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Abstract—Let X and Y be two independent 𝐿 × 1 complex
Gaussian random vectors distributed as 𝒞𝒩 (m𝑋 , 𝜎2

𝑋 I𝐿) and
𝒞𝒩 (m𝑌 , 𝜎2

𝑌 I𝐿), respectively, where I𝐿 denotes the 𝐿×𝐿 identity
matrix. The joint characteristic function (c.f.) of the real and
imaginary parts of the inner product Y𝐻 X is derived in closed
form, with (⋅)𝐻 denoting the conjugate transpose. Based on this
joint c.f., a unified analytical framework for the derivation of
the average symbol error probability (ASEP) of a multibranch
diversity reception system over flat correlated fading using 𝑀 -ary
phase-shift keying is developed. The receiver employs maximal-
ratio combining with least squares channel estimation by means
of pilot symbols. The optimal average pilot-to-noise power ratio is
obtained in closed form, and the analytical framework is applied
to Nakagami and Rice fading. For Nakagami fading, closed form
ASEP expressions are obtained for the cases of high signal-to-
noise (SNR) and binary phase-shift keying, while for Rice fading,
high SNR approximate expressions are obtained in terms of a
single integral under the constant correlation model and for
independent and identically distributed channels. Both analytical
and computer simulation results are presented and compared in
order to verify the validity of the proposed analysis.

Index Terms—Complex Gaussian vectors, imperfect channel
estimation, inner product, least squares estimation, 𝑀 -ary phase-
shift keying (MPSK), maximal-ratio combining (MRC), pilot
symbols, symbol error probability (SEP).

I. INTRODUCTION

W IRELESS communication systems using multibranch
diversity reception often employ maximal-ratio com-

bining (MRC) at the receiver, since this scheme maximizes the
instantaneous signal-to-noise ratio (SNR), and consequently,
gives the best performance among various linear combining
schemes. The MRC scheme, however, needs channel esti-
mates. In practice, these estimates are imperfect since they
are perturbed by additive noise resulting from the channel es-
timation method used, and this causes the system performance
to degrade. It is therefore important that we study the effect of
such imperfections in the channel state information (CSI) and
tune the system parameters to compensate for the degradation.
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The error performance for MRC systems with 𝑀 -ary phase-
shift keying (MPSK) and imperfect channel estimation has
been studied in [1] in case of independent branches, assuming
Rayleigh or Rice fading, and an error probability expression in
the form of a higher order derivative has been obtained. The
distribution of the phase angle of two deterministic vectors
perturbed by Gaussian noise, which can be applied to MPSK
performance analysis, has been derived in [2] and [3] using
different approaches. The case of binary phase-shift keying
(BPSK) with MRC and different fading conditions has been
analyzed in [4], resulting in integral expressions for the error
probability. The effect of imperfect channel estimation on the
error performance of MPSK with MRC in generalized Rice
fading channel has been studied in [5]. The analysis considers
various channel estimation methods, with all results being in
the form of an inverse Laplace transform that can be computed
using analytical techniques. In [6], optimal combining has
been studied for BPSK modulation over correlated Rayleigh
fading with minimum mean square error (MMSE) channel
estimation and the average bit error probability (ABEP) has
been obtained in analytical form. A later contribution [7] has
extended [6] to Rice fading with the results being in terms of
a single integral, while the optimal pilot power allocation has
been also investigated.

It is to be noted that the error performance of MPSK
with MRC using imperfect channel estimates can be analyzed
directly from the distribution of the inner product of two
complex Gaussian vectors. Motivated by this, we first derive
the joint characteristic function (c.f.) of the real and imagi-
nary parts of the inner product of two independent complex
Gaussian vectors having arbitrary mean vectors and covariance
matrices, which are scaled versions of the identity matrix.
This joint c.f. is then used to develop a unified analytical
framework for the analysis of the average symbol error
probability (ASEP) of multibranch diversity reception systems
operating over flat correlated fading using MPSK. The receiver
employs MRC with least squares channel estimation by means
of pilot symbols. The usefulness of the analytical framework
is demonstrated by its application to Nakagami and Rice
fading scenarios. For Nakagami fading, closed form ASEP
expressions are obtained for the cases of high SNR and BPSK,
while for Rice fading simple approximate expressions in terms
of a single integral are obtained under the constant correlation
model and for independent and identically distributed (i.i.d.)
channels. In addition, the optimal average pilot-to-noise ratio
(PNR) is obtained in closed form.

The paper is organized as follows. Section II provides a
theorem concerning the joint c.f. of the real and imaginary
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parts of the inner product of two complex Gaussian vectors. In
Section III, the system model under consideration is presented.
The analytical framework of Sections II and III is used in
Section IV to derive unified ASEP expressions for BPSK,
quadriphase-shift keying (QPSK), and MPSK. Section V
studies the optimal pilot power allocation issue. Specific
ASEP expressions for Rayleigh, Rice, and Nakagami fading
are presented in Section VI, while numerical and computer
simulation results are demonstrated in Section VII. Concluding
remarks are given in Section VIII.

II. STATISTIC OF THE INNER PRODUCT OF TWO COMPLEX

GAUSSIAN RANDOM VECTORS

Theorem 1 (Inner Product Joint C.F. of Random Vectors):
Let X = [𝑋1𝑋2 ⋅ ⋅ ⋅𝑋𝐿]𝑇 and Y = [𝑌1 𝑌2 ⋅ ⋅ ⋅𝑌𝐿]𝑇 , where
(⋅)𝑇 denotes the transpose operator, be two independent
complex Gaussian vectors distributed as 𝒞𝒩 (m𝑋 , 𝜎2

𝑋 I𝐿)
and 𝒞𝒩 (m𝑌 , 𝜎

2
𝑌 I𝐿), respectively, where I𝐿 denotes the

𝐿 × 𝐿 identity matrix, m𝑋 = E[X], m𝑌 = E[Y], and
𝜎2
𝑋 = E[∣𝑋𝑖∣2] − E2[∣𝑋𝑖∣], 𝜎2

𝑌 = E[∣𝑌𝑖∣2] − E2[∣𝑌𝑖∣]
∀𝑖 = 1, 2, . . . , 𝐿, with E[⋅] denoting the expectation operator.
Let the inner product of X and Y be given by the complex
random variable 𝑍 , such that

𝑍 = Y𝐻 X , (1)

where (⋅)𝐻 is the Hermitian (conjugate transpose) operator,
and also let 𝑍1 = ℜ(𝑍) and 𝑍2 = ℑ(𝑍) denote the real and
imaginary parts of 𝑍 , respectively. Then, the joint c.f. of 𝑍1

and 𝑍2 is given by (2), as shown on the top of this page,
where 𝚥 =

√−1 and ∥⋅∥ denotes the Euclidean norm.
Proof: From (1) and the distribution of X, it is clear

that 𝑍1 and 𝑍2, conditioned on Y, are independent, and their
conditional distributions are given by

𝑍1∣Y ∼ 𝒩
(
ℜ (Y𝐻m𝑋

)
,
𝜎2
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2
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)
, (3a)
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)
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2
∥Y∥2

