
2434 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 9, SEPTEMBER 2011

On the Sum of Kappa Stochastic Variates and
Applications to Equal-Gain Combining
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Abstract—In this paper we study the statistics of the sum of
not necessarily identically distributed kappa, that is, 𝒦, random
variables (RV)s. Assuming half-integer values for the shaping
parameters, novel closed-form expressions for the probability
density function (PDF) of the sum of independent 𝒦 RVs are
obtained, while for arbitrary values of the shaping parameters,
a corresponding PDF expression is derived in terms of fast
converging infinite series. Furthermore, an infinite series rep-
resentation for the PDF of the sum of two arbitrarily correlated
𝒦 RVs is derived. The proposed analysis is employed to the
performance analysis of equal-gain combining (EGC) receivers
operating over composite fading/shadowing channels modeled by
the 𝒦 distribution. More specifically, the outage and the average
bit error probabilities, as well as the average channel capacity
of EGC receivers operating over such composite environment
are studied. Considering different channel fading/shadowing con-
ditions and correlation effects, various numerical performance
evaluation results are presented. These results are complemented
by equivalent computer simulated ones that validate the accuracy
of the proposed analysis.

Index Terms—Average bit error probability (ABEP), channel
capacity, correlated statistics, equal gain combining (EGC),
kappa fading/shadowing channels, outage probability, sum dis-
tributions.

I. INTRODUCTION

W IRELESS communication systems are subject to se-
vere channel impairments, including short-term fading

(multipath), as well as, long-term fading (shadowing), that
can seriously degrade the overall system performance [1].
One of the simplest and yet most efficient techniques that
are usually used to countermeasure signal distortions due
to multipath fading/shadowing is diversity. There are several
diversity reception techniques used in digital communication
systems, including maximal-ratio combining, equal-gain com-
bining (EGC), and selection diversity [1]. Among them, EGC
provides an intermediate solution between performance and
implementation complexity. Additionally, when employing
diversity techniques without sufficiently separated antennas
due to space limitations, e.g., small size mobile terminals,
performance degradation occurs due to fading correlation.
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Critical issues for studying the performance of diversity
systems are i) the statistical behavior of the multipath fading
and/or shadowing that depends on the radio propagation envi-
ronment and ii) the existence or not of fading correlation. An
important statistical characteristic that can describe both i) and
ii) is the probability density function (PDF) of the diversity
receivers output signal-to-noise ratio (SNR). However, in
many cases the derivation of that PDF, in terms of tabulated
functions, is a very difficult mathematical task, especially in
cases where EGC receiver is considered. In the open technical
literature, several approaches have been proposed for studying
EGC receivers over various fading channel models, e.g., [2]–
[7]. For instance, in [2], by deriving an exact expression for
the PDF of the sum of two correlated Nakagami-𝑚 random
variables (RV)s, the symbol error rate of several modulation
schemes under EGC reception was obtained. In [3], a tight up-
per bound was derived for the PDF of the sum of generalized-
gamma RVs, that was used for studying the performance of
EGC receivers. Finally in [7], an accurate approximation for
the distribution of the sum of equally correlated Nakagami-𝑚
variates was presented and used to study the performance of
EGC receivers operating over Nagakami fading channels.

As a general comment it is noted that all the previously
published papers deal only with short-term fading, despite
the fact that in real radio propagation environments, i.e.,
terrestrial and satellite land-mobile link, shadowing effects
play a critical role. In several works, e.g., [1], [8], the compos-
ite fading/shadowing environment is statistically modeled by
lognormal-based distributions such as Rayleigh-, Nakagami-
and Rice-lognormal. In order to facilitate the performance
evaluation of such environments, new families of composite
fading distributions have been proposed, most notably the
kappa, that is 𝒦, (and generalized-𝒦 (𝒦𝐺)) distributions
[9]–[11]. The main advantage of these two distributions is
their relatively simple mathematical form, as compared to
lognormal-based ones, that allows an integrated performance
analysis of digital communication systems operating over fad-
ing/shadowing channels. However, as far as the distributions
of the sum of 𝒦 (and 𝒦𝐺) RVs are concerned, very few
publications exist in the open technical literature, e.g., [12]–
[14]. For instance, in [12], the fading PDF of EGC diversity
receiver operating over free-space optical communication sys-
tems modeled by the gamma-gamma distribution, i.e., squared
𝒦𝐺, was derived in terms of infinite series. All in all, to the
best of the authors knowledge, the PDF of the sum of 𝒦 and/or
𝒦𝐺 distributed envelopes is not available in the open research
literature. In the current work, assuming integer plus one-half
values for the fading parameters, closed-form expressions for
the PDF of the sum of independent 𝒦 RVs are obtained,
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while for the correlated case, fast converging infinite series
are assessed. Further considering identical parameters, simpler
expressions are provided and employed to the performance
analysis of EGC diversity receivers operating over such fad-
ing/shadowing environment.

The remainder of this paper is as follows. In Section II,
expressions for the PDF, cumulative distribution function
(CDF), and characteristic function (CF) of the sum of inde-
pendent and correlated 𝒦 RVs are obtained. In Section III,
these results are applied to the performance analysis of EGC
diversity receivers operating over independent and correlated
𝒦 fading channels, in terms of the outage probability, average
bit error probability (ABEP), and average channel capacity.
In Section IV, analytical performance evaluation results are
presented, while the concluding remarks can be found in
Section V.

