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Abstract—In this paper, a study on the end-to-end performance
of multihop non-regenerative relaying over independent and
identical generalized-gamma fading channels is presented. Novel
closed-form bounds for the cumulative distribution function, the
moments, and the moment generating function (MGF) of the end-
to-end signal-to-noise ratio are presented. Using the MGF-based
approach, closed-form expressions for the amounf-of-fading, the
outage probability, and the average bit error probability for
binary differential phase shift keying are derived. In order to
validate the accuracy of the proposed mathematical analysis,
various numerical and computer simulation results are presented
and compared to the analytical ones.

Index Terms—Multi-hop relaying, generalized-gamma fading,
outage probability, average bit error probability, amplify-and-
forward.

I. INTRODUCTION

Recently, multihop networks technology has attracted great
interest as it is a promising solution for the high data rate
coverage required in future cellular, wireless local area and
hybrid networks [1]–[7]. In a multihop system, the mobile
terminal relays a signal between the base station and a nearby
mobile terminal when the direct link between the base station
and the original mobile terminal is in deep fade. As a result,
signals from the source to the destination propagate through
different hops/links.

A versatile fading channel model is the generalized-gamma
(GG) distribution [8]. The GG distribution includes the
Rayleigh, the Nakagami-m and the Weibull distribution as
special cases and the lognormal distribution as a limiting case.
Furthermore, it is considered to be mathematically tractable, as
compared to lognormal-based models, and recently has gained
increased interest in the field of digital communications over
fading channels.

In [9], the end-to-end outage probability as well as the
average error rate for multihop wireless systems with non
regenerative relaying operating over Weibull fading channels
were evaluated. In [10]–[16], the end-to-end outage probability
as well as the average error rate for dual-hop wireless systems
with non regenerative relaying operating over Rayleigh and
Nakagami-m fading channels were presented. In [17], [18],
performance bounds for multihop relayed transmissions with
fixed-gain relays over Rice, Hoyt, and Nakagami-m fading
channels using the moments-based approach were given.
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Fig. 1. The multihop communication system under consideration.

Moreover, in [19], an extensive performance analysis for dual-
hop relaying communication systems over GG fading was
presented.

Motivated by all the above, in this paper, we analyze the per-
formance of non regenerative (amplify-and-forward) multihop
systems operating over i.i.d GG fading channels. In order to
derive exact closed-form expressions for the end-to-end signal-
to-noise ratio (SNR) statistics, a tight upper bound for the end-
to-end SNR is used. Closed-form expressions for the statistics
of the proposed bound, namely the probability density function
(PDF), the moments and the moment generating function
(MGF) are presented. Using the MGF approach, lower bounds
for the outage probability (OP) and the average bit error
probability (ABEP) of binary differential phase shift keying
(BDPSK) are also given in closed form. Computer simulation
results are also presented which demonstrate the tightness of
the proposed bound especially at medium and high SNR.

II. SYSTEM AND CHANNEL MODEL

We consider a multihop system as shown in Fig. 1, with
a source node communicating with a destination node with
N − 1 relay nodes. The fading channel coefficients between
source-to-relays and relays-to-destination are independent GG
random variables. The overall SNR at the receiving end can
be written as [11]:

γequ =

[
N∏

n=1

(
1 +

1

γn

)
− 1

]−1

. (1)

The equivalent SNR expression in (1) is not easily tractable
due to the complexity in finding the statistics associated with
it. Fortunately, this form can be bounded by [19]

γequ < γb = min(γ1, . . . , γN ). (2)
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Since the fading envelopes βi follows the GG distribution,
the PDF of γi can be written as

fγi(γ) =
βiγ

miβi
2 −1

2(mi − 1)!(τi γi)
miβi

2

exp

⎡
⎣−(

γ

τiγi

) βi
2

⎤
⎦ . (3)

where βi > 0 and mi = 1, 2, · · · are parameters related to
fading severity, γi = E〈γi〉 with E〈·〉 denoting expectation
and τi = (mi − 1)!/Γ(mi + 2/βi) where Γ(·) is the gamma
function. For βi = 2, (3) reduces to the Nakagami-m fading
distribution whereas for m = 1 the Weibull distribution is
obtained. The corresponding cumulative distribution function
of γi is given by

Fγi(γ) = 1− exp

⎡
⎣−(

γ

τi γi

) βi
2

⎤
⎦mi−1∑

i=0

1

i!

