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Abstract: The spectral efficiency of L-branch selection diversity (SD) receiver with different adaptive transmission
techniques operating over generalised-Gamma (GG) fading channels is studied. Novel expressions for important
adaptive transmission techniques are obtained, namely optimal power and rate adaptation, optimal rate
adaptation, channel inversion with fixed rate (CIFR) and truncated CIFR. Furthermore, simplified expressions
for the capacities are obtained for SD reception in Nakagami-m as well as Weibull fading channels. The
derived closed-from expressions extend previously published results to the GG fading model. Numerical
results are given to demonstrate the usefulness of the theoretical approach.
1 Introduction
The channel capacity in fading environments depends on the
amount of channel state information (CSI) available at the
transmitter and/or receiver and it is given by a complex
expression of the channel variations in time and/or
frequency. Various definitions of the channel capacity have
been provided in the past, depending on the different
power and rate adaptation policies employed and the
existence, or not, of an outage probability [1]. Widely
accepted transmission adaptation techniques are the
optimal power and rate adaptation (OPRA), constant
power with optimal rate adaptation (ORA), channel
inversion with fixed rate (CIFR) and truncated CIFR
(TIFR). These techniques assume CSI to be available at
the transmitter or the receiver or both. For each
transmission adaptation policy, it is important to study its
performance under different fading channel models.

In the past, the capacity has been studied for several fading
distributions and diversity reception techniques, for example,
[2–8]. In [2], the general theory for the capacity of fading
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channels with an average power constraint, under different
CSI conditions, was developed. Based on the work in [2], a
thorough capacity analysis was presented for Rayleigh
fading channels in [3], assuming no diversity, as well as,
selection and maximal ratio combining (MRC) diversity
receivers. In [4], the results presented in [3] were extended
to Nakagami-m fading channels, whereas in [6] expressions
for the Shannon capacity of single-branch receivers
operating over Nakagami-m, Rice and Weibull fading
channels were derived. In [8], bounds for the capacity of
Rician and Hoyt fading channels with MRC diversity were
obtained. In this paper, we also consider the general
framework proposed in [2] for the case of multi-branch (L)
selection diversity (SD) receivers operating over
generalised-Gamma (GG) fading channels.

The GG distribution includes many well-known
multipath fading models, for example, Rayleigh,
Nakagami-m and Weibull, as special cases, while it can also
describe the lognormal as a limiting case. However, despite
the ability of the GG distribution to characterise many
different fading channel models, only recently it has been
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applied to the field of digital communications over fading
channels [9–12]. As an example, in [12] the performance
analysis of switch and stay combining diversity receivers
operating over GG fading channels was studied. In the
same work, the spectral efficiency was also obtained for
the ORA policy. Furthermore, in a recent work, [13], the
capacity of dual-branch, that is, L ¼ 2, SD receiver
operating over correlated GG fading channels was studied
for different adaptation policies. Hence, the capacity of
multi-branch SD reception and GG fading channels under
the different transmission adaptation techniques has not
been yet studied in the open technical literature and thus it
is the subject of the current paper.

This paper is organised as follows. In Section 2, the system
and channel model are introduced. In Sections 3–6, closed-
form expressions for the capacity of GG fading channels are
derived for the OPRA, ORA, CIFR and TIFR adaptation
policies, respectively. In Section 7, numerically evaluated
results are presented and discussed, whereas concluding
remarks are provided in Section 8.

