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Abstract—A generic and novel distribution, referred to as
N∗Nakagami, constructed as the product of N statistically inde-
pendent, but not necessarily identically distributed, Nakagami-m
random variables (RVs), is introduced and analyzed. The proposed
distribution turns out to be a very convenient tool for modelling
cascaded Nakagami-m fading channels and analyzing the per-
formance of digital communications systems operating over such
channels. The moments-generating, probability density, cumula-
tive distribution, and moments functions of the N∗Nakagami
distribution are developed in closed form using the Meijer’s G-
function. Using these formulas, generic closed-form expressions for
the outage probability, amount of fading, and average error prob-
abilities for several binary and multilevel modulation signals of
digital communication systems operating over the N∗Nakagami
fading and the additive white Gaussian noise channel are pre-
sented. Complementary numerical and computer simulation per-
formance evaluation results verify the correctness of the proposed
formulation. The suitability of the N∗Nakagami fading distribu-
tion to approximate the lognormal distribution is also being inves-
tigated. Using Kolmogorov–Smirnov tests, the rate of convergence
of the central limit theorem as pertaining to the multiplication of
Nakagami-m RVs is quantified.

Index Terms—Applied stochastic models, bit error rate (BER),
cascaded fading, central limit theorem (CLT), keyhole chan-
nels, Kolmogorov–Smirnov test, lognormal fading, multiple-input
multiple-output (MIMO), Nakagami-m, outage probability (OP).

I. INTRODUCTION

RADIO signals generally propagate according to the mech-
anisms of reflection, diffraction, and scattering, which

roughly characterize the radio propagation by three nearly in-
dependent phenomena: path loss variance with distance, shad-
owing (or long-term fading), and multipath (or short-term) fad-
ing [1]. Except path loss, which is only distance dependent, the
other two phenomena can be statistically described by fading
models with parameters determined by using experimental ra-
dio propagation measurements. These channel models find use
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in the design and pretest evaluation of wireless communications
systems in general and of fading mitigation techniques in par-
ticular. As expectations for the performance and reliability of
wireless systems become more demanding, the significance of
accurate channel modelling in system design, evaluation, and
deployment will continue [2].

Due to the existence of a great variety of fading environments,
several statistical distributions have been proposed for channel
modelling of fading envelopes under short-term, long-term, and
mixed fading conditions. Short-term fading models include the
well-known Rayleigh, Rice [3], Hoyt [4], and Nakagami-m [5]
distributions. Recently, some other statistical distributions such
as Weibull [6]–[8] and spherically invariant random process
(SIRP) models [9, pp. 315–322], have been found to fit well
with experimental short-term fading for mobile communica-
tions. For long-term fading conditions, it is widely accepted that
the probability density function (PDF) of the fading envelopes
can be modelled by the well-known lognormal distribution [10],
[11]. When short- and long-term fading conditions coexist in
wireless mobile channels, several mixed models have been pro-
posed in order to simultaneously take into account both types
of fading impairments. The most popular among these fading
models encompass the Suzuki [12], Nakagami-lognormal [11],
and Rice-lognormal [13] models. A comprehensive summary
for the above fading statistical models can be found in [14,
Sec. II]. Recently, attention has been given to the so-called
“multiplicative” fading models [15]. Such models do not sepa-
rate the fading in several parts but rather study the phenomenon
as a whole. A physical interpretation for these models is justified
by considering received signals generated by the product of a
large number of rays reflected via N statistically independent
scatterers [15]. For N = 2, the so-called double Rayleigh (i.e.,
Rayleigh ∗ Rayleigh) fading model has been found to be suit-
able when both transmitter and receiver are moving [16]. For
higher values of N , Coulson et al. have studied the distribu-
tion of the product of N correlated Rayleigh distributed random
variables (RVs) via computer simulations [17]. It is interesting
to note that the double Rayleigh model has been recently used
for keyhole channel modeling of multiple-input multiple-output
(MIMO) systems [18], [19]. Extending this model by character-
izing the fading between each pair of the transmit and receive
antennas in the presence of the keyhole as Nakagami-m, the
double Nakagami-m (i.e., Nakagami-m ∗ Nakagami-m) fading
model has also been considered [20].

