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Gaussian Class Multivariate Weibull Distributions: Theory
and Applications in Fading Channels

Nikos C. Sagias, Member, IEEE, and
George K. Karagiannidis, Senior Member, IEEE

Abstract—Ascertaining on the suitability of the Weibull distribution
to model fading channels, a theoretical framework for a class of multi-
variate Weibull distributions, originated from Gaussian random processes,
is introduced and analyzed. Novel analytical expressions for the joint
probability density function (pdf), moment-generating function (mgf),
and cumulative distribution function (cdf) are derived for the bivariate
distribution of this class with not necessarily identical fading parameters
and average powers. Two specific distributions with arbitrary number
of correlated variates are considered and studied: with exponential and
with constant correlation where their pdfs are introduced. Both cases
assume equal average fading powers, but not necessarily identical fading
parameters. For the multivariate Weibull distribution with exponential
correlation, useful corresponding formulas, as for the bivariate case,
are derived. The presented theoretical results are applied to analyze
the performance of several diversity receivers employed with selection,
equal-gain, and maximal-ratio combining (MRC) techniques operating
over correlated Weibull fading channels. For these diversity receivers,
several useful performance criteria such as the moments of the output
signal-to-noise ratio (SNR) (including average output SNR and amount
of fading) and outage probability are analytically derived. Moreover, the
average symbol error probability for several coherent and noncoherent
modulation schemes is studied using the mgf approach. The proposed
mathematical analysis is complemented by various evaluation results,
showing the effects of the fading severity as well as the fading correlation
on the diversity receivers performance.

Index Terms—Bit-error rate (BER), correlated fading, diversity,
equal-gain combining (EGC), maximal-ratio combining (MRC), mul-
tichannel reception, multivariate analysis, outage probability, selection
combining (SC), Weibull fading.

I. INTRODUCTION

Multivariate statistics is a useful mathematical tool for modeling
and analyzing realistic wireless channels with correlated fading. Such
fading channels are usually met in digital contemporary communica-
tions systems employed with diversity receivers with not sufficiently
separated antennas where space or polarization diversity is applied
(e.g., hand-held mobile terminals and indoor base stations). In these
applications, the correlation among the channels results in a degrada-
tion of the diversity gain obtained [1]-[3].

Reviewing the open technical literature, one can encounter several
papers applying multivariate statistics for fading channel modeling,
most of them concerning the Rayleigh and Nakagami-m distributions.
In an early work, Nakagami has defined the m-bivariate probability
density function (pdf) [4, p. 31], while many years later, an infinite
series representation for the bivariate Rayleigh and Nakagami-m cu-
mulative distribution functions (cdf)s have been presented by Tan and
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Beaulieu [5]. In a later work [6], Simon and Alouini have proposed an
alternative cdf expression for the bivariate Rayleigh distribution, in the
form of a single integral with finite limits and an integrand composed
of elementary functions. Recently, Karagiannidis et al. [7] have intro-
duced the multivariate Nakagami-m pdf with exponential correlation
and identically distributed (i.d.) fading statistics. An infinite series ap-
proach for its corresponding cdf and a bound of the error resulting from
truncation of the infinite series have been also included. By approxi-
mating the correlation matrix with a Green’s matrix, the same authors
have generalized [7] to the arbitrarily correlated Nakagami-m distri-
bution [8]. Additionally, Mallik [9] has presented useful analytical pdf
and cdf expressions for the multivariate Rayleigh distribution with ex-
ponential and constant correlation matrix which agree with those in [7]
for the special case where the Nakagami-m reduces to the Rayleigh
distribution.

The Weibull distribution was first introduced by Waloddi Weibull
back in 1937 for estimating machinery lifetime and became widely
known in 1951 [10]. Nowadays, the Weibull distribution is used in
several fields of science. For example, it is a very popular statistical
model in reliability engineering and failure data analysis [11], [12]. It
is also used in some other applications, such as weather forecasting
and data fitting of all kinds, while it is widely applied in radar systems
to model the dispersion of the received signals level produced by
some types of clutters [13]. Concerning wireless communications,
the Weibull distribution seems to exhibit good fit to experimental
fading channel measurements, for both indoor [14]-[17], and outdoor
[18]-[21] environments, with a reasonable physical justification to
be given in [22]. However, only very recently the topic of digital
communications over Weibull fading channels has begun to receive
some interest. For example, by considering the performance of di-
versity receivers over Weibull fading channels, an analysis for the
evaluation of the generalized-selection combining (GSC) performance
over independent Weibull fading channels has been presented [23]. In
that analysis, the first two moments of the signal-to-noise ratio (SNR)
and the amount of fading (AoF) at the output of the GSC receiver have
been derived. More recently, some other contributions dealing with
switched and selection diversity have been presented by Sagias et al.
in [24], [25] and [26], [27], respectively. In [24], [25], closed-form
expressions for the average SNR, AoF, switching rate, and average
symbol error probability (ASEP) at the output of the combiner have
been obtained. In [26], an analytical study for dual-branch selection
combining (SC) receivers operating over correlated fading channels
has been performed, while in [27], important performance measures,
such as the outage probability and average output SNR have been
derived in closed form for L-branch SC receivers operating over in-
dependent Weibull fading channels. In another useful work by Cheng
et al. [28], an analytical performance study for SC and maximal-ratio
combing (MRC) receivers operating over independent and i.d. fading
channels has been presented. In that paper, closed-form expressions for
the moments of the combiner output SNR and the outage probability
have been obtained, while the ASEP has been extracted in terms of the
Meijer’s G-function. Very recently, Sahu and Chaturvedi have studied
the average bit-error probability (ABEP) of equal-gain combining
(EGC) receivers for binary, coherent, and noncoherent modulation
schemes [29]. However, it is well known that the assumption of
interdependence among the input diversity channels, as in [23]-[25],
[27]-[29], is not accurate for compact, hand-held, mobile terminals
and indoor base stations with not sufficiently separated antennas.
In order to analyze the performance of diversity receivers operating
over more realistic correlated fading channels, multivariate Weibull
statistical analysis must be utilized. Several classes of multivariate
Weibull distributions have been proposed [12], [26], [30]-[36], but to
the best of the authors’ knowledge, no class of multivariate Weibull
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distributions generated from correlated Gaussian processes has ever
been published.