2 System and channel model
Let us consider a multi-branch SD receiver operating over
slow varying fading channels. The received instantaneous
signal-to-noise ratio (SNR) g at the lth input branch,
(1 ≤ l ≤ L), is considered to be a GG distributed random
variable with probability density function (PDF) given
by [12]

fg(g) = bgmb/2−1

2G(m)(tg)mb/2
exp − g

tg

( )b/2
[ ]

(1)

where b . 0 and m ≥ 1/2 are the distribution’s shaping
parameters related to the fading severity, g is the average
input SNR per symbol, and t ¼ G(m)/G(m + 2/b), with
G(.) being the Gamma function [14, Equation (8.310/1)].
For different values of m and b, (1) simplifies to several
important distributions for fading modelling, that is for
b ¼ 2 it becomes Nakagami-m, for m ¼ 1 it becomes
Weibull, while as b � 0 and m � 1, (1) approaches the
well-known lognormal PDF. The corresponding cumulative
distribution function (CDF) is given by

Fg(g) = 1 − G[m, (g/tg)b/2]

G(m)
(2)

where G(.,.) represents the upper incomplete Gamma
function [14, Equation (8.350/2)].

Furthermore, let gsd represent the SNR per symbol at the
output of a multi-branch SD receiver operating over
independent and identically distributed GG fading
channels. The SD receiver is one of the simplest diversity
reception techniques, as only the branch with the
maximum received SNR is processed [15]. The CDF of
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gsd, Fgsd
(g), can be expressed as Fgsd

(g) = [Fg(g)]L,
whereas the PDF of gsd can be mathematical expressed in
closed form as [16, Equation (17)]

f GG
gsd

(g) = bL

2G(m)

1

t g

( )bm/2 ∑L−1

p=0

L − 1

p

( )
(−1)p

×
∑p(m−1)

r=0

lp
r

gb(m+r)/2−1

(tg)br/2
exp −(p + 1)

g

t g

( )b/2
[ ]

(3)

where

l
p
0 = 1, l

p
1 = p, l

p

p(m−1) =
1

G(m)p

lp
r =

1

r

∑J

ℓ=1

ℓ(p + 1) − r

ℓ!
l

p
r−ℓ

with J = min(r, m − 1); 2 ≤ r ≤ p(m − 1) − 1. Assuming
Nakagami-m fading, that is, b ¼ 2, (3) simplifies to
[17, Equation (15)]

f Nak
gsd

(g) = L

G(m)

∑L−1

p=0

L − 1

p

( )
(−1)p

∑p(m−1)

r=0

lp
r

m

g

( )m+r

gm+r−1

× exp −(p + 1)
mg

g

[ ]
(4)

while for Weibull fading conditions, that is, m ¼ 1, (3) can
be mathematically expressed as [18, Equation (5)]

f Wei
gsd

(g) = bL

2(ag)b/2

∑L−1

k=0

L − 1

k

( )
(−1)k

gb/2−1

× exp −(k + 1)
g

ag

( )b/2
[ ]

(5)

with a ¼ 1/G(1 + 2/b).

3 Optimal power and rate
adaptation
The channel capacity under an average transmitting power
constraint and OPRA is given by [2]

Copra = B

∫1

g0

log2

g

g0

( )
fgsd

(g) dg (6)

where B is the channel bandwidth (in Hertz) and g0 is the
optimal cutoff SNR. If g , g0 no data are transmitted and
hence an outage probability occurs as Pout = Fgsd

(g0).
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Furthermore, by denoting

psd(x) =
∫1

x

1

x
− 1

g

( )
fgsd

(g) dg− 1 (7)

g0 must satisfy psd(g0) = 0 [3].

Substituting (3) into (7), making a change of variables and
using [14, Equation (8.350/2)], the optimal cutoff function
for the SD receiver under GG fading can be obtained as

pGG
sd (g0) =

∑L−1

p=0

L − 1

p

( )
(−1)p

∑p(m−1)

r=0

lp
r

(p + 1)m+r

× 1

g0

G m + r, (p + 1)
g0

tg

( )b/2
[ ]

− (p + 1)2/b

tg

{

× G m + r − 2

b
, (p + 1)

g0

tg

( )b/2
[ ]}

L

G(m)
− 1

(8)

In the above equation g0 cannot be obtained in closed form
and hence numerical evaluation will be employed, by using
any of the well-known mathematical software packages.
Moreover, it can be proved that there is a unique positive
value for g0, that satisfies psd(g0) = 0.

