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A Closed-Form Upper-Bound for the Distribution
of the Weighted Sum of Rayleigh Variates
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Abstract— The problem of finding the distribution of the sum
of more than two Rayleigh fading envelopes has never been
solved in terms of tabulated functions. In this letter, we present
a closed-form union upper-bound for the cumulative distribution
function of the weighted sum of N independent Rayleigh fading
envelopes. Computer simulation results verify the tightness of the
proposed bound for several values of N . The proposed bound
can be efficiently applied in various wireless applications, such
as satellite communications, equal-gain receivers, and radars.

Index Terms— Equal-gain diversity, false alarm probability,
Rayleigh fading, sum of fading envelopes.

I. INTRODUCTION

THE theoretical analysis of wireless digital communica-
tions systems usually deals with complicated and cum-

bersome statistical tasks, where an analytical solution is very
difficult, if not impossible, to be extracted in terms of tabulated
functions. The calculation of the cumulative distribution func-
tion (CDF) of the weighted sum of N statistically independent
Rayleigh fading envelopes is one of them, which arises in
several wireless applications. For example, the distribution of
such a sum is required for the calculation of the error bounds
for coding on generalized mobile satellite fading channels [1].
Another important application is related to the performance
analysis of equal-gain combining receivers, in which the
received faded signals are equally weighted, cophased, and
summed to produce the output signal. Furthermore, in the
scientific field of radar receivers, the decision level for a
preassigned false-alarm probability requires determining of the
CDF of such sums [2], while they can be useful in other
important applications which are related to signal detection
and linear equalizing, as well as intersymbol interference and
phase jitter analysis.

Despite the usefulness of the CDF of the sum of N Rayleigh
distributed random variables (RV)s, a closed-form solution has
not been given for more than 90 years when N > 2. Several
attempts to address this problem using approximative solutions
have been presented by several authors. In a pioneer work of
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Beaulieu [3], an infinite series approach for determining this
CDF has been developed. This paper also lists all the related
works on this topic up to that time. In two other papers,
Helstrom has computed the distribution of the sum using
saddle-point integration for uniformly weighted RVs [4], as
well as for arbitrary weights [5]. More recently, Karagiannidis
and Kotsopoulos have presented a semi-analytical approach
based on Hermite numerical integration, for the calculation of
the CDF of the weighted sum of Nakagami-m and Ricean RVs
[6]. However, although the problem of finding the distribution
of the sum of Rayleigh distributed RVs has been well-studied,
all presented methods are approximative solutions in which
the truncation error has to be taken into account. The use
of bounds, as opposed to approximations, serves as a safe
technique of addressing this problem in a computational
efficient and easy way.

In this letter, a closed-form solution for the distribution
of the product of N independent Rayleigh distributed RVs
is presented. Using the well-known inequality between arith-
metic and geometric mean, also applied in [7] for the sum
of Lognormal variates, an efficient closed-form union upper-
bound for the CDF of the weighted sum of N independent
Rayleigh distributed RVs is derived. The tightness of the
proposed bound is verified by comparison with performance
evaluation results of the exact CDF, obtained by means of
computer simulations.

II. AN UPPER-BOUND FOR THE

DISTRIBUTION OF THE WEIGHTED SUM OF RVS

Let {X�}N
�=1 be N statistically independent and identically

distributed Rayleigh RVs having the probability density func-
tion (PDF)

fX�
(x) =

2x

Ω
exp

(
−x2

Ω

)
(1)

where x ≥ 0 and Ω = E 〈
X2

�

〉 ∀�, with E 〈·〉 denoting
statistical averaging.

We define a new RV X , as the product of N RVs X�, i.e.,

X
∆=

N∏
i=1

Xi. (2)

Using the well-known inequality between arithmetic and ge-
ometric mean [8, Section 11.116]

AN ≥ GN (3)
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for the weighted RVs k� X�, where k�’s are N positive
constant weights, GN is the geometric mean

GN
∆=

N∏
i=1

(ki Xi)
1/N (4)

and AN is the arithmetic mean

AN
∆=

1
N

N∑
i=1

ki Xi (5)

a lower-bound for RV S, defined as the weighted sum of X�’s,
i.e.,

S
∆=

N∑
i=1

ki Xi (6)

can be obtained as

S ≥ X1/N

(
N

N∏
i=1

k
1/N
i

)
. (7)

In order to study the statistics of S, an expression for
the distribution of X is needed to be derived. The moment-
generating function (MGF) of X is

MX(s) = E 〈exp(−sX)〉

=

∞∫
0

· · ·
∞∫
0

∞∫
0

exp

(
−s

N∏
i=1

xi

)
N∏

i=1

fXi
(xi) dx1 dx2 · · · dxN

(8)

which using (1) can be written as

MX(s) =
2N

ΩN

×
∫ ∞

0

xN exp
(
−x2

N

Ω

)
· · ·

∫ ∞

0

x2 exp
(
−x2

2

Ω

)

×
∫ ∞

0

x1 exp

(
−s

N∏
i=1

xi

)
exp

(
−x2

1

Ω

)
dx1 dx2 · · · dxN .