In this correspondence, a class of Gaussian multivariate Weibull dis-
tributions is introduced and dealt with. More specifically, the bivariate
Weibull pdf with not necessarily identical fading parameters as well as
average powers is presented, while based on this pdf, the corresponding
moments-generating function (mgf), cdf, and the Weibull correlation
coefficient are obtained. Multivariate Weibull distributions with expo-
nential and constant correlation matrixes are also introduced and for
the former, useful analytical expressions for the joint pdf, cdf, mgf,
and product moments are presented. These novel theoretical results are
applied to the performance analysis of dual- and multibranch SC, EGC,
and MRC receivers operating over correlated Weibull fading channels.
For this kind of receivers, various important performance criteria such
as the moments of the output SNR (including average output SNR and
AoF) and the outage probability are analytically derived. Moreover,
based on the well-known mgf approach, the ASEP for several coherent
and noncoherent modulation schemes is obtained. The proposed math-
ematical analysis is complemented by various numerically evaluated
results, including the effects of fading severity as well as fading corre-
lation on the system performance.

The remainder of this correspondence is organized as following: In
Section II, several formulas with different correlation models are pre-
sented. In Sections III and IV, the performance of dual- and multibranch
diversity receivers is studied, respectively. Some numerical results are
presented in Section V, while in Section VI, useful concluding remarks
are provided.

II. A CLASS OF GAUSSIAN MULTIVARIATE WEIBULL DISTRIBUTIONS

The fading model for the Weibull distribution considers a signal
composed of clusters of one multipath wave, each propagating in a non-
homogeneous environment. Within any one cluster, the phases of the
scattered waves are random and have similar delay times with delay-
time spreads of different clusters being relatively large. The clusters of
the multipath wave are assumed to have the scattered waves with iden-
tical powers. The resulting envelope is obtained as a nonlinear func-
tion of the modulus of the multipath component! h,. The nonlinearity
is manifested in terms of a power parameter 5, > 0, such that the re-
sulting signal intensity is obtained not simply as the modulus of the
multipath component, but as this modulus to a certain given power
2/3¢ > 0 [22]. Hence, for the Weibull fading model, the complex
envelope h¢ can be written as a function of the Gaussian in-phase X
and quadrature Y, elements of the multipath components

he = (X0 + ¥0) ™ (1)
where 3 = +/—1 is the imaginary operator.

A. The Univariate Weibull Distribution

Let Z; be the magnitude of hy, i.., Z¢ = |h¢|. By taking into ac-
count the above physical justification for the Weibull fading model, Z,
can be expressed as a power transformation of a Rayleigh distributed
random variable (RV) Ry = | X, + jYe| as

Zo= R )

From the above equation, the pdf of Z, can be easily obtained as

¢

Be 4._ e
1= et (1) o

with Q, = E(Z f ) and £(-) denoting expectation. It is easily recog-
nized, that the above pdf follows the Weibull distribution [37, Ch. 17]
with the fading parameter 3¢ expressing the fading severity (3¢ > 0)

!In this paragraph and in Section II-A, { is a dummy factor.
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and €2, being the average fading power. As 3, increases, the fading
severity decreases, while for the special case of 3, = 2, (3) reduces to
the well-known Rayleigh pdf [1, eq. (2.6)]. Moreover, for the special
case of B¢ = 1, (3) reduces to the well-known negative exponential
pdf. By defining a function d. ¢ = 1+ 7/73¢, where, in general, 7 is
a nonnegative value, the corresponding cdf and the nth-order moment
of Z, can be expressed as

pPe

W) @)

QP (d ) )

Fy,(r)y=1-exp <—
and

e(zry =

respectively, where I'( - ) is the Gamma function [38, eq. (8.310/1)] and
n is a positive integer.
The mgf of Z; can be derived as

Mz, (s5) = E(exp(—sZy)) (6)

where by using the pdf expression given by (3), some integrals of the
form

) = [ exp(or = ") o @)
0

are needed to be solved, with u and ¢ being arbitrary positive values.
The same kind of integrals has been already analytically solved in [26],
under the constraint that 3, is a rational number, as

AR
Yo = =0
Ky A K /\ )/ (>‘ - u)/A
want e | T ®

where G| -] is the Meijer’s G-function [38, eq. (9.301)]. Note that the
Meijer’s G-function is included as a built-in function in most pop-
ular mathematical software packages. Additionally, by using a method
which is presented in the Appendix I, G[ - ] can be expressed in terms
of more familiar generalized hypergeometric functions , Fy; (+; - -) [38,
Sec. 9.1] with p and ¢ being positive integers. In (8), having assumed
that 3, belongs to rationals, » and X are positive integers so that

Ao Be )

K
holds. Depending upon the specific value of 3¢, a set of minimum
values of x and A can be properly chosen (e.g., for 3¢ = 3.5, we have
to choose x = 2 and A = 7). Hence, by using (6) and (8), the mgf of
the Weibull distribution can be obtained in closed form as

1 AP /wk/A

./MZz(s):Qésﬂ[ (\/ﬂ)n+/\72
o | N <1—m)/x,(?—ﬁw/A (A= B0/
2| (kQpsPe)s 0/rs1/ky e (r = 1)/”
10

For the special case where J; is an integer, « = 1 and A = 3., while
using [38, eq. (9.31/2)], (10) simplifies to an already known result [28,
eq. (9)].