For Nakagami-m fading, (8) becomes

pNak
sd (g0) =

∑L−1

p=0

L − 1

p

( )
(−1)p

∑p(m−1)

r=0

lp
r

(p + 1)m+r

× 1

g0

G m + r,
(p + 1)m

g
g0

[ ]{
− (p + 1)m

g
G m + r − 1,

(p + 1)m

gg0

[ ]}
L

G(m)
− 1

(9)

Assuming Weibull fading, that is, using (5) in (7), (8)
simplifies to

pWei
sd (g0)=L

∑L−1

k=0

L−1

k

( )
(−1)k

k+1

1

g0

exp −(k+1)
g0

ag

( )b/2
[ ]{

− (k+1)2/b

ag
G 1− 2

b
, (k+1)

g0

ag

( )b/2
[ ]}

−1

(10)

Note that for b ¼ 2, that is considering Rayleigh fading
conditions, and using [19, Equation (06.34.27.0002.01)],
(10) simplifies to previous known result, that is, [3,
Equation (24)].
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For the OPRA capacity, substituting (3) into (6) and using
[3, Appendix A], yields

CGG
opra =

2LB

bG(m)

∑L−1

p=0

L − 1

p

( )
(−1)p

∑p(m−1)

r=0

lp
r

ln(2)

×
∑m+r

k=1

(m + r − 1)!

(m + r − k)!
(p + 1)−m−r

× G m + r − k,
p + 1

(tg)b/2
g
b/2
0

[ ]
(11)

Assuming Nakagami-m fading, (11) simplifies to

CNak
opra = LB

G(m)

∑L−1

p=0

L − 1

p

( )
(−1)p

∑p(m−1)

r=0

lp
r

ln(2)

×
∑m+r

k=1

(m + r − 1)!

(m + r − k)!

G[m + r − k, (p + 1)mg0/g]

(p + 1)m+r

(12)

For the Weibull fading conditions, substituting (5) into (6),
making a change of variables, using [14, Equation (3.351/
5)] and after some mathematical manipulations, the OPRA
capacity under SD reception can be obtained as

CWei
opra =

bLB

2

∑L−1

k=0

L − 1

k

( )
(−1)k+1 2

b

( )2

× (k + 1)−1

ln(2)
Ei − g0

tg

( )b/2

(k + 1)

[ ]
(13)

where Ei(·) is the exponential integral function [14, Equation
(8.21)].

4 Optimal rate adaptation
The capacity under a constant transmitting power and ORA
policy is defined as [2]

Cora W B

∫1

0

log2(1 + g)fgsd
(g) dg (14)

It can be easily observed that the capacity under the ORA
policy, that is (14), is identical with the capacity defined in
[20, Equation (1)] so that the transmitter CSI knowledge
does not influence the capacity. Substituting (3) into (14)
integrals of the following form need to be solved

I =
∫1

0

ga−1 ln(1 + g) exp(−dgb) dg (15)

Expressing exp(.) and ln(.) as in [19, Equation
(01.03.26.0004.01)] and [19, Equation (01.04.26.0003.01)],
respectively, and by using [21], I can be solved in closed
form. Using this solution and after some mathematical
IET Commun., 2010, Vol. 4, Iss. 17, pp. 2058–2064
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manipulations, the capacity of the SD receiver under the ORA
policy, CGG

ora , can be expressed as

CGG
ora = bLB

2G(m) ln(2)

1

tg

( )bm/2∑L−1

p=0

L−1

p

( )
(−1)p

×
∑p(m−1)

r=0

lp
r

(tg)br/2

��
k

√
/l

(2p)l+(k−3)/2
Gk+2l,l

2l,k+2l

p+1

k(tg)b/2

( )k[

D l, −b

2
(m+ r)

[ ]
, D l, 1−b

2
(m+ r)

[ ]
D(k, 0),D l, −b

2
(m+ r)

[ ]
, D l, −b

2
(m+ r)

[ ]
∣∣∣∣∣∣∣∣

⎤⎥⎥⎦
(16)

where G(.) is the Meijer’s G-function [14, Equation (9.301)],
D(x, y) ¼ y/x,( y + 1)/x, . . . ,( y + x 2 1)/x, while l and k are
positive integers with l/k ¼ b/2 [6].