In an effort to generalize all previously mentioned re-
search works, in this paper, we introduce and analyze the
N∗Nakagami distribution constructed as the product of N statis-
tically independent, but not necessarily identically distributed,
Nakagami-m RVs. In this context, the statistics of this
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distribution is studied deriving its moments-generating func-
tion (MGF), PDF, cumulative distribution function (CDF), and
moments in closed form using Meijer’s G-functions.1 Consid-
ering the proposed distribution as the fading channel model of a
digital communication system, closed-form expressions are de-
rived for the amount of fading (AoF), outage probability (OP),
and average symbol error probability (ASEP) for several fam-
ilies of binary and multilevel modulation formats. Moreover,
with the aid of the central limit theorem (CLT), the convergence
rate of the proposed model towards the lognormal distribution
as a function of N is investigated.

The rest of the paper is organized as follows. In Section II, the
statistics of the N∗Nakagami distribution is introduced and an-
alyzed. Section III provides the performance of digital receivers
operating in N∗Nakagami fading channel model, while in Sec-
tion IV, the convergence rate of the N∗Nakagami distribution
towards the lognormal distribution is examined. Concluding re-
marks are provided in Section V.

II. DEFINITION AND STATISTICAL CHARACTERISTICS

Let us consider N ≥ 1 independent Nakagami-m2 distributed
RVs {R�}N

�=1, each with PDF

fR�
(r) =

2mm�

�

Ωm�

� Γ (m�)
r2m�−1 exp

(
−m�

Ω�
r2

)
(1)

where Γ(·) is the Gamma function [22, eq. (8.310/1)], Ω� =
E〈R2

� 〉, m� = Ω2
�/E〈(R2

� − Ω�)2〉 ≥ 1/2, and E〈·〉 denotes ex-
pectation. As is well known, the PDF in (1) includes the cases
of Rayleigh (m� = 1) and one-sided Gaussian (m� = 1/2) dis-
tributions as special cases.

Definition 1 (The N∗Nakagami distribution): We define the
distribution of the product Y of N independent, but not neces-
sarily identically distributed, RVs R�, i.e.,

Y
�
=

N∏
i=1

Ri (2)

as the N∗Nakagami distribution.
Theorem 1 (Moments-generating function): The MGF of Y

is given by

MY (s) =
1/
√

π∏N
i=1 Γ(mi)

GN,2
2,N


 4

s2

N∏
i=1

(
mi

Ωi

) ∣∣∣∣∣
1/2,1

m1, m2,..., mN




(3)

where G[·] is the Meijer’s G-function [22, eq. (9.301)].
Proof: See [23, Appendix]. �

By applying the transformation given by [22, eq. (9.301)] in (3),
G[·] can be expressed using more widely used functions, such
as the generalized hypergeometric3 [22, eq. (9.14/1)].

1Similar to other authors (e.g., [14], [21]) and since the Meijer’s G-function
is tabulated, expressions containing this special function are considered to be in
closed form.

2For the conciseness of the presentation and for the rest of the paper the term
‘Nakagami’ will be used instead of the actual ‘Nakagami-m.’

3It is noted that, both Meijer’s G-function and generalized hypergeomet-
ric function are built-in functions in the most popular mathematical software
packages such as Maple.

Lemma 1 (Probability density function): The PDF of Y is
given by

fY (y) =
2

y
∏N

i=1 Γ(mi)

× GN,0
0,N


y2

N∏
i=1

(
mi

Ωi

) ∣∣∣∣∣
−

m1, m2,..., mN


 . (4)

Proof: By applying the inverse Laplace transform L−1(·; ·) to
(3), the PDF of Y [22, Section 17.11], [24, eq. (3.38.1)]

fY (y) = L−1 {MY (s); y} (5)

can be expressed in closed form using [25, eq. (21)] as shown
in (4). �

It is noted that for N = 1 and by using [25, eq. (11)], (4)
simplifies to (1). Furthermore, for N = 2 and by using [22, eq.
(9.34/3)], (4) simplifies to

fY (y) =
4 ym1+m2−1∏2

i=1 Γ(mi) (Ωi/mi)
(m1+m2)/2

× Km1−m2

(
2y

2∏
i=1

√
mi

Ωi

)
(6)

where Kν(·) is the νth-order modified Bessel function of the
second kind [22, eq. (8.32/1)] and ν is an arbitrary constant
value. The same expression as in (6) can be also found in the
original Nakagami paper [5, eq. (90)]. For m1 = m2 = 1, (6)
becomes the so-called double Rayleigh fading model [16].