(9)

The first integral in (9), i.e., the one on x1, is of the form

I1 =
∫ ∞

0

x1 exp(−sW2 x1) exp
(
−x2

1

Ω

)
dx1 (10)

where W� =
∏N

i=� xi. Integrals of the form of (10) can
be solved using [8, eq. (3.462/5)] and the solution can be
transformed [9, eq. (12)] in terms of the tabulated Meijer’s
G-function [8, eq. (9.301)], leading to

I1 =
2√

π (sW2)
2 G1 , 2

2 , 1

[
4

Ω (sW2)
2

∣∣∣∣ −1/2 , 0
0

]
. (11)

Using the above solution for I1, the second integral in (9),
i.e., the one on x2, can be written as

I2 =
2√

π (sW3)
2

∫ ∞

0

x−1
2 G1 , 0

0 , 1

[
x2

2

Ω

∣∣∣∣ −
0

]

× G1 , 2
2 , 1

[
4/x2

2

Ω (sW3)
2

∣∣∣∣ −1/2 , 0
0

]
dx2

(12)

which after applying the transformation y = x2
2 and by using

[8, eq. (9.31.2)], yields

I2 =
1√

π (sW3)
2

∫ ∞

0

y−1 G1 , 0
0 , 1

[
y

Ω

∣∣∣∣ −
0

]

× G2 , 1
1 , 2

[
(sW3)

2
y

4/Ω

∣∣∣∣ 1
3/2 , 1

]
dy.

(13)

With the aid of [9, eq. (21)], the above integral can be solved
as

I2 =
1√

π (sW3)
2 G2 , 2

2 , 2

[
(sW3)

2

4
Ω2

∣∣∣∣ 1 , 1
3/2 , 1

]
. (14)

Following the same procedure, the N -fold integral in (9), can
be expressed in closed-form as

MX(s) =
4 s−2

√
π ΩN

G2 , N
N , 2

[
ΩN

4
s2

∣∣∣∣ 1, 1, . . . , 1
3/2 , 1

]
. (15)

Taking into account that the PDF of X can be derived from
its MGF as

fX(x) = L−1 {MX(s);x} (16)

where L−1 (·; ·) denotes Laplace transform inversion, using
[10] we obtain

fX(x) =
2x

ΩN
GN , 0

0 , N

[
x2

ΩN

∣∣∣∣ −
0, 0, . . . , 0

]
. (17)

Note, that for N = 2 and by using [9, eq. (14)], (17) reduces
to a previously known result [11, eq. (90)] given by Nakagami

fX(x) =
4x

Ω2
K0

(
2x

Ω

)
(18)

where K0 (·) is the zeroth order modified Bessel function of
the second kind [8, Section 8.40]. Using (17) and [9, eq. (26)],
the CDF of the product of N Rayleigh RVs can be expressed
in closed-form as

FX(x) =
x2

ΩN
GN , 1

1 , N+1

[
x2

ΩN

∣∣∣∣ 0
0, 0, . . . , 0, −1

]
. (19)

Having a readily available expression for the CDF of X
as shown in (19) and from (7), an upper-bound for the CDF
of the sum of N weighted independent Rayleigh RVs can be
obtained in closed-form as

FS(x) ≤ (x/N)2N

ΩN
∏N

i=1 k2
i

× GN , 1
1 , N+1

[
(x/N)2N

ΩN
∏N

i=1 k2
i

∣∣∣∣ 0
0, 0, . . . , 0, −1

]
.

(20)

We have to mention, that the above form of Meijer’s G-
function can be written in terms of more familiar generalized
Hypergeometric [8, eq. (9.14/1)] functions, but it is not
presented due to space limitations. Moreover, both Meijer’s
and generalized Hypergeometric functions are included as
built in functions in most of popular mathematical software
packages, which are useful for numerical evaluation. Note that
alternatively, the problem of finding the CDF of S may be
equally stated as of finding the sum of N non-identically
distributed (but equally-weighted) RVs with k2

� Ω average
power each.
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Fig. 1. Bounded and exact CDF of the sum of equally weighted Rayleigh
distributed RVs.

III. NUMERICAL RESULTS AND DISCUSSION

Having numerically evaluated (20), the bounds for the CDF
of the sum of, equally and non-equally, weighted Rayleigh
RVs are presented in Figs. 1 and 2, respectively, for moderate
values of N with practical interest. In order to verify the
tightness of the proposed bound, computer simulations have
been also performed and corresponding results for the exact
CDF FS (·) have been included in each figure for comparison
purposes. In Fig. 1, the CDF is plotted for N = 3, 4, and
6 with k� = 1 ∀�, as a function of x/

√
Ω. As it becomes

evident, the proposed bound provides good accuracy, since
the numerically evaluating results (dot lines) are close to the
exact simulation ones (solid lines) for FS (·). Moreover, the
less the value of N , the better accuracy is observed. In Fig. 2,
the CDF is plotted for the same values of N with Fig. 1,
but with non-equally weighted RVs k� = exp[−0.35 (� − 1)]
∀�, as a function of x/(kµ

√
Ω) where k2

µ =
∑N

i=1 k2
i /N .

Once again, note the close match between the proposed bound
and the exact simulated curves. Comparing Figs. 1 and 2, it
can be observed that the bound is slightly improved in case
of non-equally weighted RVs. For example, for N = 6 and
Fs (·) = 10−5, the difference between exact and bound, in
Figs. 1 and 2, is 0.46 and 0.31, respectively. It is also evident
that for non-equal weights, both bounds and exact curves move
towards the curve for N = 1 (dash line) in which the bound
is identical to the exact as (7) reads.

IV. CONCLUSIONS

With the aid of the well-known arithmetic–geometric mean
inequality, a closed-form union upper-bound for the CDF
of the weighted sum of N independent Rayleigh distributed
fading envelopes, was presented. Comparisons with computer
simulation results shown that the proposed bound is tight

Fig. 2. Bounded and exact CDF of the sum of non-equally weighted Rayleigh
distributed RVs.

especially for moderate values of N with practical interest
and/or non-equally weighted RVs.
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