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The Trivariate and Quadrivariate Weibull Fading Distributions with
Arbitrary Correlation and their Applications to Diversity Reception

Zafiro G. Papadimitriou, P. Takis Mathiopoulos, Senior Member, IEEE, and Nikos C. Sagias, Member, IEEE

Abstract—The statistical characteristics of the trivariate and
quadrivariate Weibull fading distribution with arbitrary cor-
relation, non-identical fading parameters and average powers
are analytically studied. Novel expressions for important joint
statistics are derived using the Weibull power transformation.
These expressions are used to evaluate the performance of
selection combining (SC) and maximal ratio combining (MRC)
diversity receivers in the presence of such fading channels.

Index Terms—Multi-branch diversity, arbitrary correlation,
Weibull fading.

I. INTRODUCTION

IN the open technical literature there have been many publi-
cations concerning multivariate distributions in connection

with performance analysis of digital communication systems
in the presence of correlated fading channels (e.g. [1]–[3]).
Most of these papers deal specifically with the constant and
exponential correlation model. The arbitrary correlation model
[1], used in this letter, is the most generic correlation model
available as it allows for arbitrary correlation values between
the signals received by different branches. Clearly it includes
the constant and exponential correlation models as special
cases. In [1], new infinite series representations for the joint
probability density function (PDF) and the joint cumulative
distribution function (CDF) of three and four arbitrarily corre-
lated Rayleigh random variables (RVs) have been presented.
Furthermore, in [4] a Green’s matrix approximation for the
multivariate Weibull distribution with arbitrary correlation has
been presented and an analytical expression for the joint
CDF has been derived. However, the performance analysis
presented in [4] is restricted to selection combining (SC)
receivers and outage probability (OP) evaluation.

This letter presents a thorough analytical study of the
statistical characteristics of the arbitrary correlated trivariate
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and quadrivariate Weibull fading distributions and their appli-
cations to various diversity receivers. For both distributions
we consider the arbitrary correlation model with non-identical
fading parameters or average powers and without making any
approximation for the covariance matrix. Novel expressions
utilizing infinity series representations for the joint PDF, CDF
and moment generating function (MGF) of both distributions
will be presented. These analytical expressions will be con-
veniently used to evaluate the OP and the average bit error
probability (ABEP) for SC and maximal ratio combining
(MRC) diversity reception.

II. STATISTICAL CHARACTERISTICS

To investigate the trivariate and quadrivariate Weibull dis-
tributions, it is convenient to consider the multivariate Weibull
distribution, Z𝐿 = {𝑍1, 𝑍2, ...𝑍𝐿}. Z𝐿 is assumed to be arbi-
trarily correlated according to a positive definite covariance
matrix Ψ𝐿, with elements 𝜓𝑖𝜅 = 𝔼 ⟨𝐺𝑖𝐺∗

𝜅⟩, where 𝔼 ⟨⋅⟩
denotes expectation, ∗ complex conjugate, 𝑖, 𝜅 ∈ {1, 2, .., 𝐿}
and G𝐿 = {𝐺1, 𝐺2, ..., 𝐺𝐿} being joint complex zero mean
Gaussian 𝐿 RVs. Since 𝜓𝑖𝜅 can take arbitrary values, the
analysis presented in this section refers to the most general
correlation case.

A. Trivariate Weibull Distribution

For the case of the trivariate (i.e. 𝐿 = 3) arbitrarily
correlated1 Weibull distribution and by applying the Weibull
power transformation 𝑍 = 𝑅2/𝛽 [2, eq. (2)] in the infinite
series representation of the Rayleigh distribution [1, eq. (5)],
the joint PDF of Z3 = {𝑍1, 𝑍2, 𝑍3} can be conveniently
expressed as

𝑓Z3
(𝑧1, 𝑧2, 𝑧3) =

𝛽1𝛽2𝛽3 det(Φ3)

𝑧
(2−𝛽1)/2
1 𝑧

(2−𝛽2)/2
2 𝑧

(2−𝛽3)/2
3

× exp
[
−
(
𝑧𝛽1

1 𝜙11 + 𝑧
𝛽2

2 𝜙22 + 𝑧
𝛽3

3 𝜙33

)] ∞∑
𝑘=0

𝜖𝑘(−1)𝑘

× cos(𝑘𝜒)

∞∑
ℓ,𝑚,𝑛=0

∣𝜙12∣2ℓ+𝑘
ℓ!(ℓ+ 𝑘)!

