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Abstract— A versatile envelope distribution which generalizes
several commonly used fading models is the generalized Gamma
(GG) distribution. This letter deals with the performance analysis
of switch and stay combining (SSC) receivers operating over not
necessarily identical GG fading channels. For these receivers,
novel analytical expressions for the moments of the output signal-
to-noise ratio (SNR) (including average SNR and amount of
fading), outage probability, average bit error probability (ABEP),
and Shannon average spectral efficiency (ASE) are derived.
Moreover, closed-form expressions are obtained for the optimal
average SNR, ABEP, and ASE switching thresholds. Special cases
of the derived expressions agree with known results.

Index Terms— Generalized fading channel models, generalized
Gamma, lognormal, Nakagami-m, Weibull, switched diversity.

I. INTRODUCTION

AMONG well-known diversity schemes, switch and stay
combining (SSC) is one of the least complex to im-

plement which can be used in conjunction with various
coherent as well as noncoherent and differentially coherent
modulations. According to this scheme, if the instantaneous
signal-to-noise ratio (SNR) of a branch falls below a prede-
termined switching threshold, the combiner switches to and
stays with another branch, regardless of whether the SNR of
that branch is above or below the threshold. The performance
of SSC receivers has been extensively studied in the past
for the Rayleigh, Nakagami-m, and Weibull fading channel
models [1]–[8]. A recently rediscovered versatile envelope
distribution generalizing all these models is the so-called gen-
eralized Gamma (GG) distribution [9] which was introduced
by Stacy [10] more than four decades ago. However, for this
very generic fading model only average bit error probability
(ABEP) expressions for single-branch receivers have been
presented [11], [12]. To the best of the authors’ knowledge,
the performance of SSC receivers in GG fading has not
been addressed yet. Motivated by the above, in this letter,
the performance of SSC receivers operating over GG fading
channels is analyzed and novel formulae for their performance
are derived.

II. SYSTEM AND CHANNEL MODEL

Let us consider a dual-branch SSC receiver operating over
independent, but not necessarily identically distributed (i.d.),
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GG fading channels. The probability density function (pdf) of
the instantaneous SNR per symbol at the �th input branch, γ�

(� = 1 and 2), is [10, eq. (1)]
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where β� > 0 and m� ≥ 1/2 are two parameters related to
the fading severity, γ� is the average input SNR per symbol,
and Ξ� = Γ(m�)/Γ(m� + 2/β�), with Γ (·) being the Gamma
function [13, eq. (8.310/1)]. The distribution in (1) is very
flexible since it includes commonly used models such as
Rayleigh (β� = 2 and m� = 1), Nakagami-m (β� = 2), and
Weibull (m� = 1) as special cases. Moreover, for β� → 0 and
m� → ∞, (1) becomes the well-known Lognormal pdf (as a
limiting case). The cumulative distribution function (cdf) of
γ� can be expressed as
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with Γ (·, ·) being the upper incomplete Gamma function
[13, eq. (8.350/2)]. By following a similar method with that
for deriving the moments-generating function (MGF) of the
Weibull distribution [7], the MGF of γ� can be obtained as
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In the above equation, G [·] is the Meijer’s G-function [13,

eq. (9.301)] and ∆(k;x) is defined as ∆(k;x)
�
= x/k, (x +

1)/k, . . . , (x+ k− 1)/k, with x an arbitrary real value and k
a positive integer. Moreover, k and l are positive integers so
that l/k = β�/2 holds. Depending upon the specific value of
β�, a set of minimum k and l can be properly chosen. Note
that for m� = 1, (3) agrees with [7, eq. (3)].

By denoting with γτ the common switching threshold at
both diversity branches and using (2), the cdf of the SSC
output SNR, γssc, can be expressed as [3, eq. (62)]
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where P� = Fγ�
(γτ ). By taking the first derivative of Fγssc

(γ)
with respect to γ, the pdf of γssc can be obtained as
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III. PERFORMANCE ANALYSIS

A. Moments of the Output SNR

Starting from the definition of the nth order moment of

γssc, µn
�
= E 〈γn

ssc〉 (E 〈·〉 denotes expectation), and by using
[13, eq. (8.350/1)], µn can be easily derived in closed-form
as

µn =
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with ξ� = [γτ/ (Ξ� γ�)]
β�/2 and d�,n = m� + 2n/β�. For

m� = 1 and β� = β ∀�, (6) reduces to a known expression
[6, eq. (6)] for the Weibull channel model.

1) Average SNR: The average output SNR can be obtained
in closed-form as γssc = µ1. The optimum γτ for maximizing
γssc can be derived by solving ∂γssc/∂γτ |γ∗

τ =γτ
= 0. It can

be easily shown that for i.d. input channels (γ = γ�, m = m�,
β = β�, and P = P�), γ∗

τ = γ. For non i.d. input branches,
γ∗

τ can be obtained using root-finding techniques available in
most of the popular mathematical software packages.