II. STATISTICAL ANALYSIS OF THE SUM OF 𝒦 RVS

Let 𝑋ℓ (ℓ = 1, 2, . . . , 𝐿) represent 𝒦-distributed RVs with
PDF given by [9, eq. (2)]

𝑓𝑋ℓ
(𝑥) =

4𝑥𝑘ℓ

Γ (𝑘ℓ)

(
1

Ωℓ

)(𝑘ℓ+1)/2

𝐾𝑘ℓ−1

(
2

𝑥√
Ωℓ

)
(1)

where 𝑘ℓ ≥ 0 is shaping parameter of the distribution, Ωℓ is
the average fading power given as Ωℓ = 𝔼⟨𝑋2

ℓ ⟩/𝑘ℓ, with 𝔼⟨⋅⟩
denoting expectation, 𝐾𝛼 (⋅) is the modified Bessel function
of the second kind and order 𝛼 [15, eq. (8.407/1)] and Γ (⋅) is
the Gamma function [15, eq. (8.310/1)]. By using different
values for 𝑘ℓ, (1) describes various shadowing conditions,
from severe shadowing, e.g., 𝑘ℓ → 0, to no shadowing, e.g.,
𝑘ℓ → ∞. The CF of 𝑋ℓ is given by [16, eq. (8)]

Φ𝑋ℓ
(𝜔) =

√
𝜋 4𝑘ℓ Γ (2 𝑘ℓ)

Γ (𝑘ℓ) Γ (𝑘ℓ + 3/2)

(
2− 𝑗

√
Ωℓ 𝜔

)−2𝑘ℓ

× 2𝐹1

(
2𝑘ℓ, 𝑘ℓ − 1

2
; 𝑘ℓ +

3

2
;
2 + 𝑗

√
Ωℓ 𝜔

−2 + 𝑗
√
Ωℓ 𝜔

) (2)

where 𝑗 =
√−1 and 2𝐹1 (⋅, ⋅; ⋅; ⋅) is the Gauss hypergeometric

function [15, eq. (9.100)].
Next, important statistical characteristics for the distribution

of sum of 𝒦 RVs are studied for independent as well as
correlated statistics.

A. Independent RVs

By considering independent statistics and letting 𝑘ℓ be equal
to a half-integer, the PDF of the sum of 𝐿 𝒦 RVs is extracted
in closed form. Furthermore, for arbitrary values of 𝑘ℓ ≥ 3/2
and identically distributed (id) RVs, a fast converging infinite
series expression for the corresponding PDF is provided.

1) Case of half-integers 𝑘ℓ’s:
Theorem 1: Let 𝑍 denote a RV defined as

𝑍 ≜
𝐿∑

ℓ=1

𝑋ℓ (3)

where 𝑋ℓ follows (1), with 𝑘ℓ = 𝛼ℓ+1/2, 𝛼ℓ ∈ ℕ. The PDF
of 𝑍 is given by

𝑓𝑍(𝑥) =

{𝛼ℓ−1}𝐿
ℓ=1∑

{𝑖ℓ}𝐿
ℓ=1=0

2∑
{𝑗ℓ}𝐿−1

ℓ=1 =0

𝐴𝑗1∑
𝑏1,𝑗1=0

(2−𝑗2)𝐴3+
(𝑗2−1)𝑏1,𝑗1∑
𝑏2,𝑗2=0

⋅ ⋅ ⋅

(2−𝑗𝐿−1)𝐴𝐿+
(𝑗𝐿−1−1)𝑏𝐿−2,𝑗𝐿−2∑

𝑏𝐿−1,𝑗𝐿−1
=0

[
𝐿−1∏
𝑖=1

(−1)(𝑏𝑖,𝑗𝑖+1)(𝑗𝑖−1) 𝜆
𝑏𝑖,𝑗𝑖
𝑖

]
𝐿∏

ℓ=1

𝕊ℓ

×
⎡⎣ 𝐿∏
𝑖=3

𝐴𝑖!
(−𝐴𝑖 − 𝑏𝑖−2,𝑗𝑖−2 − 1

)
𝑏𝑖−2,𝑗𝑖−2

+1(
𝐴𝑖 + 𝑏𝑖−2,𝑗𝑖−2 + 1

)
𝜆
𝐴𝑖+𝑏𝑖−2,𝑗𝑖−2

+1

𝑖−1

×
[
𝐴𝑖 (𝑗𝑖−1 − 2)− 𝑏𝑖−2,𝑗𝑖−2 (𝑗𝑖−1 − 1)

]
𝑏𝑖−1,𝑗𝑖−1

𝑏𝑖−1,𝑗𝑖−1 !
(−𝐴𝑖 − 𝑏𝑖−2,𝑗𝑖−2

)
𝑏𝑖−1,𝑗𝑖−1

⎤⎦
×

𝐴1! (−𝐴1 −𝐴2 − 1)𝐴2+1 (−𝐴𝑗1)𝑏1,𝑗1
(𝐴1 +𝐴2 + 1)Δ𝐴1+𝐴2+1

1−2 𝑏1,𝑗1 ! (−𝐴1 −𝐴2)𝑏1,𝑗1

× 𝑥𝑏𝐿−1,𝑗𝐿−1 exp (−𝜙𝐿−1𝑥)

(4)

where

𝕊ℓ =
√
𝜋

(𝛼ℓ + 𝑖ℓ − 1)!

𝑖ℓ! (𝛼ℓ − 𝑖ℓ − 1)!

21−2𝑖ℓ

Γ (𝑘ℓ)
Ω

(2𝑖ℓ−2𝑘ℓ−1)/4
ℓ ,

𝜆1 = Δ1−2, 𝜙1 = Δℎ1 ,

𝜆2 = Δ3−ℎ1 , 𝜙2 = (2− ℎ2)Δ3 + (ℎ2 − 1)Δℎ1 ,

𝜆𝐿 = Δ𝐿+1 − 𝜙𝐿−1, 𝜙𝐿 = (2− ℎ𝐿)Δ𝐿+1 + (ℎ𝐿 − 1)𝜆𝐿−1.

Furthermore, in (4), 𝐴𝑥 = 𝛼𝑥 − 𝑖𝑥, Δ𝑥 = 2 (1/Ω𝑥)
1/2 and

Δ𝑥−𝑦 = 2
[
(1/Ω𝑥)

1/2 − (1/Ω𝑦)
1/2

]
, (⋅)𝑝 is the Pochham-

mer’s symbol [15, p. xliii], with 𝑝 ∈ ℕ.
Proof: See the Appendix.

A worth noting observation that can be made from (4)
is that the sum of 𝐿 𝒦 RVs is given as a finite sum of
gamma distributed RVs. Assuming identical parameters, i.e.,
𝑘ℓ = 𝑘, 𝛼ℓ = 𝛼,Ωℓ = Ω, (4) simplifies to

𝑓𝑍(𝑥) = 𝒢 (𝐿, 𝑘,Ω, 𝛼)𝑥Ξ𝐿−1 exp

(
−2

𝑥√
Ω

)
(5)

where

𝒢(𝑥, 𝑡, 𝑠, 𝑔) =
𝑔−1∑

{𝑖ℓ}𝑥
ℓ=1=0

𝐵 (𝑔 − 𝑖1 + 1, 𝑔 − 𝑖2 + 1)

×
[

𝑥∏
ℓ=1

√
𝜋

(𝑔 + 𝑖ℓ − 1)!