)
, (3b)

where “∼” stands for “is distributed as.” The conditional joint
c.f. of 𝑍1 and 𝑍2, conditioned on Y, is therefore expressed as

Ψ𝑍1,𝑍2∣Y(𝚥 𝜔1, 𝚥 𝜔2∣y) = E [ exp {𝚥 (𝜔1 𝑍1 + 𝜔2𝑍2)}∣Y = y]

= exp
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}
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(4)

The probability density function (p.d.f.) of Y is given by

𝑓Y(y) =
1

𝜋𝐿 𝜎2𝐿
𝑌

exp

{
−∥y − m𝑌 ∥2

𝜎2
𝑌

}
, y ∈ 𝒞𝐿, (5)

where 𝒞 denotes the set of complex numbers. The joint c.f.
of 𝑍1 and 𝑍2 can now be expressed in terms of the p.d.f. of
Y as

Ψ𝑍1,𝑍2(𝚥 𝜔1, 𝚥 𝜔2) = E [exp {𝚥 (𝜔1 𝑍1 + 𝜔2𝑍2)}]

=

∫
y∈ 𝒞𝐿

Ψ𝑍1,𝑍2∣Y(𝚥 𝜔1, 𝚥 𝜔2∣y)𝑓Y(y)𝑑y .

(6)

Substituting (4) and (5) in (6), we get
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Note that [2], [8]

1

𝜋𝐿

∫
y∈𝒞𝐿

exp
{−𝑎 ∥y∥2 + 2ℜ (y𝐻b

)
+ 𝚥 2ℜ (y𝐻c

)}
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1
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exp

{
∥b∥2 − ∥c∥2 + 𝚥 2ℜ (b𝐻c

)
𝑎

}
,

(8)

with 𝑎 > 0, b, c ∈ 𝒞𝐿. Applying the result (8) in (7), we
obtain (9), as shown on the top of the next page. Simplification
of (9) yields (2).

III. MULTIBRANCH DIVERSITY RECEPTION

We now present the required analytical framework concern-
ing the system model, including the channel estimation method
and decision statistics. Consider a diversity reception system
having 𝐿 branches in a flat fading environment using MPSK
with symbol-by-symbol detection. The 𝐿×1 sampled complex
baseband signal vector received over the 𝐿 diversity branches
in a symbol interval can be expressed as

r = 𝑠 h + n , (10)

where 𝑠 is the information-bearing signal (or symbol) that
belongs to an MPSK constellation 𝑆, given by

𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑀} , (11)
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where

𝑆ℓ =
√

2𝐸𝑠 exp

{
𝚥 2 𝜋

(ℓ− 1)

𝑀

}
, ℓ = 1, 2, . . . ,𝑀, (12)

with 2𝐸𝑠 denoting the average symbol energy, h is the
complex random channel gain vector and n is the additive
white Gaussian noise (AWGN) vector, which is a zero-mean
complex circular Gaussian vector with covariance matrix
2𝑁0I𝐿 and is independent of h. Thus, n has a 𝒞𝒩 (0𝐿, 2𝑁0I𝐿)
distribution, where 0𝐿 denotes the 𝐿× 1 vector of zeros.

A. Least Squares Channel Estimation

The CSI h is estimated by transmitting a sequence
𝑠𝑝1 , 𝑠𝑝2 , . . . , 𝑠𝑝𝐾 of 𝐾 pilot symbols (which are known to
the receiver) prior to data transmission (transmission of 𝑠 in
(10)). The received signal vector corresponding to the 𝑘th pilot
symbol transmission can be expressed as

r𝑝𝑘
= h𝑠𝑝𝑘

+ n𝑝𝑘
, 𝑘 = 1, . . . ,𝐾, (13)

where n𝑝𝑘
is the 𝑘th pilot AWGN vector (independent of h).

The pilot noise vectors n𝑝1 , n𝑝2 , . . . , n𝑝𝐾 are i.i.d. complex
circular Gaussian vectors, each having a 𝒞𝒩 (0𝐿, 2𝑁0I𝐿)
distribution, and are independent of n.

Let s𝑝 = [𝑠𝑝1 𝑠𝑝2 ⋅ ⋅ ⋅ 𝑠𝑝𝐾 ]𝑇 be the pilot symbol vector. If
r𝑝 and n𝑝 represent the concatenated received signal vector
over 𝐾 pilot transmissions and the concatenated pilot AWGN
vector, respectively, given by

r𝑝 = [r𝑝1 r𝑝2 ⋅ ⋅ ⋅ r𝑝𝐾 ]𝑇 , n𝑝 = [n𝑝1 n𝑝2 ⋅ ⋅ ⋅ n𝑝𝐾 ]𝑇 , (14)

then (13) can be rewritten as

r𝑝 = (s𝑝 ⊗ I𝐿) h + n𝑝 , (15)

where ⊗ denotes the Kronecker product of matrices.
We obtain the CSI h from r𝑝 using least squares estimate

(LSE). From (15), the LSE ĥ of the channel gain vector can
be expressed as

ĥ =
1

∥s𝑝∥2
(
s𝐻𝑝 ⊗ I𝐿

)
r𝑝 . (16)

Substituting (15) in (16), the LSE of h is given by

ĥ = h + v , (17)

where

v =
1

∥s𝑝∥2
(
s𝐻𝑝 ⊗ I𝐿

)
n𝑝 (18)

is independent of h and

v ∼ 𝒞𝒩
(

0𝐿,
2𝑁0

∥s𝑝∥2
I𝐿

)
.

B. Detection Rule

The reception of 𝐾 pilot symbols is followed by the
symbol-by-symbol reception and detection of data. For a
transmitted data symbol 𝑠 in a symbol interval, the signals
received over the 𝐿 diversity branches (given by vector r in
(10)) are combined using MRC by means of the LSE ĥ of
the channel, resulting in the combiner output ĥ

𝐻
r. From this

output, the detected symbol 𝑠 is obtained using the decision
rule

𝑠 = arg

{
max
𝑠∈𝑆

ℜ
(
𝑠∗ ĥ

𝐻
r
)}

, (19)

where (⋅)∗ denotes the complex conjugate.

IV. SYMBOL ERROR PROBABILITY ANALYSIS OF MPSK

From the analytical framework of Sections II and III, this
section presents a unified framework for the ASEP perfor-
mance of MPSK employing MRC and LSE. When the symbol
𝑆ℓ (given by (12)) is transmitted, the combiner output can be
expressed using (10) and (17) as

ĥ
𝐻

r
∣∣∣
𝑠=𝑆ℓ

= (h + v)𝐻 (h𝑆ℓ + n)

=
√

2𝐸𝑠 exp

{
𝚥

2 𝜋 (ℓ− 1)

𝑀

}
(h + v)𝐻 (h + u) ,

(20)

where

u =
1√
2𝐸𝑠

exp

{
−𝚥

2 𝜋 (ℓ − 1)

𝑀

}
n (21)

and has a 𝒞𝒩 (0𝐿, (𝑁0/𝐸𝑠) I𝐿) distribution which is indepen-
dent of v.

