitrary
model as a function of the normalized outage threshold. The derived bounds
are tight compared with simulation results for different values of m.

A linearly arbitrary correlation model with L = 3 [13, p.
886] has been considered in Table I, while in Table II, a
linearly arbitrary model with L = 5, in which the correlation
matrix is given by [26, eq. (40)], has been assumed. As Table I
indicates, the number of required terms depends strongly on
the normalized outage threshold, v, /7. As i1 /7 decreases,
less terms are required to be summed. Moreover, for a fixed
~th /74, an increase on m results to an increase on the required
number of terms that are essential to be summed in order the
upper bound for the OP to converge. Similar conclusions for
the convergence of the ABEP for DBPSK can be also extracted
from Table II. An increase on the average SNR per bit, 7,,
results to a decrease of the required number of terms, and
for a fixed 7,, the required number of terms for convergence
increases with increasing m. It is interesting to be mentioned
that additional convergence experiments have been conducted
for the OP and the ABEP, and the following findings have
been obtained. i) The convergence rate depends slightly on the
diversity order and ii) an increase on any of the correlation
coefficients results to an increase of the required number of
terms needed for convergence.

Having numerically evaluated (23), in Fig. 2, upper bounds
for P,y are plotted as a function of 7, /7,, for a triple-
branch SC receiver, different values of m, and a linearly
arbitrary correlation matrix given in [13, p. 886]. It can be
easily verified that P, degrades with a decrease of m and/or
an increase of i, /7,. More importantly, the obtained results
clearly show that the proposed bounds for P, are tight,
compared with extensive computer simulations for the exact
OP. For example, for m = 2 and P,y = 10—, the distance
between the two curves is less than 0.1 dB. In Fig. 3, upper
bounds for P, are presented as a function of the 41, /7, for
a quadruple-branch SC receiver with a circulant correlation
matrix given by [13, p. 888]. It is clearly shown that the

1 F T T T T :
Q E E
n r ]
= 3 ]
Q L J
g
S 1071 = -
A E 3
2 F ]
= r ]
= L J
=
B0 E E
= E ]
o ]
[ L 4
o - -
>
2107 F . E
s * ]
21 w ]
s: o .
wl10" E m=4 .
[=Y)] E E
s E 3
5 L Bounds ]
r *  Simulations 1
10° A A 1 A
-15 -10 -5 0 5
Normalized Outage Threshold (dB)
Fig. 3.  Upper bound for the OP of a quadruple-branch SC with a circular

model as a function of the normalized outage threshold. The tightness of the
proposed bounds decreases with an increase on L and/or m.

10
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\
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’ ,'. """" m=4
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1
1
|
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I
[\S]
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Outage Probability of Quadruple-Branch MRC

(=}
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Fig. 4. OP of a quadruple-branch MRC with an arbitrary model as a function
of the normalized outage threshold. Numerically evaluated results for the OP
of MRC perfectly match with equivalent simulation ones for L = 4.

difference between the numerical results for the bounds and
the equivalent computer simulation ones for the exact Py
increases with an increase on L and/or m. From Figs. 2 and
3, it is evident that the smaller the L and/or m are, the tighter
the bounds are.

Based on (32), Fig. 4 demonstrates the numerically eval-
uated results for P,y as a function of the v, /7,, for a
quadruple-branch MRC receiver, with different values of m
and an arbitrary correlation matrix given by (14). As expected,
P,y degrades with a decrease of m and/or an increase of
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Fig. 5. ABEP of DBPSK and BPSK for a triple-branch MRC with a linearly
arbitrary model as a function of the average input SNR per bit. Numerically
evaluated results for the ABEP of DBPSK and BPSK perfectly match with
equivalent simulation ones for L = 3.
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Fig. 6. ABEP of DBPSK and BPSK for a quadruple-branch MRC with a

circular model as a function of the average input SNR per bit. Numerically
evaluated results for the ABEP of DBPSK and BPSK perfectly match with
equivalent simulation ones for L = 4.

~eh /7. It is obvious that the numerically evaluated curves for
P,y perfectly match with the equivalent computer simulation
results.

In Figs. 5-8, by using (27), a few curves for the ABEP
performance are plotted as a function of 7, = 7,/ log, (M),
for multibranch MRC receivers, several modulation schemes,
different values of m, and several correlation matrices. In
Fig. 5, the ABEP of DBPSK and BPSK signalling is plot-
ted as a function of 7,, for a triple-branch MRC receiver

T T T T T T T
10" B -
E 3
3 ]
O L ]
10" 3
= f E
= F ]
) | J
&
S10° F -
BE ]
(] o 4
2 [ 1
i L )
B0 F E
-9 E 3
BT ]
- |
< -5
10" F—— DBPSK E
r ---- QPSK \ ]
l = Simulations k _
104’ L | L |
-5 0 5 10 15
Average Input SNR per Bit (dB)
Fig. 7. ABEP of DBPSK and Gray encoded QPSK for a five-branch MRC

with a linearly arbitrary model as a function of the average input SNR per
bit. Numerically evaluated results for the ABEP of DBPSK and Gray encoded
QPSK perfectly match with equivalent simulation ones for L = 5.