𝑖ℓ! (𝑔 − 𝑖ℓ − 1)!

21−2𝑖ℓ

Γ (𝑡)
𝑠(2𝑖ℓ−2𝑡−1)/4

]

×
𝑥∏

ℓ=3

𝐵

(
𝑔 − 𝑖ℓ + 1, (ℓ− 1) 𝑔 −

ℓ−1∑
𝑦=1

𝑖𝑦 + ℓ− 1

) (6)

with Ξ𝐿 = 𝐿𝛼 − ∑𝐿
ℓ=1 𝑖ℓ + 𝐿 and 𝐵 (⋅, ⋅) being the Beta

function [15, eq. (8.380)]. It is noted that an alternative
representation to (5) is given in [17]. For the special case
where 𝑘 = 1/2, (5) further simplifies to [18, eq. (13)], i.e.,
the Erlang distribution.

Lemma 1: For id 𝑋ℓ’s, the CDF of 𝑍 can be obtained as

𝐹𝑍(𝑥) = 𝒢 (𝐿, 𝑘,Ω, 𝛼)
(√

Ω/2
)Ξ𝐿

𝛾

(
Ξ𝐿, 2

𝑥√
Ω

)
(7)
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TABLE I
MINIMUM NUMBER OF TERMS FOR CONVERGENCE OF (11) WITH AN

ACCURACY BETTER THAN ± 10−4 .

Ω = 0 dB Ω = 20 dB

𝑥
1
3
5
7

𝑘 = 1.5 𝑘 = 4.5
1 5
2 6
6 6
19 6

𝑘 = 1.5 𝑘 = 4.5
1 6
1 6
1 6
1 6

where 𝛾 (⋅, ⋅) is the lower incomplete gamma function [15, eq.
(8.350/1)].

Proof: By using (5) in the definition of the CDF, i.e.,
[19, eq. (4.17)], and with the aid of [15, eq. (3.351/1)], (7) is
extracted.

Lemma 2: For id 𝑋ℓ’s, the CF of 𝑍 can be obtained as

Φ𝑍(𝜔) = 𝒢 (𝐿, 𝑘,Ω, 𝛼) Γ (Ξ𝐿)

[
2

(
1

Ω

)1/2

− 𝑗𝜔

]−Ξ𝐿

. (8)

Proof: By using (5) in the definition of the CF, i.e., [19,
eq. (5.60)], and with the aid of [15, eq. (3.351/3)], (8) is
extracted.

2) Case of 𝑘ℓ ≥ 3/2: Now we consider id 𝑋ℓ’s and
arbitrary values of 𝑘ℓ = 𝑘 ≥ 3/2. Substituting (2) in [19, eq.
(8.52)] and using first [20, eq. (07.23.17.0054.01)] and [15,
eq. (9.100)], then the multinomial identity [15, eq. (0.314)]
and the binomial theorem [15, eq. (1.111)], Φ𝑍(𝜔) can be
expressed as

Φ𝑍(𝜔) =

[ √
𝜋 Γ(2 𝑘)

Γ(𝑘)Γ(𝑘 + 3/2)

]𝐿
2−2𝐿(𝑘−1)

×
∞∑
ℎ=0

ℎ∑
𝑖=0

(
ℎ

𝑖

)
𝛿ℎ(−2)𝑖

(
1−

√
Ω

2
𝑗 𝜔

)−2𝐿−𝑖 (9)

where

𝛿0 = 𝛽𝐿0 , 𝛿ℎ =
1

ℎ𝛽0

ℎ∑
𝑝=1

(𝑝𝐿− ℎ+ 𝑝)𝛽𝑝 𝛿ℎ−𝑝,

𝛽ℎ =
(−𝑘 + 3/2)ℎ (2)ℎ
ℎ! (𝑘 + 3/2)ℎ

.

(10)

By applying the inverse Fourier transform in (9), an alternative
expression for 𝑓𝑍(𝑥) can be easily derived as

𝑓𝑍(𝑥) =

[√
𝜋 Γ(2 𝑘)/Γ(𝑘)

Γ(𝑘 + 3/2)

]𝐿
22𝐿(2−𝑘)

∞∑
ℎ=0

ℎ∑
𝑖=0

(
ℎ

𝑖

)
× 𝛿ℎ(−1)𝑖22 𝑖

Γ(2𝐿+ 𝑖)Ω𝐿+𝑖/2
𝑥2𝐿+𝑖−1 exp

(
−2

𝑥√
Ω

)
.

(11)

The rate of convergence of the infinite series of the above
expression is investigated in Table I, where we summarize
the minimum number of terms, ℎmin, needed to achieve an
accuracy better than ±10−4 for 𝐿 = 2 and several values of
Ω, 𝑘, and 𝑥. It is clear that only a few terms are needed in
order to achieve the target accuracy, while the required terms
increase by increasing 𝑥, 𝑘 and/or decreasing Ω. Similar rates
of convergence have been observed for different values of 𝐿.

B. Correlated RVs

The PDF of two correlated and not id 𝒦-distributed RVs
𝑋1 and 𝑋2 is given by [21, eq. (4)]

𝑓𝑋1,𝑋2(𝑥1, 𝑥2) =

∞∑
𝑡,ℎ,𝑞=0

16(𝑘2 − 𝑘1)𝑞(1− 𝜌𝐺)
𝑘2−1

ℎ!𝑞!(𝑡!)2Γ(𝑘1)Γ(𝑘2 + ℎ+ 𝑞)

× 𝜌ℎ+𝑞
𝐺 𝜌𝑡𝑅

[
2∏

𝑖=1

𝑥𝜏𝑖𝑖 Ω
−1/2
𝑖

(𝜎1Ω𝑖)
𝜏𝑖/2

𝐾𝜏𝑖−2𝑡−1

(
2𝑥𝑖√
𝜎1Ω𝑖

)] (12)

where 𝜏ℓ = 𝑘ℓ + ℎ + 𝑡 + (ℓ − 1)𝑞, 0 ≤ 𝜌𝑅 < 1 is the
correlation coefficient between the envelopes, 0 ≤ 𝜌𝐺 < 1
is the correlation coefficient between their powers, 𝜎𝑥 =
(1− 𝜌𝑅) (1− 𝜌𝐺)𝑥 and 𝑘2 ≥ 𝑘1.