B. The Bivariate Weibull Distribution

Starting from the bivariate Rayleigh distribution given in Appendix
II for the reader’s convenience, we introduce the bivariate Weibull
fading model with not necessarily i.d. both fading parameters and
average powers.
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1) Joint pdf: By applying the transformation of the RVs given by
(2) in (II-1) and using [39, p. 143], the joint pdf of the Weibull dis-
tributed RVs Z; and Z> can be obtained as

/31327“}?1 1 /?2 1

21— p)

P21 B2 2 ‘,61/2,,/32/2
X exp ——1 il +IL Iy —ﬁll L (11
1—p Ql QQ (1—p)\/m
where Q; = E(Z f ) and marginal pdfs given by (3) for { = 1 and 2.
2) Product Moments and Power Correlation Coefficient: By using

(2), the product moments of the (n 4 m )th order of Z; and Z> can be
derived as

fry,za(r1,m2) =

ez zy) = (BRI (12)

which using (II-3), yields

& <Z11Z;n> =(1- p)1+N/ﬁ1+m/,32 Qn/ﬁlgﬁl/ﬁz

n m
xf<1+ﬁ—l>F<1+ﬂ—2)F<l+d +d p) (13)

By definition, the (Weibull) power correlation coefficient of Z7 and

Z3(0 < ¢ < 1) can be expressed as

a cov (Zf, ZQZ)

B Vvar (Z2)/var (Z3)

_ e@n) -emes)
VE(ZY) — &2 (Z)\VE(Z3) — £2(Z3)

4

(14)

where by using (5) and (13) and after some straightforward simplifica-
tions, ¢ can be obtained in closed form as

(L—p)t+/Pt2/B2 ) By (da . dapi 15 p) — 1

o= : L as)
\/F(d4,1)/1“2(d271) - 1\/:[‘((14,2)/[“2((12’2) -1
For 51 = 82 = 3, (15) reduces to
_ ) 1+4/8, ‘ 1)
o L= ™R L2/01+2 B =1

T(1+4/3)/T2(1+2/8) - 1

By numerically evaluating (16), in Fig. 1, g is plotted as a function of p
for several values of 3. It is clear, that p also ranges between zero and
unity as p does, while for a fixed value of p, ¢ decreases as 3 increases.
Moreover, for the special casesof p = 0andp — 1, o = 0andp — 1,
respectively, independently of the value of 3.

3) Joint cdf: By using (2), the joint cdf of Z; and Z> can be easily
obtained in closed form, replacing vy and ro with r} 5172 and r 32/ °,in
(I1-2), respectively, i.e.,

) 2/ 2) .

4) Joint mgf: The form of the pdf in (11) is not mathematically
tractable. Hence, by using an infinite series representation of the Bessel
function [38, eq. (8.447/1)]

Fyy 2, (7'17 7'2) = Fry iy (7'{31/27 (17)

it w2k
() = ; (ij)z () (18)
the joint pdf of Z; and Z> in (11) can be written as
1 rA P22
71 25 (r1,72) = B1 B2 exp {—— <(;1 + éz )
. Z 1—1+(k+1)/31 r2—1+(k+1>32 )
(kV p)2k+l (ngz)k+1
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Fig. 1. Weibull correlation coefficient ¢ as a function of the Gaussian

correlation coefficient p.

Based on the above pdf expression, the joint mgf of Z; and Z» can be
derived as
Elexp(—51Z1 — 5225))

Mz, z,(s1,52) = (20)

where some integrals of the form as in (7) appear. Thus, by using (8),
the joint mgf of the bivariate Weibull distribution can be obtained as

oo

&
, P

Mz, 7,(s1,82) = B1 32 E TINZ (] — \2k+1

k=0 (l{!)‘(l - p)‘ o

2

1

LHl ( ﬁqsz)k“Y

C. The Multivariate Weibull Distribution With Exponential
Correlation

X

(k+1)B3|. @D

1
(1- p)sfiQ;7

Several fading correlation models have been proposed and used for
the performance analysis of various wireless systems, corresponding to
specific modulation, detection, and diversity combining schemes. One
of the most frequently used models is the exponential correlation one,
which has been first addressed by Aalo in [2, Sec. II.B]. This model
corresponds to the scenario of multichannel reception from equispaced
diversity antennas, in which the correlation among the pairs of com-
bined signals decays as the spacing between the antennas increases [1,
p.- 394]. The exponential model has been recently used by several re-
searchers, who applied it to the performance analysis of space diversity
techniques [3], [40], [41] or multiple-input multiple-output (MIMO)
systems [42]. In those works, this model has been considered for a
more accurate statistical description of fading providing more reason-
able conclusions than independent ones.

The multivariate pdf of the i.d. Rayleigh distributed RVs with expo-
nential correlation, {Rg}{“:l, is given by [9, egs. (57) and (16)], [7] and
let p be the Gaussian correlation coefficient between two successive
squared RVs (e.g., between R? and R?_H ). Then, in general, the corre-
lation coefficient between R? and Bz isgivenby p; ; = p; i = pli*jl,
when ¢ # j, while p; ; = 1, wheni = j, withi,j =1,2,..., L.