with a linearly arbitrary correlation matrix given in [13, p.
886]. As expected, the ABEP improves with an increase of
%p. Furthermore, in Fig. 6, ABEP is also presented for a
quadruple-branch MRC receiver with a circulant correlation
matrix given in [13, p. 888], while in Fig. 7, the ABEP
performance of DBPSK and Gray-encoded quadrature phase
shift keying (QPSK) signalling is plotted as a function of
7, for a five-branch MRC receiver with a linearly arbitrary
correlation matrix given by [26, eq. (40)]. Finally, in Fig. 8, the
ABEP is plotted versus 7,, for Gray-encoded square /M -QAM
modulation format with M = 4, 16, and 64, for a six-branch
MRC receiver with an arbitrary correlation matrix given by

1 0.632 0.366 0.203 0.141 0.080
0.632 1 0.562 0.403 0.160 0.123
5 0.366 0.562 1 0.540 0.476 0.250
0.203 0.403 0.540 1 0.672 0.342
0.141 0.160 0.476 0.672 1 0.533
0.080 0.123 0.250 0.342 0.533 1
(34)

In Figs. 5-8, it is clearly shown that numerically evaluated
curves for the ABEP coincide to the equivalent computer
simulation results.

V. CONCLUSIONS

In this paper, new results for the multivariate Nakagami-
m fading channel model with arbitrary correlation struc-
tures were presented. By using an efficient tridiagonalization
method based on Householder matrices, the inverse of the
Gaussian correlation matrix was transformed to tridiagonal,
managing to derive a closed-form union upper bound for the
joint Nakagami-m PDF and an exact analytical expression
for the MGF of the sum of i.d. and correlated gamma RVs.
Arbitrary correlation structures were considered, including the
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Fig. 8. ABEP of Gray encoded star M-QAM for a six-branch MRC with an
arbitrary model as a function of the average input SNR per bit. Numerically
evaluated results for the ABEP of Gray encoded star M-QAM perfectly match
with equivalent simulation ones for L = 6.

exponential, constant, circular, and linear correlation ones as
special cases. Based on the proposed mathematical analysis,
a tight union upper bound for the OP of multibranch SC as
well as exact analytical expressions for the OP and the ASEP
of multibranch MRC receivers were obtained. Comparisons
between numerically evaluated and extensive computer simu-
lation performance evaluation results verified the validity of
our approach.

APPENDIX A
EFFICIENT ALGORITHMIC COMPUTATION OF (4)

Let W € RL*L be a real symmetric matrix. Starting
with Wo = W, the kth (k=1,2,..., L — 2) Householder
transformation can be obtained using the following recursive
formula

W, =H; W;_ H; (A-1)

which, alternatively, can be efficiently computed performing
only vector multiplications as

Wk = Wk—l — 2uk ZE — 2Zk ug (A-Z)

where z, = v, — ¢ uy with v, = W1 uy, and ¢, = uj vg.
In order to derive the vector ug, a useful property of the
Householder matrix is used. A similar vector, by, to a =
Wi_1(:, k) (Wg_1(:, k) denotes the kth column of W_1)
may be constructed as

T
by =Hpap =Hi a1 ao Ak Qg1 Apt2 - - GF ]
T
=|ayray - ap —8x 0 -+ 0
1 G2 k k
L—(k+1)

(A-3)

where s, = sign (ax4+1) \/Zf:kﬂ a?, so as vectors by, and
ay, to have identical norms. Note that the sign of sy is chosen
to be equal to that of ay4; for less round-off error propagation
[44]. By using (A-3), uy can be efficiently obtained based on
(3), avoiding the computation of Hy, as

T

00
k

where dj, = ||a—by|| = \/2ak+15k + 257. After using (A-2)
L — 2 times, W = W _5 is finally formed.

0 sk +akt1 agy2 -+ ar (A-4)

APPENDIX B
SOME PROPERTIES FOR THE ORTHOGONAL MATRIX

The orthogonal matrix used for the transformation in (4)
(and in (6)) is of the form

T 0 g2 @,L
Q =]. . (B-1)
0 qre qr.L

having the following properties:
i) for any row, the sum of the squared elements is unity, i.e.
L 2 _
ey =1
ii) for any two rows ¢ and k with ¢ # k, the sum of products
of corresponding elements is zero, i.e. Zle Q. qk,; = 0, and

i) Q' = QT, det (QT) = +1.

APPENDIX C
DETERMINANT RECURSIVE CALCULATION OF
TRIDIAGONAL MATRICES

Taking advantage of the tridiagonal form of W', the deter-
minant of W can be efficiently computed using the recursive
formula

det (W) =ppr 1, det ([W/]{LQ,...,LA}) -
- PzL,LA det ([Wl]{l,Q,...,L72})

where [W'](;, ., is the submatrix formed by the first n <
L — 1 rows and columns of W".

(C-1)
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