∣𝜙23∣2𝑚+𝑘

𝑚!(𝑚+ 𝑘)!

∣𝜙31∣2𝑛+𝑘
𝑛!(𝑛+ 𝑘)!

× 𝑧𝛽1(ℓ+𝑛+𝑘)+𝛽1/2
1 𝑧

𝛽2(ℓ+𝑚+𝑘)+𝛽2/2
2 𝑧

𝛽3(𝑚+𝑛+𝑘)+𝛽3/2
3

(1)

where 𝜖𝑘 is the Neumann factor (𝜖0 = 1, 𝜖𝑘 = 2 for 𝑘 =
1, 2, ⋅ ⋅ ⋅ ), 𝜒 = 𝜒12+𝜒23+𝜒31 and Φ3 is the inverse covariance
matrix given by

Φ3 = Ψ3
−1 =

⎡
⎣ 𝜙11, 𝜙12, 𝜙13𝜙∗12, 𝜙22, 𝜙23
𝜙∗13, 𝜙

∗
23, 𝜙33

⎤
⎦ (2)

1From now on and unless otherwise stated, it will be is assumed that the
Weibull distributions under consideration are arbitrarily correlated.
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TABLE I
NUMBERS OF TERMS,𝑁𝑇 , NEEDED FOR THE OUTAGE PROBABILITY OF

TRIPLE-BRANCH SC FOR 10−5 ACCURACY (H=M=N)

𝛾𝑡ℎ/𝛾 (dB) 𝛽 = 2 𝛽 = 2.7 𝛽 = 4.1

-15 K=1 H=2 K=1 H=2 K=H=1

-10 K=2 H=3 K=H=2 K=1 H=2

-5 K=H=4 K=H=3 K=2 H=3

0 K=7 H=8 K=7 H=8 K=7 H=8

5 K=H=15 K=19 H=20 K=33 H=34

where 𝜙𝑖𝜅 = ∣𝜙𝑖𝜅∣ exp(𝚥𝜒𝑖𝜅) with 𝑖, 𝜅 ∈ {1, 2, 3} and ∣⋅∣
denoting absolute value.

By integrating (1), an infinite series representation for the
CDF of Z3 is derived as

𝐹Z3(𝑧1, 𝑧2, 𝑧3) =
det(Φ3)

𝜙11𝜙22𝜙33

∞∑
𝑘=0

𝜖𝑘(−1)𝑘

× cos(𝑘𝜒)

∞∑
ℓ,𝑚,𝑛=0

𝐶3𝜈
ℓ+𝑘/2
12 𝜈

𝑚+𝑘/2
23 𝜈

𝑛+𝑘/2
31

× 𝛾
(
𝛿1, 𝑧

𝛽1

1 𝜙11

)
𝛾
(
𝛿2, 𝑧

𝛽2

2 𝜙22

)
𝛾
(
𝛿3, 𝑧

𝛽3

3 𝜙33

)
(3)

where 𝐶3 = [ℓ!(ℓ + 𝑘)!𝑚!(𝑚 + 𝑘)!𝑛!(𝑛 + 𝑘)!]−1, 𝜈𝑖𝜅 =
∣𝜙𝑖𝜅∣2/𝜙𝑖𝑖𝜙𝜅𝜅, 𝛿1 = ℓ + 𝑛 + 𝑘 + 1, 𝛿2 = 𝑚 + ℓ + 𝑘 + 1,
and 𝛿3 = 𝑛+𝑚+ 𝑘 + 1 with 𝛾(⋅, ⋅) denoting the incomplete
lower Gamma function [5, eq. (3.381/1)].