1) Joint pdf: By applying the transformation given by (2) in the
multivariate Rayleigh pdf with exponential correlation and by using
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a standard method for the transformation of RVs described in [39, p.
183], the joint pdf of the Weibull RVs {Z;}._; can be obtained in
closed form as

R B2, Bit1/2
H Ll—pm’ "Jl} =

—

where O = E(Z/YV(, Z = [Z1 Z» --- Zr] and marginal pdfs
given by (3) for { = 1 2, , L. The (Weibull) power correlation
coefficient between Z7 and ZJ is given by 0, ; = ;i = 0"~ when
i # j,while g;; = 1, wheni = j, withé,j = 1,2,...,L and
o given by (15). By substituting the Bessel function in (22) with its
infinite series representation given by (18), (22) can be rewritten in a
mathematically tractable form as

HZ'L:1 Bi
QF (1= p)i—1

i 1
X exp —m

oo L—1 2k
VP 7
x X II |gaz
. (1=p)
ki,ka,...,kp_1=0 =1

r;k¢1+1)31—1 ré"‘l4—1+1)ﬂl_,_1 HL—I 7157(/cz+k1

=2 '

IL (k)2

L—1
P 1) Y ]}

1=2

D)1

(23)

which consists only of standard functions such as powers and exponen-
tials.

2) Product Moments: The (3", n;)th-order moment of the
product of {Z,}’s can be derived as

()= L) (1)

L- iold
Xf;)(?) dridry .- dryp, (24)
which using (23), yields
L L ) L
& <H Z:?7'> = (1 — p)l+zj:1nj/ﬂj <H an/ﬂj>
=1 =1
o0 L—1 k
<) [H o | DOk o)
ki,ko,... k1= q=1

F(l‘- +kz l+dn L)
1_1_/))1- ithi_ 1+dn i

X D(kr—1 +du, 1) H

(25)
—
3) Joint mgf: The joint mgf of Z can be derived as
M_(F) = E(exp(=F - Z)) (26)

4

s1] and the term 7§ - Z denotes the inner
— —
productof 8 and Z ,ie., s - Z = Z,.L:1 s; Z;. By substituting (23)

in (26), some integrals of the form of (7) appear. Hence, by using (8),

—
where 8 = [s1 52 ---
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_ 37»31
I ) = G A=y 4 T =0 {_

‘-fnld

= 2)p] ZiL:l "'?i
21=p)1+ (L -1)pl2

L B:/2 Bji/2
pzi,-jzl r; i/ TjJ (’,OS(@,‘ — 597)
i<Jj

(1=p)[1+(L-1)p02

dordpz---dpr  (29)

the joint mgf of the multivariate Weibull distribution with exponential
correlation can be obtained as in (27)

M_. (%)
Z
L S 2k,
— Hi:l /31‘ Z H \/ﬁ
QEQ—p)tt kp_1=0 (kl Q1 - )
“1aN2, L—1—
—B1
—(k1+1)81 51
X 5 T|:79(1—[)>7(k1+1)'81
)ty [ L g )3
°L QL =y e F 0
itherkoty | (L p)s; ,
~ 2t (k; ki_ 1)3;

@n

4) Joint cdf: The multivariate cdf of the Weibull distributed RVs
{Z,}, with exponential correlation, can be derived by using (23) and
the definition of the lower incomplete Gamma function (-, -) [38, eq.
(8.350/1)] as

31
ki +1, 79(1 :|

riL L—1 p/cz
Xy [kLl +hoa- p)} [H ("’i!)Q]

r.— 3 o
o H]’:; Y |:I‘7 1+ ki+1, 7/13&5(114_/;))]

(1+ p)L72+k1+kL,1+2

(28)

L—2

1= k1

It is useful to note that when the first argument of (%, x) is an integer
and @ an arbitrary positive number, this function can be simplified to
standard functions as [38, eq. (8.352/1)]

k
yk+1,2) =k [1 — exp(—x) Zm’/l!:| .

=0
Although such simplifications may be applied in (28) as well as in sev-
eral expressions following next, they have not been performed for sim-
plicity of the presentation.

D. The Multivariate Weibull Distribution With Constant Correlation

The constant correlation model, first proposed by Aalo in [2,
Sec. II.A], [43], refers to the situation of L i.d. channels, where the
spatial correlation is a function of the distance among the antennas.
Hence, this model may be applied to digital receivers having equidis-
tant antennas such as an arrays of three antennas placed on a equilateral
triangle or from closely placed antennas on other than linear arrays.

The multivariate pdf of the i.d. Rayleigh distributed RVs with con-
stant correlation { R, }/—, is given by [9, egs. (47) and (16)]. Let p; ; be
the correlation coefficient between R? and Bf withé, 57 =1,2,..., L.
Then, p; ; = pj; = p, wheni # j, while p; ; = 1, wheni = j.
By applying the transformation of (2) in the multivariate Rayleigh pdf
with constant correlation and by following a similar method such that
for the derivation of (22), the joint pdf of the Weibull distributed RV's
{Z,} with constant correlation can be obtained as in (29) at the top
of the page, with Q2 = £(Z f ) V{ and marginal pdfs given by (3) for

£=1,2,..., L. The (Weibull) correlation coefficient between Z? and
Zf is given by 0;,; = 0;,; = 0, when ¢ # j, while g;; = 1, when
i = j,withi,j = 1,2,..., L and p given by (15).
III. PERFORMANCE ANALYSIS OF DUAL-BRANCH
DIVERSITY RECEIVERS

We consider a dual-branch (L = 2) diversity receiver operating over
correlated Weibull fading channels described by the joint pdf expres-
sion given by (11). The baseband received signal in the {th ({ = 1 and
2) antenna is (¢ = why + n¢, where w is the complex transmitted
symbol, E,, = &{|w|?) is the transmitted average symbols energy, h¢
is the complex channel fading envelope with its magnitude Zy = |h¢|
being modeled as a Weibull distributed RV, and n. is the additive white
Gaussian noise (AWGN) with single-sided power spectral density No.
The usual assumptions are made that the phase of ¢ can be accurately
tracked and that the AWGN is uncorrelated among the input diversity
branches.