Let Γ denote the average SNR per branch and per symbol,
and Γ𝑝 the average PNR per symbol, defined as

Γ
△
=

𝐸𝑠

𝑁0
(22a)

and

Γ𝑝
△
=

∥s𝑝∥2
2𝑁0

, (22b)

respectively.
The probability of error when symbol 𝑆ℓ is transmitted,

which we denote as 𝑃𝑒ℓ , is given by

𝑃𝑒ℓ = Pr

[
2 𝜋 (ℓ − 1)

𝑀
+

𝜋

𝑀
< angle

(
ĥ
𝐻

r
∣∣∣
𝑠=𝑆ℓ

)
<

2 𝜋 (ℓ− 1)

𝑀
+ 2 𝜋 − 𝜋

𝑀

]
.

(23)

It is clear from (20) that 𝑃𝑒ℓ is the same for all ℓ =
1, 2, . . . ,𝑀 . Therefore the symbol error probability 𝑃𝑒 is
equal to 𝑃𝑒ℓ and can be expressed using (23) and (20) as

𝑃𝑒 = Pr
( 𝜋

𝑀
< angle

(
(h + v)𝐻(h + u)

)
< 2 𝜋 − 𝜋

𝑀

)
,

(24)
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with

u ∼ 𝒞𝒩
(

0𝐿,
1

Γ
I𝐿

)
, v ∼ 𝒞𝒩

(
0𝐿,

1

Γ𝑝
I𝐿

)
. (25)

Note that u, v, and h are independent.
Let

𝐷 = (h + v)𝐻(h + u) (26a)

denote the scaled combiner output and

𝐷1 = ℜ(𝐷) , 𝐷2 = ℑ(𝐷) . (26b)

Using (2) of Theorem 1, the conditional joint c.f. of 𝐷1 and
𝐷2, conditioned on h, is given by

Ψ𝐷1,𝐷2∣h(𝚥 𝜔1, 𝚥 𝜔2∣h) = E [ exp {𝚥 (𝜔1𝐷1 + 𝜔2𝐷2)}∣ h]

=

(
1 +

(
𝜔2
1 + 𝜔2

2

)
4 Γ Γ𝑝

)−𝐿

× exp

⎧⎨
⎩−

(
𝜔2
1 + 𝜔2

2

) (Γ+Γ𝑝)
4 ΓΓ𝑝

− 𝚥 𝜔1

1 +
(𝜔2

1+𝜔2
2)

4 ΓΓ𝑝

∥h∥2
⎫⎬
⎭ .

(27)

By averaging (27) over the statistics of h using the c.f. of
∥h∥2, we get

Ψ𝐷1,𝐷2 (𝚥 𝜔1, 𝚥 𝜔2) =

(
1 +

(
𝜔2
1 + 𝜔2

2

)
4 Γ Γ𝑝

)−𝐿

× Ψ∥h∥2

⎛
⎝−

(
𝜔2
1 + 𝜔2

2

) (Γ+Γ𝑝)
4 ΓΓ𝑝

− 𝚥 𝜔1

1 +
(𝜔2

1+𝜔2
2)

4ΓΓ𝑝

⎞
⎠ .

(28)

A. BPSK

Based on (24) the ABEP of pilot-assisted BPSK can be
obtained as 𝑃𝑒 = Pr{𝐷1 < 0} and can be directly evaluated
using the Gil-Pelaez inversion theorem [9] as

𝑃𝑒 =
1

2
− 1

2 𝜋

∫ ∞

−∞

1

𝜔
ℑ{Ψ𝐷1 (𝚥 𝜔)} d𝜔 , (29)

with Ψ𝐷1(𝚥 𝜔) = Ψ𝐷1,𝐷2(𝚥 𝜔, 0) being a marginal c.f. of
Ψ𝐷1,𝐷2(𝚥 𝜔1, 𝚥 𝜔2).

B. QPSK

In order to obtain the ASEP performance of pilot-assisted
QPSK, we consider a 𝜋/4-rotated constellation compared to
that considered in (12), i.e., 𝑆ℓ =

√
2𝐸𝑠 exp{𝚥 𝜋 (2 ℓ− 1)/4}

(ℓ = 1, 2, 3, 4), while (20) is modified as

ĥ
𝐻

r
∣∣∣
𝑠=𝑆ℓ

=
√
2𝐸𝑠 (h + v)𝐻

(
h exp

{
𝚥
𝜋

4
(2 ℓ− 1)

}
+ u

)
,

(30)
where u = n/

√
2𝐸𝑠 and has a 𝒞𝒩 (0𝐿, (𝑁0/𝐸𝑠) I𝐿) dis-

tribution which is independent of v. Now, 𝐵 = (h +
v)𝐻 (h exp{𝚥 𝜋 (2 ℓ − 1)/4} + u), with 𝐵1 = ℜ{𝐵} and
𝐵2 = ℑ{𝐵}. Following a similar analysis as before, the joint
c.f. of 𝐵1 and 𝐵2 can be derived as

Φ𝐵1,𝐵2 (𝚥 𝜔1, 𝚥 𝜔2) =

(
1 +

(
𝜔2
1 + 𝜔2

2

)
4 Γ Γ𝑝

)−𝐿

× Ψ∥h∥2

⎛
⎝−

(
𝜔2
1 + 𝜔2

2

) (Γ+Γ𝑝)
4 ΓΓ𝑝

+ 𝚥√
2

(𝜔1 + 𝜔2)

1 +
(𝜔2

1+𝜔2
2)

4 ΓΓ𝑝

⎞
⎠ .

(31)

We assume that 𝑆3 is transmitted, and since all symbols 𝑆ℓ

are equiprobable, the QPSK ASEP can be calculated as

𝑃𝑒 = 1 − Pr{𝐵1 ≤ 0, 𝐵2 ≤ 0}. (32)

The joint event in the above equation can be analytically
evaluated based on the multivariate inversion theorem [8, eq.
(11)] according to which (32) yields

𝑃𝑒 =
1

2 𝜋2

∫ ∞

0

∫ ∞

0

1

𝜔1 𝜔2
ℜ{Φ𝐵1,𝐵2 (𝚥 𝜔1, 𝚥 𝜔2)

− Φ𝐵1,𝐵2 (𝚥 𝜔1,−𝚥 𝜔2)}d𝜔1 d𝜔2 +
5

4
− 1

2
(𝑃1 + 𝑃2) ,

(33)

with 𝑃𝑖 = Pr{𝐵𝑖 ≤ 0} (𝑖 = 1, 2) and can evaluated
using (29) as 𝑃𝑖 = 1

2 − 1
2 𝜋

∫∞
−∞

1
𝜔 ℑ{Φ𝐵𝑖 (𝚥 𝜔)}d𝜔 . Note

that corresponding analytical expressions for QPSK in case
of correlated Rice fading can be found in [10] and [11]. In
[10] the results are in terms of single integrals, while in [11]
they are in terms of the Gauss-Chebyshev quadrature formula.
Results for independent Nakagami fading are given in [12].