(
γ

τi γi

) iβi
2

. (4)

III. STATISTICS OF THE END-TO-END SNR

A. Cumulative Distribution Function

Using (2) and (4) the CDF of γb for independent and
identically distributed (i.i.d) hops (mi = m,βi = β, τi = τ ,
and γi = γ ∀i), and for integers values of mi can be expressed
as

Fγb
(γ) = 1− [1− Fγ(γ)]

N
= 1− exp

[
−N

(
γ

τγ

) β
2

]

×
[
m−1∑
i=0

1

i!

(
γ

τ γ

) iβ
2

]N

.

(5)

Using the multinomial identity [20], (5) can be reexpressed as

Fγb
(γ) = 1−N ! exp

[
−N

(
γ

τ γ

) β
2

]

×
N∑

n0,n1,...,nm−1=0
n0+n1+···+nm−1=N

An0,n1,...,nm−1 γβ
∑m−1

i=1
ini
2

(6)

where

An0,n1,...,nm−1 =

m−1∏
i=0

1

(i!)nini! (τ γ)
β i ni

2

. (7)

B. PDF and the Moments

The PDF of γb can be found by taking the derivative of (6)
with respect to γ. After some straightforward manipulations,

the PDF can be expressed as

fγb
(γ) =

βN

2 (τ γ)
β
2

exp

[
−N

(
γ

τγ

) β
2

]
γ

β
2 −1 N !

×
N∑

n0,n1,...,nm−1=0
n0+n1+···+nm−1=N

An0,n1,...,nm−1

− γβ
∑m−1

i=1

ini
2 exp

[
−N

(
γ

τγ

) β
2

]
βN !

2

×
N∑

n0,n1,...,nm−1=0
n0+n1+···+nm−1=N

An0,n1,...,nm−1

× γ−1+β
∑m−1

i=1
ini
2

m−1∑
i=1

i ni.

(8)

The ν − th moment of γb is defined as

μγb
(ν) �

∫ ∞

0

γνfγb
(γ)dγ. (9)

By making a change of variables t = N (γ/τ γ)β/2 and using
the definition of the gamma function, the ν-th moment of γb
can be expressed in closed form as

μγb
(ν) = N !

N∑
n0,n1,...,nm−1=0

n0+n1+···+nm−1=N

An0,n1,...,nm−1N
1− 2η1

β

× (τγ)
η1β
2 Γ

[
2η1
β

]
−N !

N∑
n0,n1,...,nm−1=0

n0+n1+···+nm−1=N

An0,n1,...,nm−1

× (τγ)η2

N
2η2
β

Γ

[
2η1
β

]m−1∑
i=1

i ni

(10)

where

η1 = ν +
β

2

m−1∑
i=1

i ni +
β

2
(11a)

and

η2 = η1 − β

2
. (11b)

C. Moment Generating Function

The MGF of γb, defined as

Mγb
(s) � E 〈exp (−s γb)〉 (12)

can be easily evaluated given the CDF of γb as

Mγb
(s) = sL{Fγb

(γ); s} (13)

where L{·} denotes the Laplace transform. Using [21, Eq.
(2.2.1.22)], the MGF of γb can be expressed in closed form
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as

Mγb
(s) = 1−N !

N∑
n0,n1,...,nm−1=0

n0+n1+···+nm−1=N

An0,n1,...,nm−1

×
√
k lν1+

1
2 s−ν1

(2π)
k+l
2 −1

G k,l
l,k

[
Nkll

(τ γ)
βk
2 kksl

∣∣∣Δ(l,−ν1)
Δ(k,0)

]

(14)

where G k,l
l,k[·] is the Meijer’s G-function [20, eq. (9.301)],

k and l are the minimum integers that satisfy β = 2l/k,
Δ(k, α) = α

k ,
α+1
k , . . . , α+k−1

k and

ν1 =
β

2

m−1∑
i=1

ini. (15)

IV. PERFORMANCE ANALYSIS

Using the previously derived formulas, lower bounds for the
AoF, the OP, as well as the ABEP for BDPSK modulation
are derived for the end-to-end performance of the serial
communication system under consideration.