For Nakagami-m fading conditions, (16) simplifies to

CNak
ora = LB

G(m) ln(2)
∑L−1

p=0

L − 1

p

( )
(−1)p

∑p(m−1)

r=0

lp
r

m

g

( )m+r

× G(m + r) exp m
p + 1

g

( )[ ]

×
∑m+r

k=1

G[k − m − r, m(p + 1)/g]

[m(p + 1)/g]k
(17)

Moreover, for Weibull fading, using (5) in (14) and following
a similar procedure as the one used in deriving (16), CWei

ora is
obtained in closed form as

CWei
ora = bLB

2(ag)b/2 ln(2)

∑L−1

k=0

L − 1

k

( )
(−1)k ��

k
√

/l

(2p)l+(k−3)/2

× Gk+2l,l
2l,k+2l

k + 1

k(ag)b/2

( )k[

×
D l, − b

2

( )
, D l, 1 − b

2

( )
D(k, 0), D l, − b

2

( )
, D l, − b

2

( )
∣∣∣∣∣∣∣∣

⎤⎥⎥⎦ (18)

5 Channel inversion with fixed
rate
In CIFR policy the transmitter exploits the CSI in order to
maintain constant SNR at the receiver [2]. This method
uses a fixed data rate, since the channel after fading appears
as an additive white Gaussian noise channel. The channel
T Commun., 2010, Vol. 4, Iss. 17, pp. 2058–2064
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capacity employing CIFR, Ccifr, is given by

Ccifr = B log2 1 + 1�1

0
fgsd

(g)/g dg

( )
(19)

Substituting (3) into (19) and using [14, Equation (3.351/3)],
the capacity of an SD receiver under the CIFR policy can be
obtained as

CGG
cifr

= B log2 1 + 1

L/�g
G(m)t

∑L−1

p=0

L − 1

p

( )
(−1)p ∑p(m−1)

r=0

l
p
r
G(m+r−2/b)

(p+1)m+r−2/b

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦
(20)

Assuming Nakagami-m fading, (20) simplifies to

CNak
cifr

= B log2 1 + 1

Lm
G(m)g

∑L−1

p=0

L − 1

p

( )
(−1)p ∑p(m−1)

r=0

l
p
r

G(m+r−1)

(p+1)m+r−1

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦

(21)

while for Weibull fading, that is, using (5) in (19), the
capacity with CIFR policy is obtained as

CWei
cifr = B log2 1 + 1

L
ag

∑L−1

k=0

L − 1
k

( )
(−1)k G(1−2/b)

(k+1)1−2/b

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦ (22)

6 Truncated channel inversion
with fixed rate
The CIFR technique is very simple to implement; however,
it exhibits a large capacity penalty in extreme fading
environments, for example, assuming Rayleigh fading
Ccifr = 0 [2]. An alternative approach is to consider a
truncated CIFR policy, usually referred to as TIFR, where
the channel fading is inverted only above a fixed cutoff
level g0. TIFR policy improves the channel capacity
compared to CIFR policy at the expense of outage
probability Pout = Fgsd

(g0). In this case the capacity can be
obtained as

Ctifr = B log2 1 + 1�1

g0
fgsd

(g)/g dg

[ ]
(1 − Pout) (23)

Substituting (3) into (23), making a change of variables and
using [14, Equation (8.350/2)], the capacity of an SD receiver
2061
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under the TIFR policy can be obtained as (see (24))

where Fgsd
(g0) is given by (2). For Nakagami-m fading

conditions, (24) simplifies as follows (see (25))

where Fgsd
(g0) can be obtained by setting b ¼ 2 in (2).