C. MPSK

Let Θ = angle(𝐷) denote the phase of 𝐷 and
𝑓𝐷1,𝐷2∣h(⋅, ⋅∣h) the conditional joint p.d.f. of 𝐷1 and 𝐷2,
conditioned on h. The conditional p.d.f. of Θ, conditioned
on h, is given by

𝑓Θ∣h(𝜃∣h) =

∫ ∞

0

𝑡𝑓𝐷1,𝐷2∣h(𝑡 cos 𝜃, 𝑡 sin 𝜃∣h) 𝑑𝑡

=
1

4𝜋2

∫ ∞

𝜔1=−∞

∫ ∞

𝜔2=−∞
Ψ𝐷1,𝐷2∣h(𝚥 𝜔1, 𝚥 𝜔2∣h)

×
∫ ∞

𝑡=0

𝑡 exp {−𝚥 𝑡 (𝜔1 cos 𝜃 + 𝜔2 sin 𝜃)} 𝑑𝑡 𝑑𝜔2 𝑑𝜔1 .

(34)

We find from (24) that the conditional symbol error proba-
bility, conditioned on h, is given by

𝑃𝑒(h) =

∫ 2𝜋− 𝜋
𝑀

𝜋
𝑀

𝑓Θ∣h(𝜃∣h) 𝑑𝜃 . (35)

Substituting (34) in (35), we get

𝑃𝑒(h) =
1

4𝜋2

∫ ∞

𝜔1=−∞

∫ ∞

𝜔2=−∞
Ψ𝐷1,𝐷2∣h(𝚥𝜔1, 𝚥𝜔2∣h)

×
∫ 2𝜋− 𝜋

𝑀

𝜃= 𝜋
𝑀

∫ ∞

𝑡=0

𝑡 exp {−𝚥 𝑡 (𝜔1 cos 𝜃 + 𝜔2 sin 𝜃)}

× 𝑑𝑡 𝑑𝜃 𝑑𝜔2 𝑑𝜔1 .

(36)

Changing the variables of integration in (36) from 𝜔1, 𝜔2, and
𝑡 to 𝜌, 𝜙, and 𝜂, where

𝜔1 = 𝜌 cos𝜙 , 𝜔2 = 𝜌 sin𝜙 , 𝜂 = 𝜌 𝑡 , (37)

and defining the function 𝐺(𝜙,𝑀) as

𝐺(𝜙,𝑀)
△
=

∫ 2 𝜋− 𝜋
𝑀

𝜃= 𝜋
𝑀

∫ ∞

𝜂=0

𝜂 exp {−𝚥 𝜂 cos(𝜃 − 𝜙)} 𝑑𝜂 𝑑𝜃 ,
(38)
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yields

𝑃𝑒(h) =
1

4𝜋2

∫ ∞

𝜌=0

∫ 𝜋

𝜙=−𝜋

Ψ𝐷1,𝐷2∣h(𝚥 𝜌 cos𝜙, 𝚥 𝜌 sin𝜙∣h)

× 𝐺(𝜙,𝑀)

𝜌
𝑑𝜙 𝑑𝜌 .

(39)

Substituting (27) in (39) we get

𝑃𝑒(h) =
1

4𝜋2

∫ ∞

𝜌=0

∫ 𝜋

𝜙=−𝜋

exp

⎧⎨
⎩−

𝜌2(Γ+Γ𝑝)
4 Γ Γ𝑝

− 𝚥 𝜌 cos 𝜙

1 + 𝜌2

4 ΓΓ𝑝

∥h∥2
⎫⎬
⎭

× 𝐺(𝜙,𝑀)

𝜌
(
1 + 𝜌2

4 ΓΓ𝑝

)𝐿
𝑑𝜙𝑑𝜌 .

(40)

Averaging of 𝑃𝑒(h) over the statistics of h we get the ASEP
of MPSK as

𝑃𝑒 =
1

4 𝜋2

∫ ∞

𝜌=0

∫ 𝜋

𝜙=−𝜋

Ψ∥h∥2

⎛
⎝−

𝜌2(Γ+Γ𝑝)
4 ΓΓ𝑝

− 𝚥 𝜌 cos𝜙

1 + 𝜌2

4Γ Γ𝑝

⎞
⎠

× 𝐺(𝜙,𝑀)

𝜌
(

1 + 𝜌2

4 ΓΓ𝑝

)𝐿 𝑑𝜙 𝑑𝜌 .

(41)

We now consider two special cases.
1) Perfect CSI: Let us first consider the case of perfect CSI,

which implies ĥ = h, and therefore Γ𝑝 → ∞. It is well-known
that the ASEP in this case is given by

𝑃𝑒, perfect CSI =
1

𝜋

∫ 𝜋(𝑀−1)
𝑀

0

Ψ∥h∥2

(
−Γ

sin2(𝜋/𝑀)

sin2 𝛼

)
𝑑𝛼 .

(42)
Putting Γ𝑝 → ∞ in (41) and comparing the result with (42),
we get the following useful identity

1

4𝜋2

∫ ∞

𝜌=0

∫ 𝜋

𝜙=−𝜋

Ψ∥h∥2

(
− 𝜌2

4 Γ
+ 𝚥 𝜌 cos𝜙

)
𝐺(𝜙,𝑀)

𝜌
𝑑𝜙𝑑𝜌

=
1

𝜋

∫ 𝜋(𝑀−1)
𝑀

0

Ψ∥h∥2

(
−Γ sin2(𝜋/𝑀)

sin2 𝛼

)
𝑑𝛼 .

(43)

2) High SNR Approximation: We now consider that the
case of high SNR when Γ ≫ 1 and Γ𝑝 ≫ 1. From (41), we
obtain

𝑃𝑒, high SNR

≈ 1

4𝜋2

∫ ∞

𝜌=0

∫ 𝜋

𝜙=−𝜋

Ψ∥h∥2

(
−𝜌2

Γ + Γ𝑝

4 Γ Γ𝑝
+ 𝚥 𝜌 cos𝜙

)

× 𝐺(𝜙,𝑀)

𝜌
𝑑𝜙 𝑑𝜌 .

(44)

Replacing Γ with Γ Γ𝑝/(Γ + Γ𝑝) in the identity (43) and
applying the result to (44), we obtain a high SNR ASEP
approximate expression

𝑃𝑒, high SNR ≈ 1

𝜋

∫ 𝜋(𝑀−1)
𝑀

0

Ψ∥h∥2

(
− Γ Γ𝑝

Γ + Γ𝑝

sin2
(

𝜋
𝑀

)
sin2 𝛼

)
𝑑𝛼 .

(45)

Obviously, for Γ𝑝 → ∞, the above expression agrees with
(42). Furthermore, as Γ → ∞, 𝑃𝑒 becomes independent of Γ
and an error floor is formed.

V. OPTIMAL PILOT SYMBOL POWER ALLOCATION

We now derive the optimal power allocated by the pilot
symbols. The 𝐿 fading channels are considered as block, while
in order to satisfy the conditions for the Nyquist sampling the-
orem, the maximum frame duration, that is the time duration
between two successive pilot symbols, must be not higher
than 𝑇𝑓 = 1/(2 𝑓𝐷), with 𝑓𝐷 being the maximum Doppler
frequency shift. Denoting as 𝑇𝑠 the MPSK symbols’ duration,
the channel block length is 𝑊 = ⌊𝑇𝑓/𝑇𝑠⌉ = ⌊1/(2 𝑓𝐷 𝑇𝑠)⌉,
where ⌊⋅⌉ stands for the closest rounded-down positive integer.