Although the exact numerical evaluation of (3) requires the
summation of an infinite number of terms, in practice only a
few terms are required to be evaluated. Such truncation in (3)
results in an error, 𝐸𝑇 , given by

𝐸𝑇 =

∞∑
𝑘=𝐾

∞∑
𝑙=0

∞∑
𝑚=0

∞∑
𝑛=0

𝐺 (𝑘, 𝑙,𝑚, 𝑛)

+

𝐾−1∑
𝑘=0

∞∑
𝑙=𝐻

∞∑
𝑚=0

∞∑
𝑛=0

𝐺 (𝑘, 𝑙,𝑚, 𝑛)

+

𝐾−1∑
𝑘=0

𝐻−1∑
𝑙=0

∞∑
𝑚=𝑀

∞∑
𝑛=0

𝐺 (𝑘, 𝑙,𝑚, 𝑛)

+
𝐾−1∑
𝑘=0

𝐻−1∑
𝑙=0

𝑀−1∑
𝑚=0

∞∑
𝑛=𝑁

𝐺 (𝑘, 𝑙,𝑚, 𝑛)

(4)

where

𝐺 (𝑘, 𝑙,𝑚, 𝑛) =
det(Φ3)

𝜙11𝜙22𝜙33
𝜖𝑘(−1)𝑘 cos(𝑘𝜒)

× 𝐶3 𝜈
ℓ+𝑘/2
12 𝜈

𝑚+𝑘/2
23 𝜈

𝑛+𝑘/2
31

× 𝛾
(
𝛿1, 𝑧

𝛽1

1 𝜙11

)
𝛾
(
𝛿2, 𝑧

𝛽2

2 𝜙22

)
𝛾
(
𝛿3, 𝑧

𝛽3

3 𝜙33

) (5)

and 𝐾,𝐻,𝑀 and 𝑁 are the number of terms required to
achieve certain accuracy. Noting that 𝛾(𝑎, 𝑥) ≤ Γ(𝑎), where
Γ (⋅) is the gamma function [5, eq. (8.310/1)] and following a
similar approach as the one presented in [1], an upper bound
for 𝐸𝑇 has been obtained. Although, due to space limitation,
the expression will not be given here, typical performance
evaluation results are presented in Table I.

To verify the correctness of the above general expressions,
the two previously used spatial correlation models, i.e. con-
stant and exponential, will be studied as special cases.

1) Constant Correlation Model: Its normalized correlation
matrix consists of the elements 𝜓𝑖𝜅 = 𝜌 (𝑖 ∕= 𝜅) and 𝜓𝑖𝑖 = 1,
where −1/2 ≤ 𝜌 < 1 [6]. Moreover, it can been shown that
in this case 𝜒 = 𝜒12+𝜒23+𝜒31 = 3𝜋 [1]. As a consequence,
for the constant correlation model, (3) simplifies to

𝐹Z3
(𝑧1, 𝑧2, 𝑧3) =

(1− 𝜌)(1 + 2𝜌)2

(1 + 𝜌)3

∞∑
𝑘=0

𝜖𝑘

×
∞∑

ℓ,𝑚,𝑛=0

𝐶3

(
𝜌

1 + 𝜌

)𝛿1+𝛿2+𝛿3−3

𝜆1𝜆2𝜆3

(6)

where 𝜆ℓ = 𝛾

[
𝛿ℓ,

(1+𝜌)𝑧
𝛽ℓ
ℓ

(1+𝜌−2𝜌2)Ωℓ

]
and Ω𝑖 = 𝔼

〈
𝑍𝑖

𝛽𝑖

〉
.

For Ω1 = Ω2 = Ω3 = Ω , (6) is consistent with the analysis
presented in [2] for the multivariate Weibull distribution with
constant correlation and for identical average powers.

2) Exponential Correlation Model: In this case, the nor-
malized correlation matrix is 𝜓𝑖𝜅 = 𝜌∣𝑖−𝜅∣, where 0 ≤ 𝜌 < 1
and 𝜙31 = 𝜙13 = 02. Thus, (3) simplifies to

𝐹Z3
(𝑧1, 𝑧2, 𝑧3) =

(1 − 𝜌2)
(1 + 𝜌2)

∞∑
ℓ,𝑚=0

1

(ℓ!)2(𝑚!)2

×
(
𝜌2

1 + 𝜌2

)ℓ+𝑚

𝛾

[
ℓ+ 1,

𝑧𝛽1

1

(1− 𝜌2)Ω1

]

× 𝛾
[
ℓ+𝑚+ 1,

(1 + 𝜌2)𝑧𝛽2

2

(1− 𝜌2)Ω2

]

× 𝛾
[
𝑚+ 1,

𝑧𝛽3

3

(1− 𝜌2)Ω3

]
.

