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On the Multivariate Weibull Fading Model With
Arbitrary Correlation Matrix
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Abstract—An efficient approximation for the multivariate
Weibull distribution with arbitrary correlations is presented. By
approximating the Gaussian correlation matrix with a Green’s
matrix, a useful analytical expression for the joint distribution
of the fading envelopes is derived. As an application, the outage
performance of multibranch receivers operating over arbitrarily
correlated Weibull fading channels is studied. Numerical and com-
puter simulation results are presented and compared to illustrate
the accuracy of the proposed approximation.

Index Terms—Correlated fading, diversity, Green’s matrix,
multichannel reception, multivariate analysis, outage probability,
Rayleigh fading, selection combining (SC), Weibull fading.

I. INTRODUCTION

MULTIVARIATE statistics provides useful mathematical
tools for modeling and analyzing realistic wireless prop-

agation channels with correlated fading [1]. Such fading chan-
nels are usually met in contemporary digital communication
systems employing multibranch receivers with insufficiently
separated antennas [2], where space or polarization diversity
is applied, e.g., handheld mobile terminals and indoor base
stations.

In an early work regarding Gaussian class multivariate dis-
tributions [3], the generalized Rayleigh distribution has been
studied for the special case in which the correlation matrix has
a specific form so that its inverse matrix is tridiagonal. In a
later work, exact joint cumulative distribution function (cdf) and
probability density function (pdf) expressions, for three and four
Rayleigh random variables (RVs), have been derived [4]. An ef-
ficient approach for the evaluation of the multivariate Rayleigh
and Nakagami- cdf and pdf has been presented in [5], which
extends the results presented in [3], based on an approximation
for the correlation matrix with a Green’s matrix [6]. This ap-
proximation has been also used in [7], where the performance
of a threshold-based hybrid selection/maximal-ratio combining
(T-HC/MRC) receiver has been analyzed. Another useful distri-
bution for fading channel modeling is Weibull, which exhibits
good fit for both indoor and outdoor environments [8]. In [9], the
outage probability (OP) of a triple-branch selection combining
(SC) receiver over arbitrarily correlated Weibull fading has been
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studied. However, to the best of the authors’ knowledge, for
more than three correlated branches, there is not any publica-
tion addressing the multivariate Weibull distribution with an ar-
bitrary correlation matrix.

In this letter, by approximating the Gaussian correlation ma-
trix with a Green’s matrix, we extend [8] and [9], deriving an
analytical approximation for the multivariate Weibull cdf for ar-
bitrary correlations. The usefulness of the proposed analysis is
outlined through comparisons with extensive computer simula-
tions, for the OP of multibranch SC receivers.

II. WEIBULL STATISTICS AND APPROXIMATIONS

Let be two -di-
mensional real column vectors ( denotes the transpose),
which are independent and identically distributed zero mean

with variance (
and denotes expectation) Gaussian RVs having a sym-
metric and positive–definite correlation matrix .

Also, let . Then, s are correlated
Rayleigh RVs with power correlation matrix (between

and ), and marginal cdfs given by
, where is

the corresponding average power. The correlation matrix of
the underlying Gaussian processes is related to as

( stands for a matrix with elements the
square root ones of ). When is tridiagonal (
stands for the inverse of ), according to [3, Th. I], the joint
cdf of is given by (1), as shown at the
bottom of the next page, with being the determinant of

, and being the lower incomplete
Gamma function [10, eq. (8.350/1)].

A. Multivariate Weibull Distribution

To model the multivariate Weibull distribution with arbitrary
correlation, we introduce as the fading parameter. Ap-
plying a power transformation

(2)

the joint Weibull cdf of is obtained as

(3)

having Weibull marginal cdfs given by

(4)
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with . As increases, the severity of the fading
decreases, while for , (3) reduces to (1). The (Weibull)
power correlation matrix is given by for

and for , with
being the power correlation coefficient between and [1,
eq. (9.195)]. The Rayleigh and the Weibull power
correlation matrices are related based on [8, eq. (16)]. Note also
that taking the th-order mixed derivatives of (3), the joint pdf
of can be easily obtained.

