922

IEEE COMMUNICATIONS LETTERS, VOL. 11, NO. 12, DECEMBER 2007

Error Rate Analysis of Threshold-Based Hybrid Selection/Maximal-Ratio
Diversity over Correlated Nakagami-m Fading Channels

Nikos C. Sagias, Member, IEEE, and Kostas Peppas, Member, IEEE

Abstract— An exact performance analysis of triple-branch
threshold-based hybrid selection/maximal-ratio combining (T-
HS/MRC) receivers over correlated Nakagami-m fading channels
is presented. Our analysis is valid for integer-order fading
parameters and an arbitrary covariance matrix. Following the
moment-generating function-based approach, the error rate per-
formance of T-HS/MRC receivers for various modulation formats
is analytically obtained. Various performance evaluation results
are also presented and compared to equivalent simulation ones.

Index Terms— Average symbol error probability (ASEP), cor-
related statistics, diversity, maximal-ratio combining (MRC),
Nakagami-m distribution, selection combining (SC).

I. INTRODUCTION

ECEIVE diversity is one of the most effective techniques

to improve the performance of a wireless communication
system in a fading environment, with well-known schemes
being selection combining (SC), maximal-ratio combining
(MRC), and hybrid selection/MRC (HS/MRC) [1], [2]. Re-
cently, a more sophisticated scheme known as threshold-based
HS/MRC (T-HS/MRC) has been introduced, where first, the
ratio of the instantaneous signal-to-noise ratio (SNR) of each
diversity branch to that with the highest value is estimated
and compared to a fixed predefined threshold. Then, MRC is
applied only to those branches ratios being equal to or higher
than this predefined threshold.

In the technical literature, there are several papers dealing
with performance analysis of T-HS/MRC receivers. In [3]-
[6], the performance of T-HS/MRC with independent diver-
sity branches has been analyzed. The average symbol error
probability (ASEP) in equicorrelated Nakagami-m fading has
been studied by Zhang and Beaulieu in [7], whereas in [8], the
same authors have extended their results assuming an arbitrary
correlation matrix using the Green’s matrix approximation [9].

This letter deals with the error rate performance of triple-
branch T-HS/MRC receivers operating over not necessar-
ily identically distributed (id) Nakagami-m fading channels,
with integer-order fading parameters and an arbitrary covari-
ance matrix. More specifically, by extracting the moment-
generating function (MGF) of the T-HS/MRC output SNR in
terms of rapidly convergent infinite series, an exact analytical
solution for the ASEP is derived. The analysis can be applied
to several linear modulation schemes including M -ary phase
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shift keying (M-PSK) and quadrature amplitude modulation
(M-QAM).

II. CHANNEL AND SYSTEM MODEL

In this section, the Nakagami-m joint probability density
function (PDF) is first presented and then used to asses the
T-HS/MRC SNR output statistics. The usual assumptions are
made that all channels are noise limited (i.e., additive white
Gaussian noise), frequency flat and slow fading, and that the
receiver has perfect channels state information.

A. Nakagami-m Joint Statistics

Let v1, 72, 3 be the instantaneous Nakagami-m received
SNRs per symbol having an arbitrary covariance matrix X
with elements X = \/PM/ YoV /(2m3) VL £ (0 =
1,2,3) and ¥, = 7,/m, with m = 2,3,... denoting the
integer-order fading parameter, 7, being the ¢th average input
SNR per symbol, and pg ¢ denoting the correlation coefficient
between v, and 4. The joint PDF of v, 79, 3 is given by
[10], [11]

exp (— S a w/?>
[det (2/2)]™ (by ba bg)™ "
1 — . vkemil[ME—2 (1
Xm—1k§71k( 2 (2m—3>
X I, (b1 /71 72) Ik (b2 /2 73) i (b3 /71 73)

where det () =7, 7,73 T/ (2m*) is the determinant of X,

with T'= 2m — p12 — p2,3 — p1,3 + /2 p1,2 p2,3 p1,3/m and
Ij (-) denotes the kth-order modified Bessel function of the
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B. T-HS/MRC SNR Output Statistics

Let us define a fixed threshold p (0 < p < 1) and also
sort 1, ¥2, 7y3 in a descending order, e.g., Y1) = V2) = V3)
having a joint PDF that can be expressed using (1) as
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with arguments z; > xo > x3, e¢ € S3 denoting
e = {er[1], ee[2], e¢[3]}, one specific permutation of integers
{1,2,3}. The T-HS/MRC allows the number of combined
branches to be a random variable, the value of which is
determined according to the following rule: In each sampling
period by comparing j to ;) /7(1), only these branches where
V(&) = K1) holds are coherently combined according to the
MRC scheme. More specifically, the instantaneous T-HS/MRC
output SNR per symbol is

“
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where L = 1,2,3 is an integer variable that represents the
number of branches being combined. Hence for 0 < p < 1,
we have the following three disjoint events:

o For pyay > v2) 2 v@3), L =1,

« For v1) > @) = wya) >3y, L =2, and

« For v1) 2 v@2) = v3) =2 vy, L=3.
Also, setting ¢+ = 0 and 1, the MRC and SC schemes may be
employed, respectively.