Theorem 2: Let 𝑍 denote a RV defined as

𝑍 ≜ 𝑋1 +𝑋2 (13)

where the joint PDF of 𝑋1 and 𝑋2 is given by (12), with
𝑘ℓ = 𝛼ℓ + 1/2, 𝛼ℓ ∈ ℕ. The PDF of 𝑍 is given by

𝑓𝑍(𝑥) =

∞∑
𝑡,ℎ,𝑞=0

∣𝛼1+ℎ−𝑡−1∣∑
𝑖1=0

∣𝛼2+ℎ−𝑡+𝑞−1∣∑
𝑖2=0

𝜌𝑡𝑅𝜌
ℎ+𝑞
𝐺 (𝑘2 − 𝑘1)𝑞

ℎ!𝑞!𝑡!2Γ (𝑘1) /4𝜋

× 𝐵 (𝜏2 − 𝑖2 + 1/2, 𝜏1 − 𝑖1 + 1/2) (1− 𝜌𝐺)
𝑘2−1/2

𝜎
(𝜏1,2−𝑖1,2)/2
1 Γ (𝑘2 + ℎ+ 𝑞) (1− 𝜌𝑅)−1/2

×
[

2∏
ℓ=1

(∣𝜏ℓ − 2𝑡∣+ 𝑖ℓ − 1/2)!

(∣𝜏ℓ − 2𝑡− 1∣ − 𝑖ℓ − 1/2)!

Ω
(𝑖ℓ−𝜏ℓ−1/2)/2
ℓ

𝑖ℓ!22𝑖ℓ

]

× 𝑧𝜏1,2−𝑖1,2 exp

( −2𝑥√
𝜎Ω2

)
× 1𝐹1

(
𝜏1 − 𝑖1 +

1

2
; 1 + 𝜏1,2 − 𝑖1,2;

2∑
ℓ=1

2(−1)ℓ+1

√
𝜎Ωℓ

𝑥

)
(14)

where ∣ ⋅ ∣ denotes absolute value, 𝜃1,2 = 𝜃1 + 𝜃2, 1𝐹1 (⋅; ⋅; ⋅)
is the confluent hypergeometric function [15, eq. (9.210/1)].

Proof: Using [20, eq. (03.04.03.0004.01)] in (12) and
then applying [19, eq. (6.40)], an integral as in (A-2) appears.
This integral can be solved in closed form with the aid
of [15, eq. (3.383/1)], and hence, after some mathematical
manipulations, (14) can be extracted.

Assuming identical parameters, (14) simplifies to the fol-
lowing expression

𝑓𝑍(𝑥) =

∞∑
𝑛,ℎ=0

∣𝛼+𝑛−ℎ−1∣∑
𝑖1,𝑖2=0

ℋ𝜎
(𝑖1,2−1)/2−𝑛−ℎ
Ω

Ω𝑘 (1− 𝜌𝑅)
𝑘−1

×
[

2∏
ℓ=1

(∣𝜏 − 2ℎ− 1∣+ 𝑖ℓ − 1/2)!

𝑖ℓ! (∣𝜏 − 2ℎ− 1∣ − 𝑖ℓ − 1/2)!

]

× 𝑥2𝜏−𝑖1,2 exp

(
− 2𝑥√

𝜎Ω

)
(15)

where

ℋ =
𝜌ℎ𝑅𝜌

𝑛
𝐺 𝜋𝐵 (𝜏 − 𝑖2 + 1/2, 𝜏 − 𝑖1 + 1/2)

Γ (𝑘) Γ (𝑘 + 𝑛) ℎ!2 𝑛! 22(𝑖1,2−1)
, 𝜏 = 𝑘+ 𝑛+ ℎ.
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Lemma 3: For id 𝑋ℓ’s, the CDF of 𝑍 can be obtained as

𝐹𝑍(𝑥) =
∞∑

𝑛,ℎ=0

∣𝛼+𝑛−ℎ−1∣∑
𝑖1,𝑖2=0

ℋ (1− 𝜌𝑅) (1− 𝜌𝐺)
𝑘

22𝜏+1−𝑖1,2

×
[

2∏
ℓ=1

(∣𝜏 − 2ℎ− 1∣+ 𝑖ℓ − 1/2)!

𝑖ℓ! (∣𝜏 − 2ℎ− 1∣ − 𝑖ℓ − 1/2)!

]

× 𝛾

(
1 + 2𝜏 − 𝑖1,2,

2𝑥√
𝜎Ω

)
.

(16)

Proof: By using (15) in the definition of the CDF, i.e.,
[19, eq. (4.17)], and with the aid of [15, eq. (3.351/1)], (16)
is extracted.

Lemma 4: For id 𝑋ℓ’s, the CF of 𝑍 can be obtained as

Φ𝑍(𝑥) =
∞∑

𝑛,ℎ=0

∣𝛼+𝑛−ℎ−1∣∑
𝑖1,𝑖2=0

ℋ𝜎
(𝑖1,2−1)/2−𝑛−ℎ
Ω

Ω𝑘 (1− 𝜌𝑅)
𝑘−1

×
[

2∏
ℓ=1

(∣𝜏 − 2ℎ− 1∣+ 𝑖ℓ − 1/2)!

𝑖ℓ! (∣𝜏 − 2ℎ− 1∣ − 𝑖ℓ − 1/2)!

]

× (2𝜏 − 𝑖1,2)!(
2√
𝜎Ω

− 𝑗𝜔
)1+2𝜏−𝑖1,2

.

(17)

Proof: By using (15) in the definition of the CF, i.e., [19,
eq. (5.60)], and with the aid of [15, eq. (3.351/3)], (17) can
be obtained.