(7)

Similar to the constant correlation model, for Ω1 = Ω2 =
Ω3 = Ω , (7) simplifies to a previously known expression for
𝐿 = 3 [2, eq. (28)]. It is underlined though that, since the
CDF expressions (6) and (7) include the case of non-identical
average powers, they are more general than those presented
in [2].

The joint MGF of Z3 can expressed as 𝑀Z3
(𝑠1, 𝑠2, 𝑠3) =

𝔼⟨exp(−𝑠1𝑍1 − 𝑠2𝑍2 − 𝑠3𝑍3)⟩. From (1) and following the
integral solutions using the Meijer G-function presented in [2,

2It can be easily proved (e.g. see [7]) that for the exponential correlation
model the inverse covariance matrix is tridiagonal, i.e. 𝜙𝑖𝜅 = 0 for ∣𝑖− 𝜅∣ >
1 ∀𝑖 ∕= 𝜅.
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pp. 3610], the following novel expression has been obtained

𝑀Z3
(𝑠1, 𝑠2, 𝑠3) = 𝛽1𝛽2𝛽3 det(Φ3)

∞∑
𝑘=0

𝜖𝑘(−1)𝑘 cos(𝑘𝜒)

×
∞∑

ℓ,𝑚,𝑛=0

𝐶3
∣𝜙12∣2ℓ+𝑘 ∣𝜙23∣2𝑚+𝑘 ∣𝜙31∣2𝑛+𝑘

𝑠
𝛽1(ℓ+𝑛+𝑘+1)
1 𝑠

𝛽2(ℓ+𝑚+𝑘+1)
2 𝑠

𝛽3(𝑚+𝑛+𝑘+1)
3

×Υ

[
𝜙11

𝑠𝛽1

1

, 𝛽1(ℓ+ 𝑛+ 𝑘 + 1)

]

×Υ

[
𝜙22

𝑠𝛽2

2

, 𝛽2(ℓ+𝑚+ 𝑘 + 1)

]

×Υ

[
𝜙33

𝑠𝛽3

3

, 𝛽3(𝑚+ 𝑛+ 𝑘 + 1)

]

(8)

where Υ(⋅) is given in [2, eq. 8].

B. Quadrivariate Weibull Distribution

For the case of the quadrivariate (i.e. 𝐿 = 4) Weibull
distribution, we consider the inverse covariance matrix, Φ4,
expressed as

Φ4 = Ψ−1
4 =

⎡
⎢⎢⎣
𝜙11, 𝜙12, 𝜙13, 0
𝜙∗12, 𝜙22, 𝜙23, 𝜙24
𝜙∗13, 𝜙∗23, 𝜙33, 𝜙34
0, 𝜙∗24, 𝜙

∗
34, 𝜙44

⎤
⎥⎥⎦ (9)

where the 𝜙𝑖𝜅 𝑖, 𝜅 ∈ {1, 2, 3, 4} can take arbitrary values
with the restriction of 𝜙14 = 𝜙∗14 = 0. Although this restric-
tion is mainly a mathematical assumption, necessary for the
derivation of the equivalent statistics and does not necessarily
correspond to a physical explanation, it is underlined that
our approach is more general than of [8] for the multivariate
Rayleigh distribution. More specifically, the statistical proper-
ties derived in [8] hold only under the assumption that Φ𝐿 is
tridiagonal, i.e. when 𝜙𝑖𝜅 = 0 for ∣𝑖− 𝜅∣ > 1 ∀𝑖 ∕= 𝜅. The
same assumption was used in [4], where the correlation matrix
was approached by the tridiagonal Green matrix.

