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Effects of Carrier Phase Error on EGC Receivers in
Correlated Nakagami-m Fading
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Abstract— The effects of incoherently combining on dual-
branch equal-gain combining (EGC) receivers in the presence
of correlated, but not necessarily identical, Nakagami-m fading
and additive white Gaussian noise are studied. Novel closed-
form expressions for the moments of the output signal-to-noise
ratio (SNR) are derived. Based on these expressions, the average
output SNR and the amount of fading are obtained in closed-
form. Moreover, the outage and the average bit error probability
for binary and quadrature phase-shift keying are also studied
using the moments-based approach. Numerical and computer
simulation results clearly depict the effect of the carrier phase
error, correlation coefficient, and fading severity on the EGC
performance. An interesting finding is that higher values of the
correlation coefficient results to lower irreducible error floors.

Index Terms— Bit error rate (BER), carrier phase error, equal-
gain combining (EGC), Nakagami-m fading, outage probability,
phase-locked loop (PLL).

I. INTRODUCTION

D IGITAL communication receivers employing equal-gain
combining (EGC) present significant practical interest,

because they provide performance comparable to maximal-
ratio combining receivers, but with simpler implementation
complexity. In EGC, the received signals are co-phased,
equally weighted, and then summed to form the resultant
signal [1]. This letter focuses on EGC receivers operating
in correlative fading. Among recently published papers on
this topic, including [2]–[4], the usual assumption for perfect
carrier phase estimation has been made. However, several
impairments, such as Doppler spread in the carrier frequency
and the presence of noise and interference in the carrier re-
covery loops do not allow for perfect estimation of the carrier
phase. Hence, when carrier phase estimation errors are further
assumed, only one paper has been published [5] in which the
average bit error probability (ABEP) is approximated using
the Gram-Charlier series expansion. However, in that useful
work, identical and statistically independent Rayleigh fading
has been considered.

In this paper, we extend [5] for the case of dual-branch
EGC receivers operating over correlated, but not necessarily
identically distributed, Nakagami-m fading channels [1]. By
deriving exact closed-form expressions for the moments of the
output signal-to-noise ratio (SNR), we study: i) the average
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output SNR and the amount of fading (AoF) which are
expressed in closed-forms, ii) the outage probability and the
ABEP for binary and quadrature phase-shift keying (BPSK
and QPSK) modulation signallings which are investigated
using the well-known moments-generating function (mgf)
approach and the Padé approximants [4]. Numerical and
computer simulations results demonstrate the impact of the
correlation coefficient on the EGC performance, especially in
cases where the effects of carrier phase error are not dominant.

II. SYSTEM AND CHANNEL MODEL

Let s be a transmitted signal of energy Es = E 〈|s|2〉, with
s = ±1 (M = 2) for BPSK and s = ± exp(±j π/4) (M = 4)
for QPSK and with M being the complex alphabet size (E 〈·〉
denotes statistical averaging and j =

√−1 is the complex op-
erator), which is corrupted by correlated multiplicative fading
and additive white Gaussian noise (AWGN). After multiplying
the received signals of the respective channel by the complex
conjugate of the phase-shift estimates, the complex baseband
signal at the output of the dual-branch EGC receiver can be
written as

z =
2∑

i=1

{s ri exp [j (ϕi − ϕ̂i)] + ni} (1)

where n� is the �th AWGN envelope (� = 1 and 2) with
a single-sided power spectral density N0 identical to both
diversity input channels. Moreover, r1 and r2 represent the
correlated fading envelopes modelled as Nakagami-m dis-
tributed random variables (RV)s, ϕ� is the random phase-
shift introduced by the �th channel assumed to be uniformly
distributed in the interval (−π, π], and ϕ̂� is the estimated
phase of ϕ� at the receiver. The usual assumptions are made,
that the channel fading is sufficiently slow to allow the
implementation of coherent detection, the phase processes are
slowly varying so that they are considered constant over one
signaling interval, and that the carrier phase errors, caused by
a first order phase-locked loop (PLL), follows the Tikhonov
distribution.