The instantaneous SNR per symbol of the (th diversity channel can
be expressed as

E,
=Ziy (30)
with its corresponding average SNR being
— (. 2/8 E
Fe=E& <Zf> 7\_ =T'(d2,0)Y, N (€3]

Based on an interesting property of the Weibull distribution, that the nth
power of a Weibull distributed RV with parameters (3¢, €2¢) is another
Weibull distributed RV with parameters (3¢/n,€2¢), it can be easily
concluded that v, is also a Weibull distributed RV with parameters
(Be/2, (ar90)?*/?) and a; = 1/T(d2.¢). Hence, using the formulas of
{Z,} presented in Section II, corresponding expressions for {~,} can
be easily derived by replacing 3¢ with 3¢/2 and €2¢ with (a,3,)?¢/2,
helpful in the study of the performance of diversity receivers operating
over Weibull correlated fading channels.

A. Dual-Branch SC Receivers

The instantaneous SNR per symbol at the output of a dual-branch SC
receiver will be the one with the highest instantaneous value between
the two branches [44], i.e.,

Yse = max{yi,y2}- (32)

1) Outage Probability: By using (17), the cdf of ~s. can be ob-
tained in closed form as in (33)

F*m (”r)

N B1/2
:1—exp|:—< C) :|
i
o S (@) )
! 1—p \a2?e V1-p \arm
~ Ba/2 5 Ba/4
ol () e [ ()
as s 1—p \a2%e
3 , B1/4
1/7( 7_) . (33)
1—p \aa
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F(L + d2n)

—0 m! [1 + ('_}"2/’71)3/2]m

[L+ (52 /3)°/ 7 hen
C(k + dan)

k

. 1 T(m+k+da)
> m'[1+m/,z>ﬁ/]] } (40)

Since the Marqum’s Q-function is not included as a built-in function in
most of the well-known mathematical software packages, alternatively,
it can be written in the form of an infinite series representation. Hence,
by using (19), the cdf of . can be derived as

Py () —/ / Tyt ve (715 72) dryn drya
which using [38, eq. (8. 351/1)] ylelds
N\ Bi/2
1l —— < i > ] .
1—p \a:¥:

o (v)=(01- P)Z (k1) H
=1
(35

The outage probability I,y is defined as the probability that the SC
output SNR falls below a given outage threshold +¢i. This probability
can be obtained by replacing v with 1 in (33) or (35), i.e.,

(34)

Fy (). (36)

2) Moments of the Output SNR: The nth-order moment of the SC
output SNR can be derived as [39]

=) = [
0
By taking the first derivative of (35), the pdf of ~s. can be obtained as

_ 1l "

Pout (H)Lh) —

(37

f’m('?)

G, 4= 1+ /'7
*\ (ar 50) 0B

(=)

k+1, L ! }
1—p 0272
By~ Hh+1)52/2 e ~ B2/2
(azvz)("“)ﬁ’/" / 1 —p \a27%

(3%)

1 N\ B1/2
4, _< d ) ”
1—p \@am

By substituting (38) in (37) and using [45, eq. (21)], the nth-order mo-
ment of ~s. can be derived as in (39) at the top of the page, where in
that equation A/x = 32/ holds instead of (9) with 32/ being as-
sumed to belong to rationals. By using [38, eq. (3.326/2)], for 51 =
B2 = 3, pn can be significantly reduced to (40) also at the top of the
page, where d, = 1+ 7/3 and @ = 1/T'(d2). Note, that for inde-
pendent and i.d. input branches, (40) reduces to an earlier known result
[27, eq. (8)].

The SC average output SNR, .., is a useful performance measure
which serves as an excellent indicator of the overall system’s fidelity.
By setting n = 11in (39), i.e., ¥sc = p1, Jsc can be obtained as in (41)
at the top of the following page, while for 31 = (2 = [ reduces to
(42) also at the top of the following page.The AoF is defined as

4, N var(“vsc)
P}SC

(43)
and is considered as a unified measure of the severity of fading [1]. Typ-
ically, this performance criterion is independent of the average fading
power. Using (40), the AoF of the SC output can be easily expressed in
a simple closed-form expression as

Ap =121

2
Hi

(44)

It is important to underline that the higher order moments (n > 3)
are especially useful in signal processing algorithms for signal detec-
tion, classification, and estimation of wideband communications in the
presence of fading [46].

3) ASEP and Outage Probability: The mgf of the SC output SNR
can be expressed as

Moo (s) = S<QXP(_3'YSC» (45)

where for 31 = $2 = [ and by substituting (38), resulting in (46) at
the top of the following page.

Using the above mgf expression of the dual-branch SC output SNR,
the ASEP of noncoherent binary frequency-shift keying (NBFSK) and
binary differential phase-shift keying (BDPSK) modulation signaling
can be directly calculated (e.g., for BDPSK P,. = 0.5M.,__(1)), since
for other types of modulation formats, including binary phase-shift
keying (BPSK), M-ary phase-shift keying (M -PSK), quadrature
amplitude modulation (M-QAM), amplitude modulation (M -AM),
and differential phase-shift keying (M-DPSK), single integrals with
finite limits and integrands composed of elementary (exponential and
trigonometric) functions have to be readily evaluated via numerical
integration [1].