Consider the case of high SNR, i.e., when Γ ≫ 1 and Γ𝑝 ≫
1. We find from Section IV-C2 that the error performance in
this case depends explicitly only on the argument 1/Γ+1/Γ𝑝

in (45). By denoting as 𝛾𝑝 the power of each pilot symbol, i.e.,
𝛾𝑝 = Γ𝑝/𝐾 , the pilot-to-data symbol power ratio is defined as
𝜒

△
= 𝛾𝑝/Γ. Moreover, we define the effective SNR per symbol

as

𝛾eff =
(𝑊 −𝐾) Γ + 𝐾 𝛾𝑝

𝑊 −𝐾
. (46)

Using the aforementioned definitions, 1/Γ + 1/Γ𝑝 can be
expressed as a function of 𝜒 and 𝐾 as

1

Γ
+

1

Γ𝑝
=

(
1 +

𝜒𝐾

𝑊 −𝐾

)(
1 +

1

𝜒𝐾

)
︸ ︷︷ ︸

Ξ(𝜒,𝐾)

1

𝛾eff
= Ξ(𝜒,𝐾)

1

𝛾eff
.

(47)
In order to minimize 𝑃𝑒 in (45), the above equation should
be minimized. This can be succeeded by minimizing Ξ(𝜒,𝐾)
with respect to 𝜒 or 𝐾 . For fixed 𝜒, the optimum 𝐾 can be
obtained finding the root of ∂Ξ/∂𝐾 = 0 with respect to 𝐾
as

𝐾opt =

⌊
𝑊√

𝑊 𝜒2 + 𝜒 + 1

⌉
. (48a)

When 𝜒 = 1, (48a) simplifies as 𝐾opt =
⌊√

1 + 𝑊
⌉ − 1.

Moreover, for fixed 𝐾 , the optimum 𝜒 can be obtained finding
the root of ∂Ξ/∂𝜒 = 0 with respect to 𝜒 as

𝜒opt =

√
𝑊 −𝐾

𝐾
. (48b)

When 𝐾 = 1, (48b) simplifies as 𝜒opt =
√
𝑊 − 1. Clearly,

the optimal values are independent of the correlation model
and the number of diversity branches.

VI. MPSK ASEP PERFORMANCE OVER NAKAGAMI AND

RICE FADING

Let h be the channel gain vector normalized so that

1

𝐿
tr
(
E
[
h h𝐻

])
=

1

𝐿
E
[∥h∥2] = 1 (49)

and Kℎ = E[(h − mℎ)(h − mℎ)𝐻 ] be its normalized channel
covariance matrix, with mℎ = E[h]. Let 𝜖1, 𝜖2, . . . , 𝜖𝑁 denote
the 𝑁 distinct eigenvalues of Kℎ, having multiplicity 𝑞𝑖 for 𝑖 =
1, 2, . . . , 𝑁 , with

∑𝑁
𝑖=1 𝑞𝑖 = 𝐿, while owing to the positive

definiteness of Kℎ, 𝜖1, 𝜖2, . . . , 𝜖𝑁 are real and positive.
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A. Nakagami Fading

When h is subject to Nakagami fading, Kℎ has the form

Kℎ =
1

𝑚

⎛
⎜⎜⎜⎝

1 𝜌12 ⋅ ⋅ ⋅ 𝜌1𝐿
𝜌21 1 ⋅ ⋅ ⋅ 𝜌2𝐿
...

...
. . .

...
𝜌𝐿1 𝜌𝐿2 ⋅ ⋅ ⋅ 1

⎞
⎟⎟⎟⎠ , (50)

with 𝑚 being the Nakagami fading parameter and 𝜌𝑖𝑗 being
the correlation coefficient between 𝑖th and 𝑗th channels of
the underlying Gaussian processes (𝑖, 𝑗 = 1, 2, . . . , 𝐿). Owing
to (49), Kℎ satisfies the condition tr (Kℎ) = 𝐿/𝑚 , while∑𝑁

𝑖=1 𝑞𝑖 𝜖𝑖 = 𝐿/𝑚. The c.f. of ∥h∥2 is

Ψ∥h∥2(𝚥 𝜔) =
1

det (I𝐿 − 𝚥 𝜔Kℎ)
𝑚 =

1∏𝑁
𝑖=1 (1 − 𝚥 𝜔 𝜖𝑖)

𝑚𝑞𝑖
.

(51)
1) ASEP for MPSK with 𝑀 ≥ 2: For 𝑀 ≥ 2, substituting

(51) in (41), we get

𝑃𝑒 =
1

4𝜋2

∫ ∞

𝜌=0

∫ 𝜋

𝜙=−𝜋

(
1 +

𝜌2

4 Γ Γ𝑝

)(𝑚−1)𝐿

× 1

𝜌
∏𝑁

𝑖=1

(
1 − 𝚥 𝜌 𝜖𝑖 cos𝜙 +

𝜌2((Γ+Γ𝑝) 𝜖𝑖+1)
4ΓΓ𝑝

)𝑚𝑞𝑖

×𝐺(𝜙,𝑀) 𝑑𝜙 𝑑𝜌 .

(52)

When 𝑀 > 2, further simplification of the above expression
is extremely difficult even for Rayleigh fading.

For integer 𝑚 and using (45), (51), [14, Appendix C,
eq. (5A.70)], and the Appendix, a high-SNR approximate
expression yields as

𝑃𝑒, high SNR =

𝑁∑
𝑖=1

𝑚𝑞𝑖∑
𝑘=1

𝐴𝑖𝑘 𝒮𝑘

(
𝜖𝑖

Γ Γ𝑝

(Γ + Γ𝑝)
sin2

( 𝜋

𝑀

))
,

(53)
where

𝐴𝑖,𝑘 =
𝑐−𝑚𝑞𝑖+𝑘
𝑖

(𝑚𝑞𝑖 − 𝑘)!

∂𝑚𝑞𝑖−𝑘

∂𝑥𝑚𝑞𝑖−𝑘

𝑁∏
𝑡=1
𝑡∕=𝑖

(1 + 𝑐𝑡 𝑥)
−𝑚𝑞𝑡

∣∣∣∣∣∣∣
𝑥=−1/𝑐𝑖

,

(54)
with 𝑐𝑖 = 𝜖𝑖

ΓΓ𝑝

Γ+Γ𝑝
sin2

(
𝜋
𝑀

)
. Note that the multiple derivatives

in (54) can be computed using the Faa di Bruno’s formula [15],
while also note that (53) consists only of elementary functions.

2) ASEP for QPSK: For 𝑀 = 4 substituting (51) in (33),
the ASEP of QPSK can be extracted in terms of a two-fold
integral.