III. APPLICATION TO EGC RECEIVERS

Let us consider an EGC receiver operating over 𝒦-
distributed fading/shadowing channels. The equivalent base-
band received signal at the ℓth antenna is expressed as
𝑧ℓ = 𝑠ℎℓ + 𝑛ℓ, where 𝑠 is the transmitted complex symbol
with energy 𝐸𝑠 = 𝔼⟨∣𝑠∣2⟩, 𝑛ℓ is the complex additive white
Gaussian noise (AWGN) with single sided power spectral
density 𝑁0 assumed identical to all branches, and ℎℓ is
the channel complex gain, i.e., 𝑋ℓ = ∣ℎℓ∣. Furthermore, by
considering ideal phase estimation, only the distributed fading
envelope affects the received signal. The instantaneous SNR
per symbol at the ℓth input branch, 𝛾ℓ, and the corresponding
average SNR, 𝛾ℓ, can be expressed as

𝛾ℓ = 𝑋2
ℓ

𝐸𝑠

𝑁0
(18a)

𝛾ℓ = 𝔼⟨𝑋2
ℓ ⟩
𝐸𝑠

𝑁0
= Ωℓ 𝑘

𝐸𝑠

𝑁0
(18b)

respectively. In the following subsections, important statistical
metrics of the EGC diversity receiver output SNR will be
presented and then applied to its performance analysis.

A. EGC Statistical Properties

The total SNR at the output of an EGC receiver is given
by [1, eq. (9.51)]

𝛾egc =

𝐸𝑠

(
𝐿∑

ℓ=1

𝑋ℓ

)2

𝐿𝑁0
=

𝐸𝑠𝑍
2

𝐿𝑁0
. (19)

Applying (18) and (19) to the expressions provided in Sec-
tion II, important statistical properties of the EGC output SNR
can be easily obtained as follows.

1) Independent 𝒦 Fading: Applying (19) in (5), the PDF
of the EGC output SNR can be obtained as

𝑓𝛾egc(𝛾) = 𝒢
(
𝐿, 𝑘,

𝛾

𝑘
, 𝛼

)
𝐿

2
(𝐿𝛾)Ξ𝐿/2−1 exp

(
−2

√
𝑘𝐿𝛾

𝛾

)
(20)

while the corresponding CDF can be derived from (20) as

𝐹𝛾egc(𝛾) = 𝒢
(
𝐿, 𝑘,

𝛾

𝑘
, 𝛼

)(
2

√
𝑘

𝛾

)−Ξ𝐿

𝛾

(
Ξ𝐿, 2

√
𝑘𝐿𝛾

𝛾

)
.

(21)

2) Correlated 𝒦 Fading: Applying (19) in (15), the PDF
of the EGC output SNR can be obtained as

𝑓𝛾egc(𝛾) =

∞∑
𝑛,ℎ=0

∣𝛼+𝑛−ℎ−1∣∑
𝑖1,𝑖2=0

ℋ (1− 𝜌𝑅)
1−𝑘

(𝜎𝛾/𝑘)
𝑛+ℎ−(𝑖1,2−1)/2

×
(
𝑘

𝛾

)𝑘
[

2∏
ℓ=1

(∣𝜏 − 2ℎ− 1∣+ 𝑖ℓ − 1/2)!

𝑖ℓ! (∣𝜏 − 2ℎ− 1∣ − 𝑖ℓ − 1/2)!

]

× (2𝛾)
𝜏−(𝑖1,2+1)/2

exp

(
−2

√
2𝑘𝛾

𝜎𝛾

)
(22)

while the corresponding CDF can be derived from (22) as

𝐹𝛾egc(𝛾) =

∞∑
𝑛,ℎ=0

∣𝛼+𝑛−ℎ−1∣∑
𝑖1,𝑖2=0

ℋ (1− 𝜌𝑅) (1− 𝜌𝐺)
𝑘

22𝜏+1−𝑖1,2

×
[

2∏
ℓ=1

(∣𝜏 − 2ℎ− 1∣+ 𝑖ℓ − 1/2)!

𝑖ℓ! (∣𝜏 − 2ℎ− 1∣ − 𝑖ℓ − 1/2)!

]

× 𝛾

(
1 + 2𝜏 − 𝑖1,2, 2

√
2𝑘𝛾

𝜎𝛾

)
.

(23)

B. Performance Analysis of EGC

In this subsection the performance of EGC receivers operat-
ing over composite 𝒦 distributed fading channels is presented
in terms of ABEP (𝑃 be), outage probability and the average
channel capacity (𝐶).

1) Average Symbol Error Probability (ASEP): The ASEP,
𝑃 se, can be evaluated directly by averaging the conditional
symbol error probability, 𝑃𝑒(𝛾), over the PDF of 𝛾egc, i.e.,
𝑃 se =

∫∞
0 𝑃𝑒(𝛾) 𝑓𝛾egc(𝛾)d𝛾. This yields: For binary phase

shift keying (BPSK), square 𝑀 -quadrature amplitude modu-
lation (QAM) and for high values of the average input SNR,
𝑃𝑒(𝛾) = 𝒜erfc(

√ℬ𝛾), where erfc(⋅) is the complementary er-
ror function [15, eq. (8.250/4)] and 𝒜,ℬ constants depending
on the specific modulation scheme, i.e., for BPSK 𝒜 = 1/2
and ℬ = 1 [22]. By making a change of variables and using
[20, eq. (06.27.21.0133.01)], the ASEP for EGC assuming
independent 𝐾 fading channels can be expressed in closed
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form as

𝑃 se = 𝒢
(
𝐿, 𝑘,

𝛾

𝑘
, 𝛼

) 𝒜√
𝜋

(
𝐿

ℬ
)Ξ𝐿/2{

Γ

(
Ξ𝐿 + 1

2

)
× 1

Ξ𝐿
𝑝𝐹𝑞

(
Ξ𝐿 + 1

2
,
Ξ𝐿

2
;
1

2
,
Ξ𝐿 + 2

2
;
𝑘𝐿

ℬ𝛾
)

− 2

Ξ𝐿 + 1

(
𝑘𝐿

ℬ𝛾
)1/2

Γ

(
Ξ𝐿

2
+ 1

)
×𝑝𝐹𝑞

(
Ξ𝐿 + 1

2
,
Ξ𝐿

2
+ 1;

3

2
,
Ξ𝐿 + 3

2
;
𝑘𝐿

ℬ𝛾
)}

(24)

where 𝑝𝐹𝑞 (⋅) is the generalized hypergeometric function [15,
eq. (9.14/1)]. For correlated 𝒦 fading channels, the ASEP for
EGC can be expressed as

𝑃 se =

∞∑
𝑛,ℎ=0

∣𝛼+𝑛−ℎ−1∣∑
𝑖1,𝑖2=0

ℋ (2/ℬ)𝜏−(𝑖1,2−1)/2

(𝜎𝛾/𝑘)
𝑛+ℎ−(𝑖1,2−1)/2

(1− 𝜌𝑅)
𝑘−1

×
[

2∏
ℓ=1

(∣𝜏 − 2ℎ− 1∣+ 𝑖ℓ − 1/2)!