III. ASEP OF TRIPLE-BRANCH T-HS/MRC RECEIVERS

The probability space of the three events presented in the
previous section can be formed joining all partitions [7].
Hence, the ASEP of T-HS/MRC can be calculated as

(se,L=1)
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where Pr(se, L = () is the ASEP of T-HS/MRC when the
event that ¢ branches that satisfy the threshold conditions
are selected, occurs. For each event of L, the probability
Pr(se,L = /) can be separately calculated following the
MGF-based approach.

A. Error Probability Analysis

Using (3), (4), the definition of MGF, and an infinite series
representation for Bessel functions [12, egs. (8.445), (8.350/2),
and (8.352/2)], the MGF of (; for each one of the three
possible values of L can be represented by a unified analytical
expression which includes only elementary functions and is
given by (6) (at top of this page), with ny = [ + j + k,
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with (i); = (i+j—1)!/(i—1)! standing for the Pochhammer
symbol (¢, j positive integers). Also in (7), u1 =n1 +p1 +1,
ug =n1+p2+1,uz3 =—p2+na+1,us =n1+p;+p2+1,
us = —p1+n3+1,ug =—p2+p1+n2+1,
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TABLE 1
NUMBER OF REQUIRED TERMS FOR CONVERGENCE OF THE ABEP OF
BDPSK BASED ON (5) AND (6) WITH ¢, < 5%.

7 (dB) m =2 m =3 m =4
p: 05108 05]08 05 [ 038

5 3 ] 3 4 ] 4 4 | 6

0 3 1 3 4 ] 3 4 [ s

5 2 | 3 3 ] 3 4 | 4
10 1] 2 3] 3 4 | 4
15 R 3 ] 3 3 ] 3

Note that for ¢ = 0, (6) numerically agrees with M, (s) =
[det(I5 4 s X)]~™ for MRC receivers, with I3 being the 3 x 3
identity matrix.

Based on (5) and (6), the average bit error probabil-
ity (ABEP) for non-coherent binary frequency shift keying
(NBFSK) and binary differential phase shift keying (BDPSK)
modulation signallings can be directly calculated (e.g. for
BDPSK, Py, = 0.5 33 _, M, (1)). For other types of mod-
ulation formats, such as M-PSK and M-QAM, single integrals
with finite limits and integrands composed of elementary
(exponential and trigonometric) functions have to be readily
evaluated via numerical integration.

B. Numerical and Computer Simulation Results

Numerical and computer simulation results for T-HS/MRC
receivers operating over linearly correlated (p12 = p23 =
0.795 and p; 3 = 0.605) and non id Nakagami-m fading chan-
nels are provided, assuming an exponential power decaying
profile 7, = 7, exp[—0.1 (£ —1)].

Setting equal summation limits for the truncation of (5),
(6) to all sums, Table I summarizes the number of terms
needed so as the ABEP of BDPSK to converge with relative
error e, < 5% comparing with accurate computer simulations.
An increase on the first branch average SNR per bit, 7, =
7,/ logo (M), results to a decrease of the required number
of terms, while for a fixed 7,, the required number of terms
for convergence slightly increases with increasing m and/or
w. Also, from additional convergence experiments that were
conducted it was observed that an increase on the value of
any of the correlation coefficients results to a small increase
of the required summation terms.

In Fig. 1, a few curves for the ABEP, Py, = P,/ log,(M),
for Gray-encoded square M-QAM modulation format are
plotted as a function of 7, for m = 2 and various p and
M. As expected, the ABEP improves as pu, M decrease
and/or 7, increases. In the same figure, the numerically
evaluated results are compared to equivalent simulation ones.
These comparisons clearly show that all curves for the ABEP
coincide with square pattern signs obtained via simulations,
verifying the correctness of the presented analysis.

IV. CONCLUSIONS

By following the MGF-based approach, infinite series rep-
resentations for the error rate performance of the triple-branch
T-HS/MRC receivers over arbitrarily correlated Nakagami-
m fading channels were obtained. Extensive numerical and
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Fig. 1. ABEP of triple-branch T-HS/MRC for Gray-encoded square M-
QAM modulation with m = 2 and a linearly arbitrary correlation model as
a function of the first branch average input SNR per bit.

computer simulation results were presented and compared, and
not only a perfect match was observed, but also the infinite
series were shown to be rapidly convergent.
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