In principle, an expression for the joint PDF of Z4 =
{𝑍1, 𝑍2, 𝑍3, 𝑍4} can be derived using [1, eq. (16)] and by
applying the power transformation described in [2, eq. (2)]
as a product of the modified Bessel function of the first
kind 𝐼𝑛(𝑢). However, this approach will not be adopted
since expressions containing modified Bessel functions are
difficult to be mathematically manipulated, e.g. performing
integrations. Instead, a more convenient approach is to use its
infinite series expansion [5, eq. (8.447/1)]. Thus, the following
PDF is obtained

𝑓Z4
(𝑧1, 𝑧2, 𝑧3, 𝑧4) = 𝛽1𝛽2𝛽3𝛽4 det(Φ4)

× exp
[
−
(
𝑧𝛽1

1 𝜙11 + 𝑧
𝛽2

2 𝜙22

)]
× exp

[
−
(
𝑧𝛽3

3 𝜙33 + 𝑧
𝛽4

4 𝜙44

)]
×

∞∑
𝑗=0

∞∑
𝑘=−∞

𝜖𝑗(−1)𝑗+𝑘 cos(𝐴)
∞∑

ℓ,𝑚,𝑛,𝑝,𝑞=0

𝐶4

× ∣𝜙12∣2ℓ+𝑗 ∣𝜙13∣2𝑚+𝑗 ∣𝜙24∣2𝑛+∣𝑘∣ ∣𝜙34∣2𝑝+∣𝑘∣

× ∣𝜙23∣2𝑞+∣𝑗+𝑘∣
𝑧
𝛽1(ℓ+𝑛+𝑗+1)−1
1 𝑧

𝛽2[𝐽1]−1
2

× 𝑧𝛽3[𝐽2]−1
3 𝑧

𝛽4(𝑛+𝑝+∣𝑘∣/2+1)−1
4

(10)

where 𝐶4 = [ℓ!(ℓ+𝑗)!𝑚!(𝑚+𝑗)!𝑛!(𝑛+ ∣𝑘∣)!𝑝!(𝑝+ ∣𝑘∣)!𝑞!(𝑞+
∣𝑘 + 𝑗∣)!]−1, 𝐴 = 𝑗(𝜒12 + 𝜒23 + 𝜒31) + 𝑘(𝜒23 + 𝜒34 + 𝜒42),
𝐽1 = ℓ+𝑛+ 𝑞+(𝑗 + ∣𝑘∣+ ∣𝑗 + 𝑘∣)/2+ 1 𝐽2 = 𝑚+ 𝑝+ 𝑞+
(𝑗 + ∣𝑘∣+ ∣𝑗 + 𝑘∣)/2 + 1.

By integrating (10), the corresponding CDF becomes

𝐹Z4(𝑧1, 𝑧2, 𝑧3, 𝑧4) = det(Φ4)

∞∑
𝑗=0

∞∑
𝑘=−∞

𝜖𝑗

× (−1)𝑗+𝑘 cos(𝐴)

∞∑
ℓ,𝑚,𝑛,𝑝=0

𝐶4 ∣𝜙12∣2ℓ+𝑗 ∣𝜙13∣2𝑚+𝑗

× ∣𝜙24∣2𝑛+∣𝑘∣ ∣𝜙34∣2𝑝+∣𝑘∣ 𝛾
(
ℓ+𝑚+ 𝑗 + 1, 𝑧𝛽1

1 𝜙11

)
𝜙ℓ+𝑚+𝑗+1
11

×
𝛾
(
𝑛+ 𝑝+ ∣𝑘∣+ 1, 𝑧𝛽4

4 𝜙44

)
𝜙
𝑛+𝑝+∣𝑘∣+1
44

∞∑
𝑞=0

∣𝜙23∣2𝑞+∣𝑗+𝑘∣

×
𝛾
[
𝐽1, 𝑧

𝛽2

2 𝜙22

]
𝜙𝐽1
22

𝛾
[
𝐽2, 𝑧

𝛽3

3 𝜙33

]
𝜙𝐽2
33

.

(11)

Considering the exponential correlation model as special
case3 and by substituting 𝜓𝑖𝜅 = 𝜌∣𝑖−𝜅∣ in (11), the equivalent
CDF for the exponential correlation has been found to be
identical with a previously known expression [2, eq. (28)] for
𝐿 = 4.

