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Abstract—We present results for the performance of a pre-
amplified optical receiver using LDPC and RS error correction
codes. The LDPC codes under consideration were recently pro-
posed for the 5G communication standard and their construction
is suitable for correcting the burst errors that are introduced
by PPM. The results show that the LDPCs can provide a very
significant coding gain in comparison with the uncoded system.
They also perform better than RS codes of an equal code rate
and equivalent data block size.

Index Terms—Optical Amplifier, Pulse Position Modulation,
Low Density Parity Check Codes, Reed Solomon Codes

I. INTRODUCTION

Optical technologies are being envisaged as an alternative
to radio for the implementation of reliable, high-capacity
space communication links and recent demonstrations have
employed highly sensitive optical receivers to successfully
transfer data at unpreceded rates [1], [2], [3], [4]. Some of
the key communication technologies that were utilized include
optical amplification, orthogonal modulation such as pulse
position modulation (PPM) and coding, which all aim to
reduce the power that is required to achieve low bit error
probabilities (BEPs) at the receiver.

The advances in coding have demonstrated the capability
of constructing codes that perform close to the Shannon
limit. Low Density Parity Check (LDPC) codes, in particular,
demonstrate such potential [5] and recently they were included
for channel coding in the 5G standard [6]. The LDPC code
construction that is presented within the standard results in
a parity-check matrix that constitutes of smaller block sub-
matrices. The sub-matrices are cyclic permutations of the
identity matrix of size Zc × Zc, where Zc is the lifting size,
and this construction method ensures that the parity checks
are never performed on successive bits. This is important for
PPM, since a single symbol error may cause an error burst
of up to consecutive log2 Q bits, where Q is the modulation
order. Assuming that Zc ≫ log2 Q, which is expected for
practically considered PPM orders and data blocks, the bits of
the error burst will participate in different parity checks and
can be corrected independently.

In the current work, we assess via Monte Carlo (MC)
simulations the performance of the 5G LDPC codes in an
optically pre-amplified PPM receiver. LDPC codes have been
previously studied with PPM for receiver models that include
the Poisson and Gaussian [7], [8], [9], [10], [11], [12], however
we consider a more accurate model for the pre-amplified PPM
receiver that relies on χ2 statistics [13], [14]. χ2 statistics
complicate the calculation of the likelihoods that are required
at the LDPC decoder [15], since the corresponding likelihood
function involves the evaluation of a generalized hypergeomet-
ric series. We maintain the exact relations for the likelihood
functions and accurately simulate the significant coding gain
that can be achieved from the utilization of LDPC codes under
χ2 signal reception. Moreover, we compare the 5G LDPC
codes with Reed Solomon (RS) ones, which also have the
capability of correcting the burst errors introduced by PPM [7].
Our results show that the LDPCs perform better than the RS
codes in all simulated scenarios that involve 4- and 16-PPM,
coding rates of 1/3 and 2/3, and varying bandwidth optical
filters. The relative improvement of LDPCs is dependent on
the three aforementioned parameters, and their use favored
by higher modulation orders, lower coding rates and narrower
optical filters.

The rest of this paper is structured as follows: Section II
discusses the LDPC code construction of the 5G standard, as
well as RS codes. The χ2 reception model is also described in
detail, along with the required modifications in the likelihood
function and log-likelihood-ratios (LLRs) that are required
to utilize the binary LDPC decoder in PPM modulation and
χ2 statistics. The MC simulation results are presented in
Section III, along with the performance comparison of LDPC
and RS codes. Finally, Section IV summarizes the findings
and concludes the paper.

II. SYSTEM MODELS

The setup under consideration is shown in Fig. 1. The
data are encoded using LDPC or RS codes and the resulting
codeword is partitioned in PPM symbols. At the receiving side,
the symbols are amplified and optical noise is added by the am-
plifier. The signal is filtered in the optical domain and the noisy
symbols are detected on a photodiode. The electrical current979-8-3503-9958-5/22/$31.00 ©2022 IEEE
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Fig. 1: Setup for the optically pre-amplified PPM communica-
tion system. Fl: optical filter, PD: photodiode, Int: integrator.

is integrated over each PPM slot duration, and the resulting
signal values are utilized by the demodulator to estimate
the transmitted PPM symbol and the corresponding bits. The
received bits are grouped into codewords which are processed
by the decoder to reconstruct the original data stream. The en-
coder/decoder, receiver and modulator/demodulator operations
are presented in more detail in the following sub-sections.