𝑖ℓ! (∣𝜏 − 2ℎ− 1∣ − 𝑖ℓ − 1/2)!

]

×
(
𝑘

𝛾

)𝑘 𝒜√
𝜋

{
Γ (𝜏 + 1− 𝑖1,2/2)

2𝜏 − 𝑖1,2 + 1

×𝑝𝐹𝑞

(
𝜏 + 1− 𝑖1,2

2
, 𝜏 − 𝑖1,2 − 1

2
;
1

2
, 𝜏 − 𝑖1,2 − 3

2
;
2𝑘/ℬ
𝜎𝛾

)
−𝑝𝐹𝑞

(
𝜏 + 1− 𝑖1,2

2
, 𝜏 − 𝑖1,2

2
+

3

2
;
3

2
, 𝜏 + 2− 𝑖1,2

2
;
2𝑘/ℬ
𝜎𝛾

)
×2

√
2𝑘

ℬ𝜎𝛾
Γ [𝜏 − (𝑖1,2 − 3) /2]

2𝜏 − 𝑖1,2 + 2

}
.

(25)

High SNR approximation: Considering high values for the
average input SNR, i.e., 𝛾 ≥ 25 dB, and by using (24) and
[20, eq. (07.31.06.0003.01)], the ASEP can be approximated
as

𝑃 se ≃ 𝒢
(
𝐿, 𝑘,

𝛾

𝑘
, 𝛼

) 𝒜√
𝜋

(
𝐿

ℬ
)Ξ𝐿/2{

Γ

(
Ξ𝐿 + 1

2

)
× 1

Ξ𝐿
− 2 [𝑘𝐿/ (ℬ 𝛾)]

1/2

Ξ𝐿 + 1
Γ

(
Ξ𝐿

2
+ 1

)}
.

(26)

It is interesting to note that for 𝛾 → ∞, the second term inside
the curly brackets can be neglected. Furthermore, using (6),
𝒢(𝐿, 𝑘, 𝛾/𝑘, 𝛼) can be written as a polynomial with respect
to 𝛾 with its dominant term (the one with the maximum
exponent) being raised to −𝐿. Hence, 𝑃 se is proportional to
𝛾−𝐿, yielding that the diversity order is equal to the number
of EGC branches.

Also, for high SNR, (25) can be approximated as

𝑃 se ≃
∞∑

𝑛,ℎ=0

∣𝛼+𝑛−ℎ−1∣∑
𝑖1,𝑖2=0

ℋ (1− 𝜌𝑅)
1−𝑘

(𝜎𝛾/𝑘)
𝑛+ℎ−(𝑖1,2−1)/2

(
𝑘

𝛾

)𝑘

×
[

2∏
ℓ=1

(∣𝜏 − 2ℎ− 1∣+ 𝑖ℓ − 1/2)!

𝑖ℓ! (∣𝜏 − 2ℎ− 1∣ − 𝑖ℓ − 1/2)!

]

× 𝒜√
𝜋

(
2

ℬ
)𝜏−(𝑖1,2−1)/2{

Γ (𝜏 + 1− 𝑖1,2/2)

2𝜏 − 𝑖1,2 + 1

−
√

8𝑘

ℬ 𝜎𝛾

Γ [𝜏 − (𝑖1,2 − 3) /2]

2𝜏 − 𝑖1,2 + 2

}
.

(27)

2) Outage Probability: By using (21) and (23), for indepen-
dent and correlated fading conditions respectively, the outage
probability of the EGC receiver, defined as the probability that
the received SNR falls below a given threshold, 𝛾th, can be
simply obtained as 𝑃out = 𝐹𝛾egc (𝛾th).

High SNR approximation: For high values of 𝛾, i.e., low
values of the normalized outage threshold, 𝛾th/𝛾, and using
[20, eq. (06.06.06.0004.01)], 𝑃out can be approximated as

𝑃out ≃ 𝒢
(
𝐿, 𝑘,

𝛾

𝑘
, 𝛼

)
(𝐿𝛾th)

Ξ𝐿/2

Ξ𝐿

(28)

while for the correlated case 𝑃out can be approximated as

𝑃out ≃
∞∑

𝑛,ℎ=0

∣𝛼+𝑛−ℎ−1∣∑
𝑖1,𝑖2=0

ℋ (1− 𝜌𝑅) (1− 𝜌𝐺)
𝑘

22𝜏+1−𝑖1,2

×
[

2∏
ℓ=1

(∣𝜏 − 2ℎ− 1∣+ 𝑖ℓ − 1/2)!

𝑖ℓ! (∣𝜏 − 2ℎ− 1∣ − 𝑖ℓ − 1/2)!

] (√
8𝑘𝛾th

𝜎𝛾

)1+2𝜏−𝑖1,2

1 + 2𝜏 − 𝑖1,2
.

(29)

3) Average Channel Capacity: The average channel capac-
ity, in the Shannon’s sense, is defined as 𝐶 ≜ 𝐵𝑤

∫∞
0 log2(1+

𝛾)𝑓𝛾egc(𝛾) d𝛾, [23], where 𝐵𝑤 is signal bandwidth. Hence,
using (20), making a change of variables of the form
𝑥 = 𝛾1/2, and following a procedure similar to that in
[24, App. B] the following integral needs to be solved∫∞
0

𝑥𝑣 exp(−𝜇𝑥)/ (𝑥2 + 1
)

d𝑥. This integral can be solved
with the aid of [15, eq. (3.389/6)], and consequently using
this solution, the capacity of 𝐿-branch EGC for independent
𝒦 fading channels can be expressed in closed form as

𝐶 = 𝒢
(
𝐿, 𝑘,

𝛾

𝑘
, 𝛼

)
𝐵𝑤𝐿

Ξ𝐿/2

ln 2

Ξ𝐿∑
𝑚=1

(Ξ𝐿 − 1)!