3) ABEP for BPSK: Using (28) and (51), the joint c.f. of
𝐷1 and 𝐷2 yields

Ψ𝐷1,𝐷2 (𝚥 𝜔1, 𝚥 𝜔2) =

(
1 +

𝜔2
1 + 𝜔2

2

4 Γ Γ𝑝

)(𝑚−1)𝐿

×
𝑁∏
𝑖=1

(
1 − 𝚥 𝜔1 𝜖𝑖 +

(
𝜔2
1 + 𝜔2

2

) (Γ + Γ𝑝) 𝜖𝑖 + 1

4 Γ Γ𝑝

)−𝑚𝑞𝑖

.

(55)

For 𝑀 = 2 (case of BPSK) and based on Section IV-A, the
ABEP can be obtained directly from the c.f. of 𝐷1, which is

Ψ𝐷1(𝚥 𝜔1) =

(
1 +

𝜔2
1

4 Γ Γ𝑝

)(𝑚−1)𝐿

×
𝑁∏
𝑖=1

(
1 − 𝚥 𝜔1 𝜖𝑖 +

𝜔2
1 ((Γ + Γ𝑝) 𝜖𝑖 + 1)

4 Γ Γ𝑝

)−𝑚𝑞𝑖

.

(56)

This can be expressed as

Ψ𝐷1(𝑧) =

(
1 − 𝑧2

4Γ Γ𝑝

)(𝑚−1)𝐿

∏𝑁
𝑖=1 (1 − 𝑧 𝜆𝑖1)

𝑚𝑞𝑖 (1 − 𝑧 𝜆𝑖2)
𝑚𝑞𝑖

, (57)

where

𝜆𝑖1 =
𝜖𝑖
2

(
1 +

√
1 +

(Γ + Γ𝑝) 𝜖𝑖 + 1

Γ Γ𝑝 𝜖2𝑖

)
(58a)

and

𝜆𝑖2 =
𝜖𝑖
2

(
1 −
√

1 +
(Γ + Γ𝑝) 𝜖𝑖 + 1

Γ Γ𝑝 𝜖2𝑖

)
. (58b)

Here 𝜆𝑖1 > 0 and 𝜆𝑖2 < 0. For integer values of 𝑚, Γ ∕= Γ𝑝,
and from the inversion theorem [9], the ABEP is the negative
of the sum of residues of Ψ𝐷1(𝑧)/𝑧 at poles on the left-half
𝑧-plane [13], that is, at 𝑧 = 1/𝜆𝑖2, 𝑖 = 1, 2, . . . , 𝑁 , and can be
expressed in closed form as given by (59a) and shown on the
top of the next page, where the composite summation is per-
formed over all possible (𝑚𝑞𝑗−1)-tuples (𝑙1, 𝑙2, . . . , 𝑙𝑚𝑞𝑗−1)

of integers in [0,𝑚 𝑞𝑗−1] satisfying
∑𝑚𝑞𝑗−1

𝑛=1 𝑛 𝑙𝑛 = 𝑚𝑞𝑗−1.
Also, using (57) with Γ = Γ𝑝, and following a similar
procedure as that for (59a), a corresponding ABEP expression
is obtained given by (59b) as shown on the top of the next
page. For 𝑚 = 1 (59a) simplifies to the ABEP expression for
Rayleigh fading, that is also valid for Γ = Γ𝑝.

B. Rice Fading

Let the channel be subject to Rice fading with the chan-
nel gain vector h having a 𝒞𝒩 (mℎ,Kℎ) distribution. Ow-
ing to (49), the average channel gain vector is mℎ =[√

𝒦1

1+𝒦1

√
𝒦2

1+𝒦2
⋅ ⋅ ⋅
√

𝒦𝐿

1+𝒦𝐿

]
× exp{𝚥Q}, with 𝒦𝑖 ≥ 0

being the Rice K-factor of the 𝑖th channel and Q being the
phase of mℎ. Also, Kℎ has the form

Kℎ =⎛
⎜⎜⎜⎜⎝

1
1+𝒦1

𝜌12√
1+𝒦1

√
1+𝒦2

⋅ ⋅ ⋅ 𝜌1𝐿√
1+𝒦1

√
1+𝒦𝐿

𝜌21√
1+𝒦2

√
1+𝒦1

1
1+𝒦2

⋅ ⋅ ⋅ 𝜌2𝐿√
1+𝒦2

√
1+𝒦𝐿

...
...

. . .
...

𝜌𝐿1√
1+𝒦𝐿

√
1+𝒦1

𝜌𝐿2√
1+𝒦𝐿

√
1+𝒦2

⋅ ⋅ ⋅ 1
1+𝒦𝐿

⎞
⎟⎟⎟⎟⎠ ,

(61)

satisfying the condition

tr (Kℎ) =
𝐿∑

𝑖=1

1

1 + 𝒦𝑖
, (62)

while from (62), we have
∑𝑁

𝑖=1 𝑞𝑖 𝜖𝑖 =
∑𝐿

𝑖=1(1 + 𝒦𝑖)
−1.

Moreover, Kℎ can be decomposed as Kℎ = Bℎ Qℎ B𝐻
ℎ , with
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𝑃𝑒,Γ∕=Γ𝑝 =

𝑁∑
𝑗=1

(−𝜆𝑗2)
2𝑚𝐿−𝑚𝑞𝑗[∏𝑁

𝑖=1 (𝜆𝑖1 − 𝜆𝑗2)
𝑚𝑞𝑖
]∏𝑁

𝑖=1
𝑖∕=𝑗

(𝜆𝑖2 − 𝜆𝑗2)
𝑚𝑞𝑖

(
1 − 1

4 Γ Γ𝑝 𝜆2
𝑗2

)(𝑚−1)𝐿

×
𝑚𝑞𝑗−1∑

𝑙1,𝑙2,...,𝑙𝑚𝑞𝑗−1=0

0≤𝑙1,...,𝑙𝑚𝑞𝑗−1≤𝑚𝑞𝑗−1

𝑙1+2𝑙2+⋅⋅⋅+(𝑚𝑞𝑗−1)𝑙𝑚𝑞𝑗−1=𝑚𝑞𝑗−1

𝑚𝑞𝑗−1∏
𝑛=1

𝑛−𝑙𝑛

𝑙𝑛!

[
1 − (𝑚− 1)𝐿

(
1(

1 −√4 Γ Γ𝑝 𝜆𝑗2

)𝑛 +
1(

1 +
√

4 Γ Γ𝑝 𝜆𝑗2

)𝑛
)

+𝑚

𝑁∑
𝑖=1

𝑞𝑖𝜆
𝑛
𝑖1

(𝜆𝑖1 − 𝜆𝑗2)
𝑛 + 𝑚

𝑁∑
𝑖=1
𝑖∕=𝑗

𝑞𝑖𝜆
𝑛
𝑖2

(𝜆𝑖2 − 𝜆𝑗2)
𝑛

⎤
⎥⎦

𝑙𝑛

(59a)

𝑃𝑒,Γ=Γ𝑝 =
2−𝐿∏𝑁

𝑖=1 (1 + 𝜖𝑖 Γ)
𝑚𝑞𝑖

𝐿−1∑
𝑙1,𝑙2,...,𝑙𝐿−1=0

0≤𝑙1,...,𝑙𝐿−1≤𝐿−1
𝑙1+2𝑙2+⋅⋅⋅+(𝐿−1)𝑙𝐿−1=𝐿−1

𝐿−1∏
𝑛=1

𝑛−𝑙𝑛

𝑙𝑛!