B. Dual-Branch EGC Receivers

For a dual-branch EGC receiver, the instantaneous output signal en-
velope is [1], [47], [48]

1 N
7= 52+ 7) = 55 (VI V) @7)
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1) Moments of the Output SNR: By using the binomial identity [38,  The characteristic function of Z can be derived using
- V, — 2 ) e / T 1 T
ils.lll)], the nth-order moment of Yegec Z*E, /Ny can be derived B,(5) = Moz, 0s\/E.J(2N0)) (52)
in conjunction with (51) as
2n
n 1 2n k/2_n—Fk/2 i q
,u,n:(f’ PYegc :_n ( )C<7 8t > (48) b N = 343 p—
Ve 22:: k s 2(8) = By 22<q!>2<1—p>2q+1
which, by substituting (13) and after some straightforward simplifica- H
tions, yields [(a:¥i/2)7 /Z(Jb)g it
2n 7 )2) "7 /2
1 2n L+k/B1+(2n—k)/Ba (= \n—k/2 T (ai%i/2) 77 , 1)8;
fn = 2—n z_: < i > (1 _ P) /B81+( )/ _(arzﬁ)ﬁ) / X (‘].5)81(1 — P) s (q + ), (53)
k=0 1 o — & Based on the Parseval’s theorem approach [49], the ASEP for several
X (a171) I./2 <1 + 5 ) <1 + /j_ > coherent and noncoherent modulation schemes can be evaluated as
2 B 1 [ .
L m— k P = —/ R{DP~(s)P"(s)}ds (54)
X o P}y 1—|—F,1—|— 3 s Lip (49) T Jo
M1 2

The average output SNR 7., can be obtained by setting » = 1 in
(49), i.e., Yege = i1, resulting in

1+1/81+1/P2

1, _ —

52+ 7))+ V%l -p)
VI(1+2/8)0(1+ 2//32

while utilizing both the first- and second-order moments, the AoF can

be also obtained in closed form.
2) ASEP: Using (21), the mgf of Z1 4+ Z> can be derived as

ﬁ'ég,c =

+,— 1+—1p> (50)
B1

Mzy42,(8) = Mz, 2,(s,5). (51)

where P*( - ) is the complex conjugate of the Fourier transform of the
conditional symbol error probability and the notation R{ -} denotes
the real-part operator. For example, for BDPSK

o= Lo (-5) 4k ()

with D(-) denoting the Dawson’s integral defined as D(z) =
exp(—a”) [ exp(t?)dt.

C. Dual-Branch MRC Receivers

(55)

The instantaneous SNR per symbol measured at the output of a dual-
branch MRC receiver is

Ymre = M1 + Y2 (56)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 10, OCTOBER 2005

1) Moments of the Output SNR: By using the binomial identity, the
corresponding nth-order moment, t,, = E{~/i..), can be obtained as

(57

o = E(( +72)") =D <:> & (i)

k=0
which by using (13), (30), and (31), yields

n

Hn = Z (Z) (1 _ p)1+2k/51+2(”*k)/ﬁ2 ((l‘zﬁz)nik

k=0

X (arlj}”l)kr <1 + 2,—]1) r {1 + M}
B B2

9 _ I
X o F) {1+:"71+M;1;p].
&1 B2

(58)

By substituting both the first- (average SNR), pt1 = 41 + 42, and the
second-order p2 moments of the output SNR in (44), the AoF at the
output of MRC can be also obtained in closed form.
2) ASEP and Outage Probability: By using (21), the mgf of the
dual-branch MRC output SNR per symbol can be obtained as
M

(5) = '/\/l‘,"lﬁz (556) (59)

Ymrc
Based on the above equation and the mgf approach to the performance
analysis, the ASEP of dual-branch MRC receivers can be studied.

If v is a certain specified threshold, then the outage probability is
defined as the probability that v, falls below 1 and is given by [1]

Pout (A;"th) = F’Ymrc (7”1)
:E—l {M»} :|

S

(60)

Ymrc=%th

e () is the cdf of Ymre and £7[-; -] denotes the inverse
Laplace transform. Due to the complicated form of M, _(s)/s in
(60), the so-called Euler summation-based algorithm for the inversion
of cdfs may be applied [1, Appendix 9B.1], [50].

where F

IV. PERFORMANCE ANALYSIS OF MULTIBRANCH
DIVERSITY RECEIVERS

Let us consider an L-branch diversity receiver operating over expo-
nentially correlated Weibull fading channels (¢ = 1,2, ..., L). Based
on the theoretical framework of Section II-C, several performance cri-
teria such as average output SNR, AoF, outage probability, and ASEP
are derived.