(Ξ𝐿 −𝑚)!

×
[
2

(
𝑘𝐿

𝛾

)1/2
]−𝑚

Γ (Ξ𝐿 −𝑚+ 1)

×
2∑

ℎ=1

exp

[
(−1)1+ℎ𝑗

(
2

(
𝑘𝐿

𝛾

)1/2

+
(Ξ𝐿 −𝑚)𝜋

2

)]

× Γ

[
𝑚− Ξ𝐿, (−1)ℎ+12𝑗

(
𝑘𝐿

𝛾

)1/2
]
.

(30)
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Fig. 1. 𝑃out of EGC receiver versus 𝛾th/𝛾 for several values of 𝐿 and 𝑘.

Furthermore, for correlated 𝒦 fading channels, the average
channel capacity with EGC can be obtained as

𝐶 =
∞∑

𝑛,ℎ=0

∣𝛼+𝑛−ℎ−1∣∑
𝑖1,𝑖2=0

𝐵𝑤ℋ (𝜎𝛾/2𝑘)
(𝑖1,2−1)/2−𝑛−ℎ

(1− 𝜌𝑅)
𝑘−1 ln 2

×
[

2∏
ℓ=1

(∣𝜏 − 2ℎ− 1∣+ 𝑖ℓ − 1/2)!

𝑖ℓ! (∣𝜏 − 2ℎ− 1∣ − 𝑖ℓ − 1/2)!

](
2𝑘

𝛾

)𝑘 2𝜏−𝑖1,2+1∑
𝑚=1

× (2𝜏 − 𝑖1,2)!

(2𝜏 − 𝑖1,2 + 1−𝑚)!

(𝜎𝛾
8𝑘

)𝑚/2

Γ (2𝜏 − 𝑖1,2 + 2−𝑚)

×
2∑

𝑝=1

exp

[
(−1)1+𝑝𝑗𝜋

(√
8𝑘

𝜋2𝜎𝛾
+

1−𝑚+ 2𝜏 − 𝑖1,2
2

)]

× Γ

[
𝑚− 1− 2𝜏 − 𝑖1,2, (−1)𝑝+12𝑗

√
2𝑘

𝜎𝛾

]
.

(31)

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, using the previously derived theoretical
analysis for the performance of EGC receiver, representative
numerical evaluated results for the 𝑃out, ABEP, and 𝐶 are
presented and discussed. These performances have been in-
vestigated under a wide range of 𝒦 fading and shadowing
conditions. Furthermore, it should be noted that for all the
considered ranges of values of the correlated statistics, quick
rates of convergence of the infinite series have been observed.

In Fig. 1, assuming independent fading conditions and using
(21), the outage probability, 𝑃out, is plotted as a function of
the normalized outage threshold, 𝛾th/𝛾, for various values of
𝐿 and 𝑘. It is depicted that 𝑃out improves by increasing 𝐿
and/or 𝑘. Similar behavior is also observed in Fig. 2, where by
considering correlated fading conditions and using (23), 𝑃out

is plotted as a function of 𝛾th/𝛾 for 𝜌𝐺 = 0 and several values
of 𝑘, 𝜌𝑅. The 𝑃out improves by increasing 𝑘 and/or decreasing
𝜌𝑅. In Fig. 3, assuming the BPSK modulation scheme and

Fig. 2. 𝑃out of EGC receiver versus 𝛾th/𝛾 for several values of 𝜌𝑅 and 𝑘.

Fig. 3. ABEP of EGC receiver versus 𝛾 for several values of 𝐿 and 𝑘.

using (24), the ABEP is plotted as a function of the average
input SNR, 𝛾, for several values of 𝑘 and 𝐿. As expected
the ABEP improves by increasing the diversity order and/or
improving the fading/shadowing conditions.

In Fig. 4, using (30), the normalized average channel
capacity, 𝐶 = 𝐶/𝐵𝑤, is plotted as a function of the number
of branches, 𝐿, for several values of 𝑘 and 𝛾. It is interesting
to note that 𝐶 increases more rapidly for low values of 𝐿
and high values of 𝛾, while for high values of 𝑘, 𝐶 does
not significantly improve. Finally, in Fig. 5, 𝐶 is plotted as
a function of the correlation coefficient 𝜌𝑅, for 𝑘 = 1.5,
𝜌𝐺 = 0.2 and several values of 𝛾. Clearly, 𝐶 improves by
increasing 𝛾, while 𝐶 decreases rapidly only for high values
of 𝜌𝑅. For comparison purposes, we have run Monte Carlo
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Fig. 4. ˆ𝐶 of EGC receiver versus 𝐿 for several values of 𝛾 and 𝑘.

Fig. 5. ˆ𝐶 of EGC receiver versus 𝜌𝑅 for several values of 𝛾.

simulations with more than 1024 samples1 and these results
are also included in Figs. 1–5, verifying in all cases the validity
of the proposed theoretical approach.

V. CONCLUSIONS

In this paper important statistical properties of the sum of
𝒦 RVs, independent or not, are studied. More specifically,
a closed-form expression for the PDF of the sum of not id
𝒦 variates is derived, while for the correlated case the PDF
is expressed with the aid of fast converging infinite series.
Considering id RVs, simplified expressions are obtained for

1Correlated 𝒦 samples are generated by multiplying correlated Rayleigh
samples with correlated Nakagami-𝑚 samples.

the PDF, while the CDF and CF are also derived in terms
of tabulated functions. Capitalizing on the theoretical results,
the performance of EGC diversity receiver operating over 𝒦
composite fading channel, has been analyzed, in terms of the
ABEP, 𝑃out and 𝐶. Various numerical performance evaluation
results complemented by equivalent computer simulation ones
have been presented, indicating the influence of fading, shad-
owing and correlation to the performance of the EGC receiver.