[
1 − (𝑚− 1)𝐿

2𝑛
+ 𝑚

𝑁∑
𝑖=1

𝑞𝑖

(
𝜖𝑖 Γ + 0.5

𝜖𝑖 Γ + 1

)𝑛
]𝑙𝑛

(59b)

Bℎ being the orthonormal eigenvectors matrix of Kℎ and Qℎ

the corresponding diagonal matrix of eigenvalues of Kℎ. The
c.f. of ∥h∥2 is given by

Ψ∥h∥2(𝚥 𝜔) =

exp

{
−m𝐻

ℎ

[
Kℎ − 1

𝚥 𝜔 I𝐿
]−1

mℎ

}
det (I𝐿 − 𝚥 𝜔Kℎ)

=
1∏𝑁

𝑖=1 (1 − 𝚥 𝜔 𝜖𝑖)
𝑞𝑖

exp

{
𝐿∑

𝑘=1

∣𝑏𝑘∣2
(𝚥 𝜔)−1 − 𝜖𝑘

}
,

(63)

with vector b = [𝑏1 𝑏2 ⋅ ⋅ ⋅ 𝑏𝐿]𝑇 given by b = B𝐻
ℎ mℎ and

𝜖𝑁+1, 𝜖𝑁+2, . . . , 𝜖𝐿 being repeats of the 𝜖1, 𝜖2, ..., 𝜖𝑁 with
appropriate multiplicities.

Using (45) and (63) a high SNR approximate ASEP ex-
pression for MPSK can be easily extracted for any correlation
matrix. Below we specifically provide high-SNR approximate
expressions for two important special cases.

1) Constant Correlation: Assuming constant correlation
among all channels, i.e., for 𝑖 = 𝑗, [Kℎ]𝑖𝑗 = 1/(1 + 𝒦),
while for 𝑖 ∕= 𝑗, [Kℎ]𝑖𝑗 = 𝜌/(1 + 𝒦) ∀𝑖, 𝑗 = 1, 2, . . . , 𝐿,
with 𝒦𝑖 = 𝒦 ∀𝑖 = 1, 2, . . . , 𝐿, a simplified expression
can be obtained, setting 𝑁 = 2, 𝜖1 = (1 − 𝜌)/(1 + 𝒦),
𝜖2 = (1 + 𝜌 (𝐿 − 1))/(1 + 𝒦), and 𝑞1 = 𝐿 − 1, 𝑞2 = 1,
as

𝑃𝑒, high SNR =
1

𝜋

2∑
𝑖=1

𝑞𝑖∑
𝑘=1

𝐴𝑖𝑘

×
∫ 𝜋(𝑀−1)

𝑀

0

(
1 +

Γ Γ𝑝

Γ + Γ𝑝
𝜖𝑖

sin2(𝜋/𝑀)

sin2(𝛼)

)−𝑘

× exp

⎧⎨
⎩− 𝐿𝒦

1 + (𝐿− 1) 𝜌 + (1 + 𝒦)
Γ+Γ𝑝

ΓΓ𝑝

sin2(𝑎)
sin2(𝜋/𝑀)

⎫⎬
⎭ 𝑑𝛼 .

(64)

For Rayleigh fading (𝒦 = 0) and using the Appendix, the
above expression is in agreement with (53) when 𝑚 = 1.

2) I.I.D. Fading: In the special case of i.i.d. fading with
Kℎ = diag((1 + 𝒦1)−1, (1 + 𝒦2)−1, . . . , (1 + 𝒦𝐿)−1), we
have 𝜖𝑖 = (1 +𝒦𝑖)

−1, ∀𝑖 = 1, 2, . . . , 𝐿. From (63), the ASEP
can be expressed by (65), as shown on the top of the next page.
Assuming that Γ, Γ𝑝 ≫ 1, replacing Γ with Γ Γ𝑝/(Γ+Γ𝑝+1)
in the identity (43), and applying the result to (65), yields
(66), as shown on the top of the next page. Although (66) is
a high-SNR approximate ASEP formula for Rice fading, for
the special case of Rayleigh fading, i.e., setting 𝒦𝑖 = 0, the
resulting formula is exact under the reasonable assumption Γ+
Γ𝑝 ≫ 1, while using the Appendix can be further expressed
in closed form as

𝑃𝑒, i.i.d. = 𝒮𝐿

(
Γ Γ𝑝

(Γ + Γ𝑝 + 1)
sin2

( 𝜋

𝑀

))
. (67)

VII. NUMERICAL AND COMPUTER SIMULATION RESULTS

Fig. 1 shows plots of the ASEP of QPSK for Rayleigh
fading versus the average SNR per branch and per symbol,
Γ, with different values of the average PNR per symbol,
Γ𝑝 = 5, 10, 15, 20 dB, and the number of branches 𝐿 = 2,
4. Exponentially correlated fading is considered according to
which 𝜌𝑖,𝑗 = 𝜌∣𝑖−𝑗∣ with 𝜌 = 0.5, where 𝜌 is the exponential
fading power correlation coefficient and satisfies −1 ≤ 𝜌 < 1.
We find that the exact ASEPs (obtained from (33)) approach
the approximate high SNR ASEPs (obtained from (45)) as Γ
or Γ𝑝 becomes large. A comparison of the ASEP curves for
𝐿 = 2 with those for 𝐿 = 4 reveals how the degradation
in performance due to imperfect channel estimation can be
compensated by increasing the number of receive diversity
branches.

In Fig. 2 using (59) or (29) and (45) we plot, respectively,
the exact and high SNR approximate ABEPs of BPSK for
triple-branch (𝐿 = 3) Nakagami fading with 𝑚 = 2, 𝜌 = 0,
0.5, 0.9, and Γ𝑝 = 10, 20 dB. It is clearly shown that as Γ𝑝

increases the performance improves, while when Γ𝑝 → ∞
and/or Γ → ∞, the exact and high SNR approximate curves
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𝑃𝑒 =
1

4 𝜋2

∫ ∞

𝜌=0

∫ 𝜋

𝜙=−𝜋

exp

{
−∑𝐿

𝑙=1
𝒦𝑙

1+𝒦𝑙

(
1

1+𝒦𝑙
+ 1

−𝜌2 Γ+Γ𝑝
4 Γ Γ𝑝

+𝚥 𝜌 cos𝜙

)−1
}

𝜌
(

1 − 𝚥 𝜌 cos𝜙 +
𝜌2(Γ+Γ𝑝+1)

4 ΓΓ𝑝

)𝐿 𝐺(𝜙,𝑀) 𝑑𝜙 𝑑𝜌 (65)