A. RS and LDPC Codes

In the RS coded system, the data bits are grouped into
k symbols of m bits each, and the RS encoder generates
codewords of n = 2m − 1 symbols. We select RS codes
with m = 8, 9, 10 so that m > log2 Q and multiple PPM
symbols are mapped to a single RS symbol. As a result, it
is possible to correct up to m/ log2 Q consecutive erroneous
PPM symbols whenever they are located within the same RS
symbol, since this will be perceived as a single error at the
decoder. The decoder uses the Berlekamp–Massey algorithm
for error correction and is capable of correcting up to (n−k)/2
symbol errors per codeword.

For the LDPC system, the quasi-cyclic parity-check matrix
structure of the 5G standard is used to generate the codewords
[6]. We consider data blocks between 720 and 7040 bits,
thus we utilize both Base Graph (BG) structures of the
standard and assess the performance for several combinations
of lifting sizes Zc and bits per block Kb. The combinations
of parameters are summarized in Table I and are selected
so that the resulting block sizes are similar to the ones of
the RS codes. The information block columns are always
fixed to Kb (10 or 22), depending on the BG selection, so
as to avoid padding the data blocks. The desired code rate
(CR) is achieved by selecting the first Kb/CR block columns
and Kb(1−CR)/CR block rows of the parity-check matrix.
The encoder utilizes the double-diagonal structure of the core
parity sub-matrix to calculate the core parity bits, while the
extension parity bits are calculated via substitution from the
extension parity sub-matrix. In contrast with the 5G standard,
the codeword is not shortened/punctured and all the bits are
transmitted to the decoder. The decoder is based on the min-
sum iterative message passing algorithm [16, eq. (1)] and
utilizes the log-likelihoods-ratios (LLRs) that are generated at
the PPM demodulator using the methodology that is presented
in the next section. The maximum number of iterations at the
decoder is limited to 10 [8], which provides an acceptable
trade-off between performance loss and execution time [17].

TABLE I: LDPC Code Parameter

Data Block (bits) Code Rate BG iLS Kb Zc

720 1/3 2 4 10 72
1600 1/3 2 2 10 160
3520 1/3 2 5 10 352
1280 2/3 2 0 10 128
2880 2/3 2 4 10 288
7040 2/3 1 2 22 320

B. Receiver and Demodulator Models

We consider an IM/DD receiver, where the incoming optical
signal is optically amplified and filtered prior to square law
detection. The optical signal is modulated using PPM and
each PPM symbol comprises Q successive time-slots. One
of the slots carries the symbol energy and all other slots are
considered empty. At the output of the amplifier, the energy
containing slot is magnified by the amplifier gain G and all
slots are corrupted by the amplifier noise. The optical signal is
converted to electrical in a square law detector and the detector
output is integrated over the duration of the slot, to generate the
signal vector s = (s1, s2, . . . , sQ) for each received symbol.

The s vector components correspond to central χ2
k,0 random

variables (RVs) in the Q− 1 slots that do not have any signal
energy, and a non-central χ2

k,λ RV in the slot that has the
signal energy. The corresponding pdfs are [14]

pe (x; k) =
xk−1

(k − 1)!
e−x ,

ps (x; k, λ) = e−(x+λ)
(x
λ

) k−1
2

Ik−1

(
2
√
λx
)
,

(1)

where In(·) denotes the modified Bessel function of the first
kind. In the previous equations λ = E/N0 = Eb/N0 log2 Q
is the symbol energy to noise ratio, Eb is the energy per bit
after amplification, N0 = nsp h f (G− 1) is the optical noise
spectral density and k are the noise modes.

In the RS coded system, the demodulator selects the symbol
based on the si with the highest likelihood and reports the
corresponding log2(Q) bits to the decoder. In χ2 statistics the
likelihood function is calculated from

Λ (si; k, λ) =
ps (si; k, λ)

pe (si; k)
= e−λ (k − 1)!