Finally, using (10) and [2, eq. 8] the equivalent MGF has
been obtained as

𝑀Z4
(𝑠1, 𝑠2, 𝑠3, 𝑠4) = 𝛽1𝛽2𝛽3𝛽4det(Φ4)

×
∞∑
𝑗=0

∞∑
𝑘=−∞

𝜖𝑗(−1)𝑗+𝑘 cos(𝐴)

∞∑
ℓ,𝑚,𝑛,𝑝,𝑞=0

𝐶4

× ∣𝜙12∣2ℓ+𝑗 ∣𝜙23∣2𝑚+𝑗 ∣𝜙24∣2𝑛+∣𝑘∣ ∣𝜙34∣2𝑝+∣𝑘∣

× ∣𝜙23∣2𝑞+∣𝑗+𝑘∣ Υ
[
𝜙11/𝑠

𝛽1

1 , 𝛽1(ℓ +𝑚+ 𝑗 + 1)
]

𝑠
𝛽1(ℓ+𝑚+𝑗+1)
1

×
Υ
[
𝜙22/𝑠

𝛽2

2 , 𝛽2(𝐽1)
]

𝑠
𝛽2(𝐽1)
2

Υ
[
𝜙33/𝑠

𝛽3

3 , 𝛽3(𝐽2)
]

𝑠
𝛽3(𝐽2)
3

×
Υ
[
𝜙44/𝑠

𝛽4

4 , 𝛽4(𝑛+ 𝑝+ ∣𝑘∣+ 1)
]

𝑠
𝛽4(𝑛+𝑝+∣𝑘∣+1)
4

.

(12)

III. PERFORMANCE ANALYSIS

In this section important performance criteria for diversity
receivers with three or four arbitrarily correlated diversity
branches operating over Weibull fading and additive white
Gaussian noise (AWGN) channels will be studied. In par-
ticular, by using the previously derived expressions for the
statistical characteristics of the trivariate and quadrivariate
Weibull distribution, the performance of MRC and SC diver-
sity receivers will be studied and their OP and ABEP will be
derived.

For the system model considered, the equivalent baseband
signal received at the ℓth branch can be mathematically

3The constant correlation model is not considered as a special case for the
quadrivariate case since for the matrix with elements 𝜓𝑖𝜅 = 𝜌 (𝑖 ∕= 𝜅) and
𝜓𝑖𝑖 = 1, the restriction 𝜙14 = 𝜙∗14 = 0 for its inverse does not hold.
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Fig. 1. Outage probability of triple-branch SC receiver as a function of the
first branch normalized outage threshold for different values of 𝛽 and 𝛿.

expressed as 𝜁ℓ = 𝑤ℎℓ + 𝑛ℓ where 𝑤 is the complex
transmitted symbol having average energy 𝐸𝑠 = 𝔼⟨∣𝑤∣2⟩, ℎℓ
is the complex channel fading envelope with its magnitude
𝑍ℓ = ∣ℎℓ∣ being a Weibull distributed RV and 𝑛ℓ is the
AWGN with single-sided power spectral density 𝑁0. The
instantaneous, per symbol, SNR of the ℓth diversity channel
is 𝛾ℓ = 𝑍2

ℓ𝐸𝑠/𝑁0, while its average is 𝛾ℓ = 𝔼⟨𝑍2
ℓ ⟩𝐸𝑠/𝑁0 =

Γ(𝑑2,ℓ)Ω
2/𝛽ℓ

ℓ 𝐸𝑠/𝑁0 where in general 𝑑𝜏,ℓ = 1 + 𝜏/𝛽ℓ with
𝜏 > 0. Note that it is straightforward to obtain expressions for
the statistics of 𝛾ℓ by replacing at the previously mentioned
expressions for the fading envelope 𝑍ℓ (e.g. in (3), (8), (11)
and (12)), 𝛽ℓ with 𝛽ℓ/2 and Ωℓ with (𝛼ℓ𝛾ℓ)

𝛽ℓ/2 [2]. Thus,
denoting 𝜸𝑳={𝛾1, 𝛾2, ...𝛾𝐿}, the CDF 𝐹𝜸𝑳(𝛾1, 𝛾2, ..., 𝛾𝐿) and
the MGF𝑀𝜸𝑳(𝑠1, 𝑠2, ..., 𝑠𝐿) of the SNR for the trivariate and
quadrivariate Weibull distribution can be easily obtained, but
will not be presented here due to space limitation.