2) Amount of fading: The amount of fading, defined as the
ratio of the variance to the square average SNR per symbol,

i.e., AF
�
= var(γssc)/γ2

ssc, can be expressed using (6) in a
simple closed-form expression as AF = µ2/µ2

1 − 1.

B. Outage Probability

If γth is a specified threshold, then the outage probability is
defined as the probability that γssc falls below γth. This prob-
ability can be obtained using (4) as Pout (γth) = Fγssc

(γth).

C. Average Bit Error Probability (ABEP)

A convenient approach to evaluate the ABEP for a great
variety of modulation schemes is to use the MGF-based
approach [1]. By averaging (5) over exp(−s γssc), the MGF
of γssc can be obtained as
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For i.d. input branches, (7) simplifies to

Mγssc
(s) = (1 + P )Mγ(s)−

∫ γτ

0

exp(−s γ) fγ(γ) dγ (8)

with γ = γ� ∀�. The above two equations include finite inte-
grals, which can be easily evaluated via numerical integration.
The optimum γτ for minimizing the ABEP can be obtained as
∂P be/∂γτ |γτ=γ∗

τ
= 0. Although analytical expressions for γ∗

τ

with specific signalling constellations and i.d. input branches
can be easily obtained, a unified ABEP expression for the
many modulation schemes which can be evaluated by the
MGF-based approach cannot be derived. For example, for bi-
nary phase-shift keying (PSK) with i.d. input branches, γ∗

τ can
be obtained by numerically solving

∫ ∞
0

Mγ(1/ sin2 ϕ) dϕ =∫ ∞
0

exp(−γ∗
τ / sin2 ϕ) dϕ. Additionally, for binary differential

phase-shift keying (DPSK) and noncoherent frequency-shift
keying (NFSK) signallings, γ∗

τ can be obtained in closed-form
as γ∗

τ = − ln [Mγ(B)] /B where for DPSK B = 1 and for
NFSK B = 1/2. For non i.d. input channels, γ∗

τ can be derived
by employing root-finding analytical techniques.

IV. AVERAGE SPECTRAL EFFICIENCY (ASE)

By averaging log2(1+γssc) over (5) and following a similar
method as that in [14], the average spectral efficiency (ASE)
[15] at the �th input branch can be obtained as
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Note that for β� = 2 and m� = 1, (9) reduces to [8, eq. (3)] for
Nakagami-m and [8, eq. (6)] for Weibull, respectively. From
(5), the ASE at the output of the SSC can be expressed as
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For i.d. input branches (Sγ = Sγ�
∀�), (10) can be reduced to

Se = (1 + P )Sγ −
∫ γτ

0

log2(1 + γ) fγ(γ) dγ. (11)

The optimum γτ for maximizing Se can be obtained as
∂Se/∂γτ |γ∗

τ =γτ
= 0, where after some mathematical manip-

ulations, yields γ∗
τ = 2Se − 1. For the non i.d. case, γ∗

τ can
be derived as described above for max{γssc} or min{P be}.

V. NUMERICAL RESULTS AND DISCUSSION

In Fig. 1, γssc/γ1 is plotted as a function of β for non i.d.
input branches (i.e., γ1 = 0.5 γ2), optimum γτ for max{γssc},
and several values of m. From these curves it can be observed
that the larger m and/or β is, the lower is the gain of the
combiner (e.g. for the non i.d. case and β ≥ 4, γssc/γ1 ≈ 1).
Additionally in the same figure, curves for i.d. input branches
(i.e., γ1 = γ2) are also included for best performance. In
Fig. 2, Pout is plotted as a function of γth/γ for i.d. input
branches, β = 2.5, and the three different γ∗

τ derived in
Sections III and IV. As it can be seen, for fixed γth/γ and m,
the best Pout is obtained for that γ∗

τ leading to min{P be}.
Moreover, the worst Pout is provided for that γ∗

τ which
maximizes γssc, while an intermediate solution between these
two γ∗

τ is the optimum γτ for maximizing the ASE. From
these results, it turns out that the proper choice of γ∗

τ among
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Fig. 1. First branch normalized average output SNR as a function of β.

Fig. 2. Outage probability as a function of γth/γ for β = 2.5.

the three of them is very important especially in bad fading
conditions. In Fig. 3, the ABEP of SSC is plotted as a function
of γ (bottom axis) using γ∗

τ in the minimum ABEP sense. As
for m and β, it can be observed that the ABEP improves as m
and/or β increases. In the same figure, the ABEP is also plotted
as a function of 10 log10(γτ/γ∗

τ ) (top axis) for γ = 5 dB and
β = 2.5. It can be seen that by properly adjusting γτ the
minimum ABEP can be obtained.
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