A. Multibranch SC Receivers

The instantaneous SNR per symbol at the output of the SC receiver
will be the one with the highest instantaneous value among the L
branches, i.e.,

Yee = mMax{vi, Y2, ..., VL) (61)
By using (28), the cdf of v can be obtained as
F‘I’sr(’y) = F—>(FY> DEREEE ’Y) (62)
Y —
L
with 5 = [y1, Y2, ... vL].
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The outage probability, Pous, can be obtained by replacing v with
Yth in (62) as

Pout(’)/th) = F’ysc (H)/Lh)- (63)

B. Multibranch EGC Receivers

By considering a multibranch EGC receiver, the received signal en-
velope is

(64)

Z—LiZ-—M No i\/?/
- ﬁi:l o LE& =1 v

By using the multinomial identity [51, eq. (24.1.2)], the nth-order mo-
ment of yege = Z2E,/Np can be derived as

L 2n
n 1
=i =g ((Sve) )
=1
(2n)! 2n 5<ﬁrfl/2,},§2/2__.%’i1,/2>

Ln kilka! .. Ep!

ky.ko,....k, =0
ky+kot--+kp=2n

(65)

which, using (25) and after some straightforward simplifications, yields

L o L .
» (2n)! 2n (1- )0)1+2:j:1 k;/B;

=" >

ky,ko,...,kp =0
ky+kot - dkp=2n

> |

tiyto,..t,_1=0 Lg=1

L —kj/2
. .1 J
||].:1 kjla;

T(ti +di, 1)

L—1

X D(tr—1 +di, 1) H

=2

L(t;+ti1 +dr, )
(1 +p)“i+l‘i—1+dki.i

(66)

where 7 = QFE, /Ny is the average input SNR per symbol identical to
all branches 7, = #V/. The average output SNR, ¥z, can be obtained
by setting n = 1 in (66), i.e., Yegc = fi1, resulting in

(1- P)lJrZJL:l ki/ 0,
H5:1 kj!aikj/2

J

2
ky,kg ek =0
kytkot - +kp=2

o =1 4,
> [H 7

tiyto,..tp_1=0

Vege =7

o

T(t1 + di, 1)

L—1

T(ti +tic1 + di,
x T(to—1 +di,,1) H ( ! kii)
i=2

(1 + p)ii+ti—l+dki,7

(67)

while by utilizing both the first- and second-order moments, AoF can
also be obtained.

C. Multibranch MRC Receivers
The instantaneous SNR per symbol measured at the output of a

multibranch MRC receivers is

I

Ymre = g Vi
=1

(68)
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TABLE 1
NUMBER OF TERMS FOR CONVERGENCE OF THE ABEP OF SC IN RANGE OF
+2% (BDPSK, 3 = 3,5 = 7¥,AND L = 2)

[7@B) [ p=01]p=05] p=09 |

-5 6 8 15

0 5 7 12

5 5 6 9

10 5 5 6

15 5 5 5
TABLE II

NUMBER OF TERMS FOR CONVERGENCE OF THE OUTAGE PROBABILITY OF SC
IN RANGE OF + 2% (3 = 2.5,% = ¥, AND p = 0.5)

(n/7@B) [L=2[L=3[L=4]

10 5 3 3
5 4 2 3
0 2 2 3
-5 1 1 1
-10 1 1 1
-15 1 1 1
-20 1 1 1

1) Moments of the Output SNR: Based on the multinomial identity,
the corresponding nth-order moment of Ve, ftn = E(Vire) can be
obtained as

n ECURANNEHY
b = 0! 7 - (69)
ok o Flkolo o k!
ki+kot-4kp=n
which by using (25), (30), and (31), yields
n - (1-p)'" >y kilb
fn = n!y Z - —
kq,kg,....k =0 H]:1 kj!“j
ky+kod +kp=n
oo L—1 [)tq
x> [H (t,)z} Ut +doyn)
t1,to,.t,_1=0 Lg=1 V¢
ST 4ty + dor, )
i+ ti— 2k, i
X Tty 1 +dax, 1) [[ e (T0)

pales (1 + p)1i+ti—1+d2k1 i
By utilizing both the first- and second-order moments of Ym:c, the AoF
at the output of MRC can also be obtained.

2) ASEP and Outage Probability: Using (27), the mgf of the multi-
branch MRC output SNR per symbol with exponential correlation can
be obtained as

(71)

The above expression can be useful in the study of various performance
characteristics of multibranch MRC receivers operating in a Weibull
fading environment, such as the ASEP and the outage probability using
(60).

V. NUMERICAL RESULTS

In this section, by using the previous mathematical analysis, numer-
ical results are presented for the performance of diversity receivers over
correlated Weibull fading channels, where without loss of generality we
consider that 3, = [V{. The numerical evaluation of several expres-
sions in Sections IIl and I'V require the summation of an infinite number
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Fig. 3. Normalized average dual-branch SC output SNR as a function of the

fading parameter.

of terms. Tables I and II summarize the number of terms needed for
SC receivers, in order to achieve an accuracy better than 2% after
the truncation of the infinite series. As Table I indicates, an increase in
p leads to an increase of the required number of terms that are need-
edto be summed in order to obtain the target accuracy. Furthermore,
the number of the required terms depends strongly on the average input
SNR (31 = 32 = 7). An increase on ¥ decreases the number of terms
that are required to be summed. Similar conclusions can be also ex-
tracted from Table II, where it is interesting to be mentioned, that for
~h /7 < —5 dB, only one term is enough for the numerical evaluation
of P, of multibranch SC receivers.

Having numerically evaluated (36), in Fig. 2, the outage probability
P, is plotted as a function of the first branch normalized outage
threshold i1 /71, for a dual-branch SC, with unequal input SNRs per
symbol (2 = 1.25%1),p = 0.5 and for different values of 3. For
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comparison purposes, the curve for p = 0 is also included as a special
case for best performance. The obtained results clearly show, that Py
degrades with an increase of p, vin /71, and/or fading severity.

By using (42), in Fig. 3, 7. /7 is plotted as a function of 3, for equal
input average SNRs (31 = 72) and for several values of p. As expected,
the diversity gain increases as 3 and/or p decreases. It is interesting to
note, that 3. /1 degrades more rapidly for lower values of 3 and p.
For the limiting case of p = (), the SNR gain of the combiner takes its
maximum value, while for p — 1 the corresponding gain approaches
to unity.