APPENDIX

PROOF OF THEOREM 1

In order to prove Theorem 1, a similar approach as in [22]
is followed. Assuming 𝑘ℓ = 𝛼ℓ+1/2, with 𝛼ℓ ∈ ℕ and using
[15, eq. (8.468)] in (1), the PDF of 𝑋ℓ can be expressed as

𝑓𝑋ℓ
(𝑥) =

𝛼ℓ−1∑
𝑖ℓ=0

√
𝜋 (𝛼ℓ + 𝑖ℓ − 1)!

𝑖ℓ! (𝛼ℓ − 𝑖ℓ − 1)!

21−2𝑖ℓ

Γ (𝑘ℓ)
Ω

2𝑖ℓ−2𝑘ℓ−1

4

ℓ︸ ︷︷ ︸
𝕊ℓ

× 𝑥𝛼ℓ−𝑖ℓ exp

(
−2

𝑥√
Ωℓ

)
.

(A-1)

For 𝑍1 = 𝑋1 +𝑋2, using (A-1) in [19, eq. (6.40)], the PDF
of 𝑍1 can be evaluated as

𝑓𝑍1(𝑧) =

𝛼1−1∑
𝑖1=0

𝛼2−1∑
𝑖2=0

(
2∏

ℓ=1

𝕊ℓ

)
exp

(
−2

𝑧√
Ω1

)
×
∫ 𝑧

0

𝑥𝛼2−𝑖2 (𝑧 − 𝑥)
𝛼1−𝑖1 exp

[(
2√
Ω1

− 2√
Ω2

)
𝑥

]
d𝑥.

(A-2)

The integral in (A-2) can be solved in closed form with the
aid of [15, eq. (3.383/1)], and hence, (A-2) yields

𝑓𝑍1(𝑧) =

𝛼1−1∑
𝑖1=0

𝛼2−1∑
𝑖2=0

(
2∏

ℓ=1

𝕊ℓ

)
𝐵 (𝛼1 − 𝑖1 + 1, 𝛼2 − 𝑖2 + 1)

× 𝑧𝛼1+𝛼2−𝑖1,2+1 exp

(
−2

𝑧√
Ω1

)
× 1𝐹1

[
𝛼2 − 𝑖2 + 1;𝛼1,2 − 𝑖1,2 + 2;

(
2√
Ω1

− 2√
Ω2

)
𝑧

]
(A-3)

where 𝐵 (⋅, ⋅) is the Beta function and 1𝐹1 (⋅; ⋅; ⋅) is the
confluent hypergeometric function. Furthermore, using [20,
eq. (07.20.03.0024.01)] in (A-3) and after some mathematical
manipulations, 𝑓𝑍1(𝑧) can be obtained in closed form as

𝑓𝑍1(𝑧) =

𝛼1−1∑
𝑖1=0

𝛼2−1∑
𝑖2=0

2∑
𝑗1=0

𝐴𝑗1∑
𝑏1,𝑗1=0

(
2∏

ℓ=1

𝕊ℓ

)
(𝐴1)!

×
(−𝐴1 −𝐴2 − 1)𝐴2+1 Δ

𝑏1,𝑗1
1−2 (−𝐴𝑗1)𝑏1,𝑗1

(𝐴1 +𝐴2 + 1) 𝑏1,𝑗1 ! (−𝐴1 −𝐴2)𝑏1,𝑗1

× (−1)(
𝑏1,𝑗1+1)(𝑗1−1)

Δ𝐴1+𝐴2+1
1−2

𝑧𝑏1,𝑗1 exp (−Δ𝑗1𝑧)

(A-4)

where 𝐴𝑥 = 𝛼𝑥 − 𝑖𝑥, Δ𝑥 = 2 (1/Ω𝑥)
1/2 and Δ𝑥−𝑦 =

2
[
(1/Ω𝑥)

1/2 − (1/Ω𝑦)
1/2

]
. For 𝑍2 = 𝑍1 +𝑋3, the PDF of

𝑍2 can be evaluated, using (A-4) as

𝑓𝑍2(𝑧2) =

∫ 𝑧

0

𝑓𝑍1(𝑥)𝑓𝑋3 (𝑧 − 𝑥)d𝑧. (A-5)
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𝑓𝑍2(𝑧) =

{𝛼ℓ−1}3
ℓ=1∑

{𝑖ℓ}3
ℓ=1=0

2∑
{𝑗ℓ}2

ℓ=1=0

𝐴𝑗1∑
𝑏1,𝑗1=0

(2−𝑗2)𝐴3+(𝑗2−1)𝑏1,𝑗1∑
𝑏2,𝑗2=0

(
3∏

ℓ=1

𝕊ℓ

)
(𝐴1)! (−𝐴1 −𝐴2 − 1)𝐴2+1 (−𝐴𝑗1)𝑏1,𝑗1

Δ𝐴1+𝐴2+1
1−2 (𝐴1 +𝐴2 + 1) (−𝐴1 −𝐴2)𝑏1,𝑗1

×
(𝐴3 + 𝑏1,𝑗1)! (−𝐴3 − 𝑏1,𝑗1 − 1)𝑏1,𝑗1+1𝐵 (𝐴3 + 1, 𝑏1,𝑗1 + 1)

𝑏1,𝑗1 !
2

Δ
𝑏1,𝑗1
1−2 Δ

𝑏2,𝑗2
3−𝑗1

Δ
𝐴3+𝑏1,𝑗1+1
3−𝑗1

[
2∏

ℓ=1

(−1)(
𝑏ℓ,𝑗ℓ+1)(𝑗ℓ−1)

]

×
[𝐴3 (𝑗2 − 2)− 𝑏1,𝑗1 (𝑗2 − 1)]𝑏2,𝑗2

𝑏2,𝑗2 ! (−𝐴3 − 𝑏1,𝑗1)𝑏2,𝑗2

𝑧𝑏2,𝑗2 exp

[
−2

(
2− 𝑗2√

Ω3

+
𝑗2 − 1√

Ω𝑗1

)
𝑧

]
.

(A-6)

Hence, following a similar procedure as the one used for
deriving (A-4), the PDF of 𝑍2 can be obtained as (A-6), as
shown on the top of this page.

Finally, by repeating the same procedure 𝐿 times, the
generalized form of the PDF of the sum of 𝐿 𝒦 RVs can
be obtained as in (4).
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