1) Performance of MRC Receivers: For MRC receivers the
output, per symbol, SNR (SNRo), is 𝛾𝑚𝑟𝑐 =

∑𝐿
ℓ=1 𝛾ℓ [9]. To

obtain the ABEP performance it is convenient to use the MGF-
based approach. Hence, the MGF of the 𝐿-branch MRC output
can be derived as 𝑀𝛾𝑚𝑟𝑐(𝑠) = 𝑀𝜸𝑳(𝑠, 𝑠, .., 𝑠). By using
the MGF-based approach, the ASEP of noncoherent binary
frequency-shift keying (NBFSK) and binary differential phase-
shift keying (BDPSK) modulation signaling can be directly
calculated. For other types of modulation formats, numerical
integration is needed in order to evaluate single integrals with
finite limits.

2) Outage Probability of SC Receivers: The instantaneous
SNR at the output of a 𝐿-branch SC receiver will be the SNR
with the highest instantaneous value between all branches,
i.e. 𝛾𝑠𝑐 = max{𝛾1, 𝛾2, ..., 𝛾𝐿} [10]. Since the CDF of 𝛾𝑠𝑐,
𝐹𝜸𝒔𝒄(𝛾𝑠𝑐) = 𝐹𝜸(𝛾𝑠𝑐, 𝛾𝑠𝑐, ..., 𝛾𝑠𝑐), 𝑃𝑜𝑢𝑡 can be easily obtained
as 𝑃𝑜𝑢𝑡(𝛾𝑡ℎ) = 𝐹𝛾𝑠𝑐(𝛾𝑡ℎ) for both trivariate and quadrivariate
cases.

Fig. 2. ABEP of triple-branch MRC receiver as a function of the average
input SNR for different values of 𝛽 and 𝛿.

IV. PERFORMANCE EVALUATION RESULTS AND

DISCUSSION

Using the previous mathematical analysis, in this section
performance evaluation results for the SC and MRC receivers
will be presented. Non-identical distributed Weibull channels,
i.e., 𝛾ℓ = 𝛾1 exp[−(ℓ− 1)𝛿] where 𝛿 is the power decay factor
are considered and for the convenience of the presentation, but
without any loss of generality, 𝛽ℓ = 𝛽 ∀ ℓ will be assumed.

Considering a triple-branch diversity receiver with the lin-
early arbitrary normalized covariance matrix4 given in [3, pp.
886] and SC diversity, the OP has been obtained as a function
of the first branch normalized outage threshold 𝛾𝑡ℎ/𝛾1 for
different values of 𝛽 and 𝛿. The performance evaluation
results, illustrated in Fig. 1, indicate that 𝑃𝑜𝑢𝑡 degrades with
increasing 𝛾𝑡ℎ/𝛾1 and 𝛿 and/or decreasing 𝛽. Note that for
𝛽 = 2 and 𝛿 = 0 the obtained results are in agreement with
previously known performance evaluation results presented in
[4]. The number of terms,𝑁𝑇 , needed for the OP to achieve an
accuracy better than 10−5, after the truncation of the infinite
series and for the case 𝛿 = 0 are shown in Table I, revealing
the series convergence behavior. Clearly, 𝑁𝑇 strongly depends
on the normalized outage threshold 𝛾𝑡ℎ/𝛾, as an increase in
𝛾𝑡ℎ/𝛾 leads to an increase of 𝑁𝑇 .

For MRC receivers and BDPSK signaling, the ABEP has
been obtained and is illustrated in Figs. 2 and 3 for three
or four receiving branches, assuming the covariance matrices
presented in [3, pp. 886] and [1, eq. (34)], respectively. As
expected, the ABEP improves as the first branch average input
SNR 𝛾1 increases, while for a fixed value of 𝛾1, similar
to the SC diversity, a decrease of 𝛽 and/or an increase of
𝛿 degrades the ABEP. Furthermore, performance evaluation

4Note that the covariance matrix specifies the fading correlation between
two complex Gaussian RVs.
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Fig. 3. ABEP of four-branch MRC receiver as a function of the first branch
average input SNR per bit for different values of 𝛽.

results obtained by means of computer simulation are also
shown in Figs. 2 and 3 and have verified the accuracy of the
analysis. It is finally noted that for the four-branch diversity
reception and 𝛾1 > 5 dB, only one term is required to achieve
ABEP accuracy better than 10−5.
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