𝑃𝑒, i.i.d. ≈ 1

𝜋

∫ 𝜋(𝑀−1)
𝑀

0

exp

{
−∑𝐿

𝑖=1
𝒦𝑖

1+𝒦𝑖

(
1

1+𝒦𝑖
+

Γ+Γ𝑝+1
ΓΓ𝑝

sin2(𝛼)
sin2(𝜋/𝑀)

)−1
}

∏𝑁
𝑖=1

(
1 + 𝜖𝑖

ΓΓ𝑝

Γ+Γ𝑝+1
sin2(𝜋/𝑀)
sin2(𝛼)

)𝑞𝑖 𝑑𝛼 (66)

Fig. 1. ASEP of QPSK versus average SNR per branch and per symbol, Γ,
for Rayleigh fading and different values of average PNR, Γ𝑝, and number of
branches 𝐿.

coincide. Moreover, the higher the correlation coefficient is,
the worse performance is observed. It is also shown that an
increased Γ𝑝 can serve as countermeasure on the effect of
high correlation channel scenario. In Fig. 3 both exact and
high SNR approximate ABEP curves for BPSK are plotted
for the same set of values of 𝐿, correlation model, and 𝜌 as
that in Fig. 2 and also for Γ𝑝 = 10 dB, and 𝑚 = 1, 4. For fixed
Γ, the higher 𝑚 and/or the lower 𝜌, the better performance is
obtained.

In Fig. 4 we plot ASEP curves (using (64)) for QPSK
signaling, 𝑓𝐷 𝑇𝑠 = 0.02, Jakes power spectrum, Rice fading
with 𝐿 = 3 and 𝒦 = 1, 10, and assuming constant fading
power correlation coefficient according to which 𝜌𝑖,𝑗 = 𝜌 =
0.5, ∀𝑖 ∕= 𝑗 = 1, 2, 3. In this figure we compare curves
corresponding to optimal pilot power allocation (𝐾 = 1 and
𝜒opt = 5) with the ones for perfect CSI. As shown for fixed 𝒦
there is a constant SNR difference between the curves of the
two cases that is Ξ(5, 1) = 1.75 dB. It can be also verified that
for a lower 𝑓𝐷 𝑇𝑠 product (slower fading channel), the SNR
difference between optimal pilot power allocation and perfect
CSI becomes lower. In the same figure curves for the ASEP
of differentially coherent QPSK (DQPSK) are presented for

Fig. 2. ABEP of BPSK versus average SNR per branch and per bit, Γ, for
triple-branch Nakagami fading with 𝑚 = 2 and exponential correlation with
various values of 𝜌, and for two different values of the average PNR, Γ𝑝 .

comparison with corresponding curves for pilot assisted QPSK
with optimal power allocation. For 𝑃𝑠𝑒 = 10−4, we observe
SNR differences about 5 and 3 dB for Rice factor 𝒦 = 1
and 10, respectively. These differences further increase as the
SNR increases showing that pilot assisted coherent systems,
assuming an ideal CSI method1 (see the next paragraph),
are more performance beneficial compared to differentially
coherent ones.

In order to verify the correctness of the proposed analysis,
in Figs. 1, 3, and 4, Monte Carlo computer simulation results,
denoted with star signs, are included for Rayleigh/Rice2 fading
and perfect match is observed between them and the analytical
results. The method we have used to estimate the channel
samples is a fast Fourier transform (FFT)-based one, that is
an ideal channel estimation method. Specifically, a low pass
interpolator of sinc type impulse response and infinite-length

1Note that for a practical channel estimation method with small buffer
size interpolator, a further performance degradation has to be taken into
consideration [16].

2Note that for Nakagami fading we do not have have simulation results
since we are not aware of any method that generates multivariate Nakagami
envelopes having a specific Doppler power spectrum, e.g., the Jakes one.
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Fig. 3. ABEP of BPSK versus average SNR per branch and per bit, Γ,
for triple-branch Nakagami fading, two different values of 𝑚, exponential
correlation with different values of 𝜌 and Γ𝑝 = 10 dB.

Fig. 4. ASEP of QPSK and DQPSK versus effective SNR per branch, 𝛾e𝑓𝑓 ,
for triple-branch Rice fading with different values of 𝒦, constant correlation
with 𝜌 = 0.5, and 𝑓𝐷 𝑇𝑠 = 0.02.

buffer size was implemented. In time domain, this method
interpolates the samples between successive pilot symbols
with frame duration 𝑇𝑓 = 1/(2𝑓𝐷). More specifically, after
extracting from the pilot symbols a vector with channel
estimates, we pad 𝑊 − 1 zeros between successive estimates.
Then, we perform FFT and zeroing all spectrum values for
frequencies higher than 𝑓𝐷. Finally, we perform inverse FFT
(IFFT) and we get the interpolated channel estimates.

VIII. CONCLUSIONS

The error performance of MPSK with MRC using imperfect
channel estimates can be conveniently analyzed from the dis-
tribution of the inner product of two complex Gaussian vectors
having equal means. Therefore, we have first proved a useful
theorem concerning the joint c.f. of the real and imaginary
parts of the inner product of two complex Gaussian vectors
and have then developed a unified analytical framework for
the derivation of the ASEP performance of such systems. The
receiver is assumed to perform least squares channel esti-
mation by transmitting pilot symbols. For Nakagami fading,
closed form ASEP expressions have been obtained for the
cases of high SNR and BPSK signaling, while approximate
expressions in terms of a single integral have been obtained for
Rice fading under the constant correlation model and for i.i.d.
channels. In addition, the optimal average pilot-to-noise power
ratio has been obtained in closed form. Our findings show
that the actual ASEP values approach the approximate high
SNR ones as Γ and/or Γ𝑝 becomes large. Comparisons among
the ASEP curves reveal how the degradation in performance
due to imperfect CSI can be compensated by increasing the
number of receive diversity branches. Finally, it has been
demonstrated that pilot assisted coherent MPSK systems are
more performance beneficial compared to corresponding dif-
ferentially coherent ones.

APPENDIX

The closed form solution of

𝒮𝑘(𝑐) =
1

𝜋

∫ 𝜋 𝑀−1
𝑀

0

(
sin2(𝛼)

sin2(𝛼) + 𝑐

)𝑘

𝑑𝛼 (68)

is given by [14, Appendix C, eq. (5A.16)]

𝒮𝑘(𝑐) =
𝑀 − 1

𝑀
− 1

𝜋

√
𝑐

𝑐 + 1

×
{(𝜋

2
+ tan−1(𝑎)

) 𝑘−1∑
𝑛=0

(
2𝑛

𝑛

)
(4 (1 + 𝑐))−𝑛

+ sin
(
tan−1(𝑎)

) 𝑘−1∑
𝑛=1

𝑛∑
𝑖=1

𝑇𝑖,𝑛

(1 + 𝑐)𝑛

× [cos
(
tan−1(𝑎)

)]2 (𝑛−1)+1

}
(69)

with 𝑎 = cot(𝜋/𝑀)
√
𝑐/(1 + 𝑐) and

𝑇𝑖,𝑛 =

(
2𝑛
𝑛

)(
2 (𝑛−1)
𝑛−𝑖

)
4𝑖 [2 (𝑛− 𝑖) + 1]

.
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