Assuming Weibull fading, substituting (5) into (23) and
using a similar procedure as for deriving (24), the capacity
under TIFR policy can be obtained as (see (26))

where Fgsd
(g0) can be obtained by setting m ¼ 1 in (2).

7 Numerical results and
discussion
In this section various numerically evaluated results are
obtained using the previously presented results for multi-
branch SD receivers. These results include capacity
comparisons of different adaptive transmission policies,
diversity orders and GG fading channel conditions.

For the conciseness of the presentation, the normalised
average channel capacity is denoted as Ĉ and can be easily
obtained as Ĉ = C/B, in terms of bits/s/Hz. In Fig. 1, Ĉ

Figure 1 Normalised average channel capacity with OPRA
and CIFR adaptation policies and g = 0, 10, 20 dB,
against the number of branches L

Figure 2 Normalised average channel capacity with ORA
adaptation policy and L ¼ 1, 2, . . . , 6, against the
average input SNR

CGG
tifr = B log2 1 + 1

L/�g
G(m)t

∑L−1

p=0

L − 1

p

( )
(−1)p ∑p(m−1)

r=0

l
p
rG m + r − (2/b), (p + 1)(g0/(tg))

b/2
[ ]

/(p + 1)m+r−2/b

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦[1 − Fgsd

(g0)]

(24)

CNak
tifr = B log2 1 + 1

mL
G(m)g

∑L−1

p=0

L − 1

p

( )
(−1)p ∑p(m−1)

r=0

l
p
rG[m + r − 1, m(p + 1)g0/g]/(p + 1)m+r−1

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦[1 − Fgsd

(g0)] (25)

CWei
tifr = B log2 1 + 1

L
ag

∑L−1

k=0

L − 1

k

( )
(−1)k

G 1 − 2/b, (k + 1)(g0/(ag))b/2
[ ]

/(k + 1)1−2/b

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦[1 − Fgsd

(g0)] (26)
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under the OPRA (using (11)) and CIFR (using (20))
adaptation policies is plotted as a function of the number
of branches L for several values of the average input SNR,
g, assuming m ¼ 2 and b ¼ 3. It is depicted that Ĉ
improves by increasing L and/or g, while for constant
values of g and by increasing L, the performance
improvement is reduced. Note that OPRA and CIFR
capacities become almost equal for increased values of L,
that is for L ≥ 4. In Fig. 2, using (16), the Ĉ under the
ORA policy is plotted as a function of g for several values
of L, assuming m ¼ 2 and b ¼ 3. It is depicted that the
channel capacity improves by increasing the number of
diversity branches employed and/or increasing g. However,
it is evident from the graph that as L increases the amount
of capacity improvement diminishes.

Assuming the same fading parameters but TIFR adaptation
policy, that is using (24), Fig. 3 plots Ĉ as a function of cutoff
SNR, g0, for several values of g and L. It is depicted that
Ĉ improves by increasing the diversity order and/or
increasing g. Furthermore, in all cases Ĉ is maximised for
specific values of g0, while the difference between the
performances of the SD receivers decreases as L increases.

8 Conclusions
In this paper we presented novel closed-form expressions
for the spectral efficiency of SD receivers with different
transmission adaptation policies operating over GG fading
channels. In particular, for this diversity reception
technique, the channel capacity was studied for OPRA,
ORA, CIFR and TIFR adaptation policies. The derived
formulae are quite general as they extend previously

Figure 3 Normalised average channel capacity with TIFR
adaptation policy, L ¼ 2, 3, 4 and g = 0, 5, 10 dB, against
the cuttoff SNR
T Commun., 2010, Vol. 4, Iss. 17, pp. 2058–2064
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obtained results, whereas simplified expressions are
provided for the Nakagami-m and Weibull fading
conditions. For the adaptation policies under consideration,
selected numerically evaluated results were presented,
assuming different GG fading/shadowing conditions and
various receiver diversity orders.
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