Lemma 2 (Cumulative distribution function): The CDF of Y
is given by

FY (y) =

[
N∏

i=1

Γ−1 (mi)

]

× GN,1
1,N+1


y2

N∏
i=1

(
mi

Ωi

) ∣∣∣∣∣
1

m1, m2,..., mN ,0


 . (7)

Proof: Since the CDF of Y is given by

FY (y) =
∫ y

0

fY (x) dx (8)

by substituting (4) and using [25, eq. (26)], (7) can be obtained.�
Lemma 3 (Moments): The nth order moment of Y is given by

E〈Y n〉 =
N∏

i=1

Γ (mi + n/2)
Γ(mi)

(
Ωi

mi

)n/2

. (9)

Proof: Using (2), the nth order moment of Y can be expressed
as

E〈Y n〉 = E

〈
N∏

i=1

Rn
i

〉
. (10)

Since the RVs R� are mutual independent, the above equation
can be expressed as the product of the nth order moment of each
RV as shown in (9). �
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III. PERFORMANCE ANALYSIS AND EVALUATION

Let us consider a digital communication system operating
over the previously described N∗Nakagami fading channel, and
in the presence of additive white Gaussian noise (AWGN). The
instantaneous signal-to-noise ratio (SNR) per symbol at the in-
put of its receiver is given by [14]

γ =
Es

N0
Y 2 (11)

where Es is the transmitted symbol’s average energy and N0

is the single-sided AWGN power spectral density. The corre-
sponding average SNR is

γ̄ = E〈Y 2〉 Es

N0
=

Es

N0

N∏
i=1

Ωi. (12)

Dividing (11) and (12) by parts and using (7), the CDF of γ can
be derived as

Fγ(γ) = FY




√√√√γ

γ̄

N∏
i=1

Ωi




=
1∏N

i=1 Γ(mi)
GN,1

1,N+1


γ

γ̄

N∏
i=1

mi

∣∣∣∣∣
1

m1, m2,..., mN ,0


 .

(13)

By taking the first derivative of (13) with respect to γ [26], the
corresponding PDF can be obtained as

fγ(γ) =
1

γ
∏N

i=1 Γ(mi)
GN,0

0,N


γ

γ̄

N∏
i=1

mi

∣∣∣∣∣
−

m1, m2,..., mN


 .

(14)
Note that for N = 1 and by using [25, eq. (11)], (14) simplifies to
[14, eq. (2.7)], while for N = 2 and by using [22, eq. (9.43/3)],
(14) also simplifies to a previously known result [20, eq. (31)].
With the aid of (11) and (12), the nth moment of γ can be easily
derived as

E〈γn〉 = γn
N∏

i=1

Γ(mi + n)
Γ(mi)mn

i

. (15)

A. Amount of Fading

The AoF is defined as the ratio of the variance to the square

average SNR per symbol, i.e., AF
�
= var(γ)/γ2. Using (15),

AF can be easily expressed by a simple formula

AF =
N∏

i=1

(
1 +

1
mi

)
− 1. (16)

From the above equation, it may be concluded that, since m� ≥
1/2, then 0 < AF ≤ 3N − 1 .

B. Outage Probability

The outage probability Pout is defined as the probability that
the received SNR per symbol falls below a given threshold γth.

Fig. 1. OP performance as a function of the normalized outage threshold for
the N∗Nakagami fading channel and for different values of N and m.

Using (13), this probability can be obtained as

Pout(γth) = Fγ(γth). (17)

It is noted that for low values of γth/γ̄ (i.e., high γ̄) and by using
the asymptotic expansion for the Meijer’s G-function presented
in Appendix, an accurate and simple approximation of (17) is
obtained.

Having numerically evaluated (17) in Fig. 1, Pout is plotted
as a function of the normalized outage threshold γth/γ for the
N∗Nakagami channel with N = 4, 8, and 12, and for different
values of m = m�. These results clearly show that for a fixed
value of N , Pout improves as m increases. This occurs because
by increasing m the fading severity of the cascaded channels
decreases, and hence, the deep fades generated by the product
of Nakagami fading envelopes also decreases. The obtained
results further indicate that for a given value of m, a threshold
for γth/γ̄ exists above (below) which Pout improves (degrades)
with increasing N . For example, for m = 2 this threshold is
around−15 dB. Although not shown in Fig. 1, similar thresholds
have been found for other values of m.