A. Amount of Fading (AoF)

The amount of fading (AoF) is a unified measure of the
severity of the fading defined by the ratio of the variance of the
received energy to the square of the average received energy.
For the considered system, using (10), AoF can be expressed
in closed form as follows

AF =
μγb

(2)

μγb
(1)2

− 1. (16)

B. Outage Probability

The outage probability is defined as the probability that the
end-to-end output SNR, falls below a specified threshold γth.
For the considered multihop system the use of upper bound γb
leads to lower bounds for the OP at the destination terminal D
expressed as Pout(γth) ≥ Fb(γth). The OP of the considered
system can be obtained based on (5) as

Pout(γth) = Fγb
(γth) . (17)

C. Average Bit Error Probability

The ABEP of BDPSK can be expressed using the MGF
expression, given by (14), as

Pbe =
1

2
Mγb

(1) (18)

V. NUMERICAL AND COMPUTER SIMULATION RESULTS

In this section, numerical and computer simulation results
of the ABEP and the OP are presented. We assume that γ1 =
γ2 = · · · = γN . In Fig. 2 lower bounds for the ABEP of
BDPSK are plotted as a function of the average input SNR (γ)
for various values of N with m, β be constant. It is obvious
that ABEP improves with a decrease in N . Also, in Fig. 3
the ABEP of BDPSK is plotted as a function of the average
input SNR (γ) for various values of β with m, N be constant.
As expected, ABEP improves with an increase in β. For both

Fig. 2. ABEP of multihop wireless communication system operating over
identical (i.i.d.) GG fading channels with BDPSK modulation as a function
of the average input SNR per bit for m = 3, β = 3 and different number of
relays.

Fig. 3. ABEP of multihop wireless communication system operating over
identical (i.i.d.) GG fading channels with BDPSK modulation as a function
of the average input SNR per bit for m = 3, N = 3 and various values of β.

test cases, curves for the exact error performance, obtained
via Monte Carlo simulations and assuming end-to-end SNR
given by (1) are also depicted for comparison purposes. As
it is evident, the tightness of the error performance increase
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Fig. 4. Outage probability of multihop wireless communication system
operating over identical (i.i.d.) GG fading channels as a function of the inverse
normalized outage threshold for m = 3, β = 3 and different number of relays.

as SNR increased; however, the proposed bounds lose their
tightness in the low and medium SNR region as N increases.
Finally, in Fig. 4 lower bounds for the OP are plotted as a
function of the inverse normalized outage threshold γ/γth and
for different values of N . As expected, OP improves as γ/γth
and/or N , decreases. Curves for the exact OP, obtained via
Monte Carlo simulations and assuming end-to-end SNR given
by (1) are also included for comparison purposes. It is obvious
that the difference between the exact and the obtained bound
gets tighter with the increase of the SNR. Also, it is obvious
that the outage bound gets tighter as N gets smaller.

VI. CONCLUSIONS

In this paper, we provided performance bounds for multihop
transmissions with non-regenerative relays in series, operating
over i.i.d GG fading channels. The end-to-end SNR is deter-
minate and upper bounded and novel closed-form expressions
for the MGF, PDF, and CDF of this upper bounded SNR
were derived. Additionally, tight lower bounds for the OP,
the ABEP, and AoF were presented. The obtained results
show that the obtained bounds gets tighter with the increase
of the SNR. Also, it is obvious that the bounds gets tighter
as N gets smaller. Finally numerical results were provided
that demonstrated the accuracy of the proposed mathematical
approach. Computer simulation results were also included that
verified the accuracy and the correctness of the proposed
analysis.
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