Based on (40) and (44), Fig. 4 demonstrates the numerically evalu-
ated results for the AoF, Ar, of a dual-branch SC receiver as a function
of p for equal and unequal input average SNRs (72 = 0.5%1). This
figure indicates, that an increase of p and/or a decrease of 3, leads to a
corresponding increase of A resulting in performance degradation.

By using (62), in Fig. 5, I, is plotted as a function of the normal-
ized outage threshold ~:n /¥, for a triple-branch SC, with i.d. average
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3 =3.

input SNRs per symbol, exponential correlation, and same parameters
as in Fig. 2, in which the same findings are also extracted.

Using (46) and (59) or (71), the error performances of dual-branch
SC and dual- or multibranch MRC receivers, respectively, can be
obtained for several modulation schemes. As a typical example, in
Fig. 6, the ABEP performance of SC receivers with BDPSK sig-
naling is plotted as a function of %1, for equal % = #2 and unequal
71 = 0.5% input average SNRs, 3 = 3, and for several values of p.
Moreover, in Fig. 7, the ABEP of dual-branch MRC receivers for the
same modulation format and same input SNRs unbalance, as in Fig. 6,
is plotted as a function of 7, for several values of p. From both figures,
the obtained performance evaluation results show, that the ABEP
improves with a decrease of p. For a fixed p, the best performance is
observed for equally balanced average input SNRs. As expected, by
comparing Figs. 6 and 7, the ABEP of a dual-branch MRC receiver
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is better than SC. Additionally, by using (71), the BDPSK ABEP
of multibranch MRC receivers with exponential correlation is also
plotted, in Fig. 8, for L = 2, 3, and 4 i.d. input diversity branches and
8 = 2.5. As expected, as L increases, the ABEP of MRC receiver
significantly improves.

VI. CONCLUSION

A theoretical framework for modeling fading channels with a
Gaussian class of multivariate Weibull distributions as well as some
indicative applications for wireless communications systems were pre-
sented. Novel analytical pdf, cdf, and mgf expressions for the bivariate
Weibull distribution as well as the Weibull correlation coefficient were
derived. Moreover, for the multivariate Weibull distributions with ex-
ponential and constant correlation matrixes, useful analytical formulas
for the joint pdf, cdf, mgf, and product moments were obtained. The
derived theoretical results were applied to analyze the performance
of multibranch SC, EGC, and MRC receivers, operating in correlated
Weibull fading environment. Several performance criteria, such as
moments of the output SNR, average output SNR, AoF, and outage
probability, were analytically derived, while the ASEP for several co-
herent and noncoherent modulation formats was also studied. Various
numerically evaluated results were presented, showing the effects of
fading severity as well as the correlation coefficient on the system’s
performance. It was shown, that only a few terms are needed, in order
to accurately numerically evaluate formulas, which are in the form of
infinite series representation.

APPENDIX [
TRANSFORMATION METHOD OF MEIER’S G-FUNCTION TO
GENERALIZED HYPERGEOMETRIC FUNCTIONS

Meijer’s G-functions of the form

I=a5 {4 (I-1)

CL1./CL2,..../CL,\:|

bi,ba,...,be

with A > k can be expressed in terms of more familiar generalized
hypergeometric functions ,F,(+;-;-) [38, eq. (9.14/1)] (with p and ¢
being positive integers) following the next two steps.
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Step 1 : By using [38, eq. (9.31/2)], (I-1) can be written as
(111 =b1, 1 —ba,. .., 1—10.
T=c |2 ’ ’ ’ ) ~
C"”’\|:z‘1—a1,1—a2,...,1—a>\} (I-2)
Step 2 : By using [38, eq. (9.304)], (I-2) can be rewritten as

K

P A
1= [T aw—ap)] JJICQ 40, — au)]

j=1

—

a1 -1*
X" T P | Awi Ay —— (I-3)

where

Av=1—aw+bi,1—aw+ba,....,1—ay,+bs
and
Ap=1—ay,+a,
1l—aw+as,....1—ay+awy—1,

1- Aoy + [CZ7IE S PN 1- Ay + ay.

APPENDIX II
THE BIVARIATE RAYLEIGH DISTRIBUTION

The pdf, cdf, and (n + m )th-order product moment of Rayleigh RV's
R, and R> can be mathematically expressed as [1], [4]

le,Rg (7“1-, 7‘2)

- s oo ()
- ngz(l—p) P ].—/) _Ql QQ
2ﬁ’7’1T2 :|
x Iy | —— e II-1
° {(1 — VL -

Fry ro(r1,72)
2 Z
ri 2 7o 2p 7y
=1—exp|——= ) L
exp( QI)Q1< v \V1=, rh)
. _i 1-0 20 12 2 1
o {22 ' L—p V%' V1-p /N

(I1-2)
and
£ (R RY)
— (1 _ p)1+(n+m)/ZQT/ZQ§1/2F (1 + ;_L)
m n m
T (145 )R (14514 5 1i0) (11-3)

respectively. In the above equations, I ( - ) is the zeroth-order modified
Bessel function of the first kind [38, eq. (8.406/1)], Q1 (-, -) is the first-
order Marcum’s Q-function [1, eq. (4.33)], 2 F (-, -; -; ) is the Gauss
hypergeometric function [38, eq. (9.100)], 2, = £(R?),and 0 < p <
1 is the (Gaussian) power correlation coefficient between RT and R3
defined as

a cov (R%., RE)
B V/var (R?)/var (R%) ’

p (I1-4)
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