C. Average Symbol Error Probability

The most straightforward approach to obtain the ASEP, P̄se,
is to average the conditional symbol error probability Pse(γ)
over the PDF of γ, i.e.,

P̄se =
∫ ∞

0

Pse(γ) fγ(γ) dγ. (18)

For Pse(γ) there are well-known generic expressions for differ-
ent sets of modulation schemes, including the following:

1) binary phase/frequency shift keying (BPSK/BFSK), and
for higher values of the average input SNR, differentially
encoded BPSK (DEBPSK), quadrature phase shift keying
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(QPSK), minimum shift keying (MSK), and square M -
ary quadrature amplitude modulation (M -QAM), with
M ≥ 4, in the form of

Pse(γ) = A erfc(
√

B γ) (19)

where erfc (·) is the well-known complementary error
function [22, eq. (8.250/4)];

2) noncoherent BFSK (NBFSK) and binary differential
phase shift keying (BDPSK), in the form of

Pse(γ) = A exp(−B γ); (20)

3) π/4-differential QPSK (π/4-DQPSK) with Gray encod-
ing, M -ary phase shift keying (M -PSK), and M -ary dif-
ferential phase shift keying (M -DPSK) with M ≥ 4 in
the form of

Pse(γ) = A

∫ Λ

0

exp[−B(θ) γ] dθ. (21)

In the above Pse(γ) expressions, the particular values of A, B,
and Λ depend on the specific modulation scheme employed and
can be found in [27, Table I]. In the following, (18) is solved in
closed form using the Meijer’s G-function for each one of the
above sets of signals for the N∗Nakagami fading channel.

Using (14), (18), and (19), it can be easily recognized that
for the first set of modulating schemes (i.e., BPSK, BFSK,
DEBPSK, QPSK, MSK, and square M -QAM), it is necessary to
evaluate definite integrals, which include Meijer’s, power, and
exponential functions. Since such integrals are not tabulated, the
solution can be found with the aid of [25, eq. (21)], so that the
ASEP can be expressed as

P̄se(γ̄) = Aπ−1/2

[
N∏

i=1

Γ−1(mi)

]

×GN,2
2,N+1


 1

B γ̄

N∏
i=1

mi

∣∣∣∣∣
1/2,1

m1 m2,..., mN ,0


 . (22)

Similarly, for the second set (i.e., NBFSK and BDPSK), the
ASEP can be derived as

P̄se (γ̄) =
A∏N

i=1 Γ(mi)
GN,1

1,N


 1

B γ̄

N∏
i=1

mi

∣∣∣∣∣
1

m1, m2,..., mN




(23)

while for the third set (i.e., π/4-DQPSK with Gray encoding,
M -PSK, and M -DPSK), is given by

P̄se (γ̄) = A

[
N∏

i=1

Γ−1(mi)

]

×
∫ Λ

0

GN,1
1,N


 1

B(θ) γ̄

N∏
i=1

mi

∣∣∣∣∣
1

m1, m2,..., mN


dθ. (24)

The integral in the last equation can be evaluated via numerical
integration using any of the well-known mathematical software
packages (e.g., available in Mathematica).

Using (22)–(24), the ASEP of all these coherent and nonco-
herent binary and multilevel modulation schemes can be evalu-
ated. As a typical example in Fig. 2 the average bit error prob-

Fig. 2. ABEP performance of a Gray encoded QPSK modulation scheme
received over the N∗Nakagami fading channel for different values of N and m.

ability (ABEP) of Gray encoded QPSK P̄be = P̄se/ log2(M)
(M = 4) is presented, as a function of the average SNR per
bit γ̄b = γ̄/ log2(M) for several values of m� = m and N . As
expected, these performance evaluation results show that P̄be

improves as m increases and/or N decreases. This happens be-
cause as m increases and/or N decreases, the probability that
any of the cascaded fading channels is in deep fade increases
significantly. Thus, the higher m and/or lower N are the lower
is the fading severity of the channel. As illustrated in Fig. 2, the
above analytical performance evaluation results have also been
verified by means of computer simulations. It is also noted that
similar behavior has also been observed for Pout (see Fig. 1).

IV. LOGNORMAL DISTRIBUTION APPROXIMATION

In this section, using statistical tools and arguments, an ac-
curate approximation for the lognormal distribution with the
proposed N∗Nakagami distribution is presented. In particular,
by performing specific statistical tests, the convergence rate of
CLT for the N∗Nakagami toward the lognormal distribution is
investigated.