Since r� is a Nakagami-m RV, the instantaneous SNR per
symbol at the �th input branch γ� = r2

� Es/N0 is a Gamma
distributed RV with a marginal probability density function
(pdf) given by [1, eq. (2.21)]

fγ�
(γ) =

(
m

γ�

)m
γm−1

Γ(m)
exp

(
−m

γ�

γ

)
. (2)

In the above equation, γ� and m are the average SNR per
symbol γ� = E 〈

r2
�

〉
Es/N0 and the Nakagami-m fading

parameter, respectively, and Γ (·) is the Gamma function [6,
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eq. (8.310/1)]. The (n + k)th order product moments of γ1

and γ2 are [4]

E 〈
γn
1 γk

2

〉
= γn

1 γk
2

Γ(m + n) Γ(m + k)
mn+k Γ2(m) 2F1(−n, −k; m; ρ)

(3)
where ρ is the correlation coefficient between envelopes r1

and r2 and 2F1 (·, ·; ·; ·) is the Gauss hypergeometric function
[6, eq. (9.100)].

Let ψ� denotes the phase estimation error, i.e., ψ� = ϕ� −
ϕ̂�. When Gaussian noise is present in the recovery loop, the
steady-state pdf of the phase error in the �th PLL, is given by

fψ�
(ψ) =

exp [ζ� cos(ψ)]
2π I0 (ζ�)

, |ψ| ≤ π (4)

where In (·) is the nth order modified Bessel of the first kind
[6, Section 8.40] and ζ� is the SNR in the �th loop. When
ζ� ≥ 10 dB, the root mean square (RMS) phase error σψ�

=
E 〈

ψ2
�

〉
can be approximated as σψ�

� 1/
√

ζ�.

III. STATISTICS OF THE EGC OUTPUT SNR

The instantaneous SNR per symbol at the output of the
dual-branch EGC receiver can be written as

γegc =
A2

2

[
2∑

i=1

√
γi cos (ψi + ξ)

]2

(5)

where for BPSK, A = 1 and ξ = 0, while for QPSK, A =
√

2
and ξ = −π/4.

A. Moments of the Output SNR

By definition and using (5), the nth order moment of
the EGC output SNR per symbol, µn = E 〈

γn
egc

〉
, can be

expressed as

µn =
A2n

2n
E

〈[
2∑

i=1

√
γi cos (ψi + ξ)

]2n〉
. (6)

By using the well-known binomial identity [6, eq. (1.111)],
(6) can be written as

µn = (2n)!
A2n

2n

2n∑
k1=0

k2=2n−k1

E
〈

2∏
i=1

γ
ki/2
i

ki!
coski (ψi + ξ)

〉
.

(7)
In the above equation, the pairs γ� and ψ�, as well as ψ1

and ψ2 are statistically independent, and thus, the above
mean product can be rewritten as the product of three mean
terms. The first two of them are the k�th order moment of
cos (ψ� + ξ) given by [5]

E 〈cosn (ψ� + ξ)〉 =
1
2n

n∑
k=0

(
n

k

)
I|2k−n| (ζ�)

I0 (ζ�)
cos[(2k−n) ξ]

(8)
while the third one is given by (3). Hence, by replacing (3)
and (8) in (7), the nth moment of the EGC output SNR per

symbol can be expressed in closed-form as

µn =
A2n (2n)!

(8m)n Γ2(m)

2n∑
k1=0

k2=2n−k1

2F1

(
−k1

2
, −k2

2
; m; ρ

)

×
2∏

i=1

γ
ki/2
i Γ

(
m +

ki

2

)

×
ki∑

q=0

(
ki

q

)
I|2q−ki| (ζi)

I0 (ζi)
cos[(2q − ki) ξ].

(9)

Note, that for γ1 = γ2, ρ = 0, and m = 1, (9) reduces to an
already known expression [5, eq. (61)] for independent and
identically distributed Rayleigh fading channels.

1) Average output SNR: The EGC average output SNR
per symbol γegc is a useful performance measure serving as
an excellent indicator of the overall system’s fidelity. This
measure can be obtained in closed-form by setting n = 1
in (9) as γegc = µ1.

2) Amount of fading: The AoF, AF
∆= var (γegc) /γ2

egc, is
considered as a unified measure of the fading severity and is
typically independent of the average fading power [1]. Using
(9), the AoF at the EGC output can be easily expressed in a
simple closed-form expression as AF = µ2/µ2

1 − 1.
It is important to underline, that the higher order moments

(n ≥ 3) are useful in signal processing algorithms for
signal detection, classification and estimation since they play
a fundamental role in analyzing the performance of wideband
communications systems in presence of fading [7].