B. Green’s Matrix Approximation

As we have already mentioned, in order for (1) and (3) to
hold, must have a tridiagonal structure. Generally, may
not be tridiagonal as in the case of arbitrary correlation. In
such cases, an efficient approximation to may be applied.
Specifically, the correlation matrix can be approximated
by a Green’s matrix , with its elements being the closest
possible values to the ones of . Note that the inverse matrix
of a Green’s matrix is always tridiagonal [6]. By approximating

with , a nonlinear system of equations is formed. This
system can be solved using local minimization methods such
as Levenberg–Marquardt or quasi-Newton [11], available in
most of the well-known mathematical software packages, e.g.,
MATHEMATICA. By replacing with in (3) (also
with ), an approximate multivariate Weibull joint cdf with
arbitrary correlation can be obtained.

C. Outage Probability of Multibranch SC Receivers

Let a signal’s transmission over the th flat Weibull fading
channel corrupted with additive white Gaussian noise (AWGN),
with being the symbols’ energy and the single-sided
noise power spectral density of the AWGN. The instantaneous
signal-to-noise ratio (SNR) of the th diversity channel can be
expressed by with its corresponding average
SNR being

, where is the Gamma function [10, eq. (8.310/1)].
Based on an interesting property of the Weibull distribution,
that the th power of a Weibull distributed RV with parame-
ters is another Weibull distributed RV with parameters

TABLE I
NUMBER OF TERMS FOR CONVERGENCE TO THE SIXTH SIGNIFICANT DIGIT FOR

THE OP OF SC WITH A LINEARLY ARBITRARY MODEL (L = 3)

, it can be easily concluded that is also a Weibull dis-
tributed RV with parameters and

. Hence, (3) can be used to derive the joint cdf of
.

The instantaneous SNR at the output of an SC receiver will
be the one with the highest instantaneous value among the
branches, i.e., . The OP, , is de-
fined as the probability that the SC output SNR falls below a
given outage threshold . This probability can be easily ob-
tained as , resulting in (5), as
shown at the bottom of the page.

III. NUMERICAL AND COMPUTER SIMULATION RESULTS

In this section, in order to show the usefulness and to examine
the accuracy of the previous analysis, numerical and computer
simulation results are presented for a multibranch SC receiver
operating over arbitrary correlated Weibull fading channels. The
SC receiver employs linear arrays, with the antennas not to be
placed unevenly, which is known as linearly arbitrary correla-
tion model [2]. These results are compared with extensive com-
puter simulations ones, generated from correlated Rayleigh RVs
after applying (2).

Equation (5) requires the summation of an infinite number
of terms. Table I summarizes the number of terms in each sum
needed, so (5) converges after the truncation of the infinite series
for a linearly arbitrary correlation model with given in [5,
p. 887]. As Table I indicates, an increase in results in a decrease
of the required number of terms that are essential to be summed
in order to converge. Moreover, the number of the required
terms depends strongly on the normalized outage threshold

(1)

(5)
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Fig. 1. OP of a triple-branch SC receiver as function of the normalized outage
threshold for a linearly arbitrary correlation model.

Fig. 2. OP of a multibranch SC receiver as function of the normalized outage
threshold for � = 2:5 and linearly arbitrary correlation models.

. As decreases, fewer terms are required. Also, it
is interesting to mention that from additional comparisons that
were conducted, the convergence rate does not depend on .

Having numerically evaluated (5), in Fig. 1, is plotted
as a function of the , for a triple-branch SC receiver, with
different values of and a linearly arbitrary correlation matrix
given in [5, p. 886]. It can be easily verified that degrades
with a decrease on and/or an increase on . More impor-
tantly, the obtained results clearly show that the approximate
curves for using Green’s matrix are sufficiently close to
their corresponding simulation results for different values of .
In Fig. 2, is plotted as a function of the , for multi-

branch SC receivers, with and with a linearly arbitrary
correlation matrix for given in [5, p. 886], for
given in [5, p. 887], for given in [2, eq. (40)], and for

given by

In Fig. 2 and for comparison purposes, curves for
and with are also included. As expected,

significantly improves as increases. Note once again that
as this figure indicates, the approximate curves for using
Green’s matrices are very close to their corresponding simula-
tion results for different values of .

IV. CONCLUSION

An efficient approximation for the evaluation of the multi-
variate Weibull distribution with arbitrary correlation was pre-
sented. By approximating the Gaussian correlation matrix with
a Green’s matrix, an accurate analytical formula for the multi-
variate Weibull cdf was derived. Comparisons between numer-
ically evaluated and extensive computer simulation results ver-
ified the accuracy of the proposed approximation for the OP
of multibranch SC receivers. The proposed approximation may
also be applied to other multivariate distributions.
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