A. Problem Statement and Preliminaries

Let µΥ and σ2
Υ be the mean and the variance, respectively, of

a lognormally distributed RV X , which has the following CDF

FX(x) = 1 − 1
2

erfc
[
ln(x) − µΥ√

2 σΥ

]
. (25)

The average SNR per symbol γ = E〈X2〉Es/N0 is given by
γ = exp(µΥ + σ2

Υ/2).
In order to identify the necessary conditions for the

N∗Nakagami distribution Y to become a lognormal distribution
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X , it is convenient to define another RV, Υ = ln(Y ) ∆=∑N
i=1 ln(Ri). By applying the CLT and for large N , Υ tends

toward the normal (Gaussian) distribution, so that Y tends to
be lognormal distributed [28, pp. 220-221]. For the limiting
case where Y ≡ X , both distributions have the same mean
µΥ = E〈ln(Y )〉 and variance σ2

Υ = E〈ln2(Y )〉 − E〈ln(Y )〉2.
Hence, using (2) and [22, eqs. (4.352/1) and (4.358/2)], these
can be obtained as

µΥ =
1
2

N∑
i=1

[
Ψ(mi) − ln

(
mi

Ωi

)]
(26)

and

σ2
Υ =

1
4

N∑
i=1

Ψ(1)(mi) (27)

respectively, where Ψ(1)(·) is the first derivative of the Digamma
function Ψ(·) [22, eq. (8.360)].

B. K–S Goodness-of-Fit Tests

In order to measure the difference between two CDFs, a
number of statistical tests such as the absolute value of the area
between them, or their integrated mean square difference may be
applied [29]. However, a particularly simple and computational
efficient measure is the Kolmogorov–Smirnov (KS) statistical
test defined as the maximum value of the absolute difference
between the two CDFs of X and Y [28, pp. 272–273]. Thus,
for comparing one data set from FY (·) to the known FX(·), the
K–S statistical test is defined as

T �
= max |FX(x) − FY (x)| . (28)

Definition 2 (hypothesis H0): We define H0 as the null hy-
pothesis under which observed data of Y belong to the CDF of
the lognormal distribution, FX(·).

To test H0, the K–S goodness-of-fit test compares T to a
critical levelTmax, as a function of N and for a given significance
level α. Any hypothesis for which T > Tmax, is rejected with
significance 1 − α, while any hypothesis for which T < Tmax

is accepted with the same level of significance.
Following [17], but without loss of generality, we consider

that the RVs R� are independent and identically distributed Nak-
agami RVs (Ω� = Ω and m� = m). For comparison purposes,
the performance test results presented here have been obtained
from (28) using (25)–(27), for Tmax = 0.09 for at least 104

samples and a significance level of α = 5% [17, Table I]. Fig. 3
presents performance evaluation results for the K–S goodness-
of-fit test T versus the number of RVs N with m as parameter.
Similarly to [17], these comparisons have been obtained by av-
eraging the results of 30 simulation runs, each for at least 104

samples. The performance results of Fig. 3 show that for m ≤ 2
and N < 30, H0 is rejected with 95% significance although the
distribution is clearly converging toward the lognormal distribu-
tion with increasing N , which agrees with the observations made
in [15], [17]. However, as m and/or N increase, Y converges for
relatively low values of N toward the lognormal distribution.
For example, when m ≥ 10 and N ≥ 7, H0 is accepted with
95% significance.

Fig. 3. Hypothesis testing distribution using the K–S goodness-of-fit test for
the N∗Nakagami to approximate the lognormal distribution with 5% signifi-
cance level.

V. CONCLUSION

A novel distribution, referred to as N∗Nakagami, constructed
as the product of N statistically independent (but not neces-
sarily identically distributed) Nakagami RVs was introduced
and analyzed. Based on this generic distribution, a number of
open research problems have been addressed. Firstly, it was
used for performance studies of digital communication systems
employing various families of modulation schemes operating
over the N∗Nakagami fading channel model. Secondly, by
performing K–S tests, a quantification of the convergence rate
of the CLT demonstrated that even for small N , the proposed
distribution accurately approximates the lognormal distribution
and that interestingly, the convergence rate increases with an
increase of m. It would be interesting to conduct experimental
channel measurements which can verify the suitability of the
proposed N∗Nakagami distribution to indeed model realistic
wireless fading channels.

APPENDIX

Let z > 0, {ai}p
i=1, {bj}q

j=1 arbitrary real number, and m,
n, p, and q arbitrary positive integers. For z → 0, the follow-
ing asymptotic expansion of the Meijer’s G-function [30, eq.
(07.34.06.0006.01)]

Gp,q
m,n

[
z

∣∣∣∣
a1,...,an , an+1,...,ap

b1,...,bm , bm +1,...,bq

]

=
m∑

k=1

∏m
j=1
j �=k

Γ (bj − bk)
∏n

j=1 Γ (1−aj +bk)∏p
j=n+1 Γ (aj − bk)

∏q
j=m+1 Γ (1−bj +bk)

zbk

(A1)

holds, where the arguments in Gamma functions must not be
negative integers.
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