B. MGF of the Output SNR

The mgf of the EGC output SNR per symbol Mγegc
(s)

�
=

E 〈exp (s γegc)〉 can be represented as a formal Taylor power
series as Mγegc

(s) =
∑∞

n=0 µn sn/n!. Although that the
moments of all orders can be evaluated in closed-form (see
(9)), we can not definitely conclude the number of terms which
are needed in order to converge or whether it converges. The
Padé approximants method is an efficient way for evaluating
Mγegc

(s) where practically only a few number of moments
are used. A Padé approximant, is that rational function of
polynomials of a specified order N + 1 for the denominator
and N for the nominator which can accurately approximate
Mγegc

(s). For such a rational function, the first (2N + 1)
order moments are need in order to construct the approxi-
mated Mγegc

(s). Note, that the Padé approximants method
is available in most of the well-known mathematical software
packages, such as Mathematica and Maple.

1) Outage probability: Let γth be a certain specified thresh-
old. The outage probability is defined as the probability that
γegc falls below γth and can be derived as

Pout (γth) = L−1

[Mγegc
(−s)

s
; γegc

]∣∣∣∣
γegc=γth

(10)

where L−1 (·; ·) denotes the inverse Laplace transform. Due to
the Padé’s rational form of Mγegc

(s), the outage probability
can be easily evaluated as

Pout (γth) =
N+1∑
i=1

λi

pi
exp (pi γth) (11)



582 IEEE COMMUNICATIONS LETTERS, VOL. 9, NO. 7, JULY 2005

TABLE I

IRREDUCIBLE ERROR FLOORS FOR RMS PHASE ERROR σψ = 20◦ .

(BPSK AND γ1 = γ2)

m = 1 m = 2 m = 3

ρ = 0 2.38 10−6 7.15 10−7 5.96 10−7

ρ = 0.5 1.79 10−6 4.76 10−7 2.76 10−7

ρ = 0.9 4.76 10−7 1.5 10−7 10−7

where pi and λi are the poles and the residues, respectively,
of the Padé rational form of Mγegc

(s) [4].
2) Average bit error probability: Using the Padé’s rational

form of Mγegc
(s) and in order to calculate the ABEP of BPSK

and QPSK, simple integrals of the form

P be =
gpsk

π

∫ π−π/M

0

Mγegc

[
− sin2(π/M)

gpsk sin2(x)

]
dx (12)

have to be numerically evaluated, where gpsk = 1/ log2(M).

IV. NUMERICAL AND SIMULATION RESULTS

The ABEP performance of the EGC is depicted in Figs. 1
and 2 for BPSK, N = 11, and σψ1 = σψ2 = σψ . In Fig. 1,
P be is plotted as a function of γ = γ1 = γ2, σψ = 20◦, and
several values for m and ρ. As expected, an increase on the
fading severity and / or ρ leads to a decrease of P be. For an
increase of ρ from 0 to 0.5, an SNR penalty of about 2dB is
observed for m = 1. Furthermore, as m increases, the error
floor due to phase error dominance appears at lower values
of P be and surprisingly, for fixed values of m and γ, the
higher value of ρ the lower irreducible error floor appears. It
should be mentioned, that for the special case of ρ = 0 and
m = 1 the same results as that in [5, Fig. 3 and Table V]
are obtained. In Fig. 2, P be is plotted as a function of σψ

for a desired γ1 = 15 dB, γ2 = 0.5 γ1, and several values
for m and ρ. For medium to high values of σψ (e.g. σψ >
25◦), the impact of phase error is significant, and hence, ρ
has minor effect on the ABEP. In contrary, when σψ < 25◦,
the impact of the correlated fading channel dominates. For
the special case of σψ = 0◦, same results with that in [4] are
obtained. Monte Carlo simulations have been also performed
and the corresponding results are included in Figs. 1 and 2
for comparison purposes. It is easily recognized, that there is
a good match between numerical and computer simulations
results. Finally, the decreasing irreducible error floor values
with increasing ρ are summarized in Table I.
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