Ik−1

(
2
√
λ si
)(√

λ si
)k−1

= e−λ
0F1(; k;λ si) ,

(2)

where pFq(a1, . . . , ap; b1, . . . , bq; z) is the generalized hyper-
geometric function. The function is increasing with respect to
si and, as a result, the demodulator makes the selection based
on max{si}.

The min-sum LDPC decoder, on the other hand, requires
a log-likelihood-ratio to be associated with each received bit
within the PPM symbol. Assuming that the symbols have equal
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Fig. 2: BEP for the RS and LDPC coded pre-amplified 4-PPM receiver. The blue and red colors correspond to k = 2 and
k = 40 noise modes, respectively.

probabilities, then the a-priori probability for a given symbol
equals [18, eq. (10)]

P (si|s) =
Λ (si; k, λ)∑Q

n=1 Λ (sn; k, λ)
. (3)

We now focus on a single bit and note that the bit is ’0’ for
Q/2 of the PPM symbols and ’1’ for the rest. We denote the
sets that contain the Q/2 symbols as B0

ℓ and B1
ℓ , since the

sets are different for the ℓ = 1, . . . , log2 Q bits of the PPM
symbol [19]. Following (3), the probability that the bit is ’0’
or ’1’ is proportional to the sum of likelihoods of the symbols
in sets B0

ℓ and B1
ℓ , respectively. The corresponding LLR of

each bit is therefore calculated from

L(bℓ) = log

(∑
i∈B0

ℓ
Λ (si; k, λ)∑

i∈B1
ℓ
Λ (si; k, λ)

)
. (4)

III. RESULTS AND DISCUSSION

The performance of the system was evaluated using MC
simulations. To this end, random data bits were coded using
the corresponding encoder and were then converted to PPM
symbols. The empty slots were mapped to randomly generated
χ2
k,0 variables and the energy slots were mapped to randomly

generated χ2
k,λ variables. The PPM demodulator either utilized

the RVs directly to produce the bitstream for the RS decoder
based on maximum values, or utilized (4) to calculate the
log-likelihoods for the LDPC decoder. The decoder output
was compared with the original data bits and the BEP was
estimated by counting the errors over multiple successive
decodings.

Fig. 2 presents results for 4-PPM and k = 2, 40 noise
modes. The uncoded system performance is obtained using

[20, eq. (15)] and is included for comparison purposes. As
expected, the results demonstrate that the coded BEP perfor-
mance is far superior compared to the uncoded. The LDPC
codes also provide a significant coding gain compared to their
RS counterparts. The additional coding gain provided by the
LDPCs is approximately equal to 2.5 dB for k = 2 noise
modes and 2.0 dB for k = 40 noise modes when the coding
rate is 1/3. However, if the code rate is increased to 2/3
the discrepancy between the two coding schemes reduces to
1.5 dB and 1 dB, respectively. Moreover, the LDPC data block
size also affects the code performance and almost 0.5 dB is
lost when blocks of small size are utilized.

16-PPM provides better results in terms of Eb/N0, as it
is shown in Fig. 3. An improvement of more than 1.5 dB is
observed for the LDPCs in all noise mode and coding rate
combinations when the modulation order is increased. The
LDPC codes also provide better performance than the RS ones
in all scenarios, however the relative gain is reduced compared
to what was observed for 4-PPM. The additional LDPC gain
is approximately 1.5 dB and 1.0 dB for k = 2 and k = 40
for a coding rate of 1/3. An even smaller improvement is
observed for a coding rate of 2/3, where LDPCs provide an
improvement of 0.5 dB or less, depending on the block size.

IV. CONCLUSION

We have presented results on the BEP performance of
optically pre-amplified PPM receivers that utilize the recently
proposed LDPC codes of the 5G standard, as well as RS codes.
The results show that the utilization of LDPC codes drastically
reduces the required Eb/N0, especially if they are combined
with a high modulation order. The LDPCs also outperform
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Fig. 3: BEP for the RS and LDPC coded pre-amplified 16-PPM receiver. The blue and red colors correspond to k = 2 and
k = 40 noise modes, respectively.

the RS codes, but the relative improvement depends on the
modulation order, noise modes and coding rate. An increase in
any of those three parameters results in RS codes performing
more closely to the LDPC ones.
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